JP4165199B2 - Chromaticity treatment catalyst and chromaticity treatment method - Google Patents
Chromaticity treatment catalyst and chromaticity treatment method Download PDFInfo
- Publication number
- JP4165199B2 JP4165199B2 JP2002348157A JP2002348157A JP4165199B2 JP 4165199 B2 JP4165199 B2 JP 4165199B2 JP 2002348157 A JP2002348157 A JP 2002348157A JP 2002348157 A JP2002348157 A JP 2002348157A JP 4165199 B2 JP4165199 B2 JP 4165199B2
- Authority
- JP
- Japan
- Prior art keywords
- chromaticity
- catalyst
- water
- oxidizing agent
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Catalysts (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、色度成分を含む水から色度成分を効率的に除去するための色度処理用触媒と、この色度処理用触媒を用いた色度処理方法に関する。
【0002】
【従来の技術】
従来、色度成分を含む水から色度成分を除去する方法としては、硫酸アルミニウムや塩化第二鉄等の凝集剤を添加して凝集沈殿処理する方法や、活性炭による吸着処理法、塩素やオゾン等の酸化剤による酸化分解法などがある。これらの方法のうち、凝集沈殿処理法では、処理効率が悪く、処理に必要な凝集剤の添加量が多く、処理コストが高くつく。また、多量の凝集剤を添加して凝集処理することにより発生する汚泥量が多く、汚泥処理の問題もある。活性炭吸着法であれば、汚泥発生の問題はないが、活性炭の色度成分吸着容量が少なく、高価な活性炭を大量に必要とすることになり、やはり処理コストが高くつくという問題がある。また、酸化分解法でも十分な処理効果は得られず、残留塩素や残留オゾンの処理の問題や特にオゾンを用いる場合には設備費が高いという欠点がある。
【0003】
このような問題を解決するものとして、特開平7−256248号公報には、ヒドロキシアパタイトにより水中の色度成分を吸着除去する方法が提案されている。
【0004】
また、特公昭58−8307号公報には、酸化剤と共に、コバルト及び/又はニッケルをゼオライトやアルミナ等の担体に担持した触媒を用いて、色度成分を接触酸化分解する方法が提案されている。
【0005】
【特許文献1】
特開平7−256248号公報
【特許文献2】
特公昭58−8307号公報
【0006】
【発明が解決しようとする課題】
特開平7−256248号公報に記載される方法は、ヒドロキシアパタイトに色度成分を吸着させて除去する方法であり、ヒドロキシアパタイトの吸着能により色度成分の除去効果にも限界がある。
【0007】
これに対して、特公昭58−8307号公報に記載される触媒酸化分解法であれば、酸化剤のみを用いる方法に比べて効率的に色度成分を分解除去することができるが、より一層の処理効率の向上が望まれる。
【0008】
本発明は上記従来の問題点を解決し、汚泥を発生せず、低コストで効率的に水中の色度成分を分解除去することができる色度処理用触媒と、この色度処理用触媒を用いた色度処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の色度処理用触媒は、金属過酸化物を担持したリン酸カルシウム系化合物を含む色度処理用触媒であって、前記リン酸カルシウム系化合物がヒドロキシアパタイト又は天然産出リン鉱石であり、前記金属がニッケルであることを特徴とする。
【0010】
本発明の色度処理方法は、色度成分を含む水から色度成分を除去する方法において、該水を、酸化剤の存在下に、このような本発明の色度処理用触媒と接触させることを特徴とする。
【0011】
リン酸カルシウム系化合物は色度成分の吸着能力が高いため、本発明によれば、触媒表面に吸着されて高濃縮された色度成分が、酸化剤により金属の触媒作用で効率的に分解される。
【0012】
本発明において、リン酸カルシウム系化合物としては、ヒドロキシアパタイト(Ca10(PO4)6OH2)、或いは、天然産出リン鉱石を用いる。また、酸化剤としては、次亜塩素酸塩、塩素ガス等の塩素系酸化剤を用いることができる。
【0013】
【発明の実施の形態】
以下に本発明の色度処理用触媒及び色度処理方法の実施の形態を詳細に説明する。
【0014】
まず、本発明の色度処理用触媒について説明する。
【0015】
本発明の色度処理用触媒は、リン酸カルシウム系化合物に触媒成分の金属過酸化物を担持したものである。
【0016】
本発明において、リン酸カルシウム系化合物としては、ヒドロキシアパタイト、天然産出リン鉱石を用いる。これらのリン酸カルシウム系化合物は1種を単独で用いても良く、2種以上を混合して用いても良い。
【0017】
一方、触媒成分の金属としては、ニッケルを用いる。
【0018】
担体であるリン酸カルシウム系化合物へのニッケルの担持量は、0.1〜100g−金属/1000g−dry担体であることが好ましい。この担持量よりも少ないと、金属の触媒作用を十分に得ることができず、これよりも多量に担持させることは、触媒の調製上困難である。
【0019】
本発明の色度処理用触媒は、金属過酸化物を担体としてのリン酸カルシウム系化合物に担持したものであり、このような金属過酸化物担持触媒は、例えば、次のようにして、ニッケルをリン酸カルシウム系化合物担体に担持させた後、酸化剤と反応させて調製することができる。
【0020】
まず、ニッケルの触媒金属の硫酸塩、硝酸塩、塩化物等の水溶液、或いはこれらの混合物の水溶液を調製し、この触媒金属水溶液に担体としてのリン酸カルシウム系化合物を浸漬する。或いは、リン酸カルシウム系化合物を充填したカラムに触媒金属水溶液を一過式又は循環式にて通水して接触させる。この触媒金属水溶液の濃度や接触時間は、調製する色度処理用触媒の金属担持量に応じて適宜設定される。
【0021】
このようにしてニッケルをイオン交換により担持した担体を水洗した後、酸化剤を含むアルカリ水溶液と接触させる。この接触方法は、上述の担持法と同様、浸漬又はカラムへの通水等により行うことができる。
【0022】
ここで、酸化剤としては、次亜塩素酸ナトリウム(NaClO)等の次亜塩素酸塩や塩素ガス等を用いることができる。アルカリ水溶液としては、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)等を用いることができる。
【0023】
この酸化剤を含むアルカリ水溶液の酸化剤濃度やアルカリ濃度については特に制限はないが、通常、酸化剤濃度0.5〜10重量%、特に1〜5重量%で、アルカリ濃度0.1〜10重量%、特に0.5〜2.5重量%の水溶液であることが好ましい。
【0024】
このようにしてニッケルを担持したリン酸カルシウム系化合物担体を、酸化剤を含むアルカリ水溶液に接触させた後、水洗することにより、本発明の色度処理用触媒を得ることができる。
【0025】
次に、このような本発明の色度処理用触媒を用いる本発明の色度処理方法について説明する。
【0026】
本発明の色度処理方法では、色度成分を含む被処理水を酸化剤の存在下に本発明の色度処理用触媒と接触させる。
【0027】
ここで、酸化剤としては、塩素系酸化剤が好ましい。塩素系酸化剤には特に制限はなく、例えば、塩素、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウムなどの次亜塩素酸塩、亜塩素酸ナトリウム、亜塩素酸カリウムなどの亜塩素酸塩、塩素酸ナトリウム、塩素酸カリウム、塩素酸カルシウムなどの塩素酸塩、過塩素酸ナトリウム、過塩素酸カルシウムなどの過塩素酸塩などを挙げることができる。これらの中で、次亜塩素酸塩は適度の酸化性を有するので、好適に使用することができる。
【0028】
このような塩素系酸化剤の添加量は、少な過ぎると用いた触媒が劣化し、多過ぎても添加量に見合う効果を得ることができない上に、処理後に残留する塩素系酸化剤の除去手段における負荷が増大し、好ましくない。従って、このような問題を防止するべく、塩素系酸化剤は処理水の残留塩素濃度が2〜50mg−Cl2/L、特に5〜50mg−Cl2/Lとなるように添加することが好ましい。
【0029】
本発明の色度処理方法において、被処理水を酸化剤の存在下に色度処理用触媒と接触させる方法としては特に制限はないが、例えば、次のような方法を採用することができる。
(1) 被処理水に酸化剤を添加した後、色度処理用触媒を充填したカラムに通水する。
(2) 被処理水に酸化剤と色度処理用触媒を添加して撹拌し、その後固液分離する。
【0030】
上記(1)の方法において、被処理水の通水速度は、被処理水の色度、目標とする処理水の色度、酸化剤の添加量等に応じて適宜決定されるが、通常の場合、通水SVで1〜20hr−1程度とすることが好ましい。
【0031】
上記(2)の方法において、被処理水への色度処理用触媒の添加量は、被処理水の色度、目標とする処理水の色度、酸化剤の添加量等に応じて適宜決定されるが、通常の場合、50〜500mg/L程度とすることが好ましい。
【0032】
このような本発明の色度処理方法によれば、汚泥を発生させることなく、飲料水製造工場、食品工場、染料工場、肥料工場、半導体工場、発電所などより排出される着色排水等の各種の排水を効率的に処理して良好な水質の処理水を得ることができる。
【0033】
なお、本発明によれば、排水中の色度成分と共に、COD成分も分解除去することができる。
【0034】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0035】
実施例1,2、比較例1〜3
[ニッケル担持触媒の調製]
表1に示す担体を用い、以下の手順で触媒の調製を行った。
【0036】
(1) 担体をそれぞれ1000g採り、SS成分がなくなるまで洗浄した。
(2) 硫酸ニッケル(NiSO4・6H2O)112g(25g−Ni/1000g−dry担体)を800mLの超純水に溶解した。これを(1)の水洗した担体に添加し、20hr放置した(担体に対して2.5重量%−Ni添加)。
(3) (2)の上澄み液を廃棄した。
(4) (3)で分離した担体を、1000mLの超純水で3度洗浄した。
(5) 35gの水酸化ナトリウム(NaOH)を500mLの超純水に溶解し、400mLの10重量%次亜塩素酸ナトリウム(NaClO)水溶液を添加した溶液を(4)の担体に添加し、20hr放置した。
(6) (5)の上澄み液を廃棄した後、洗浄水のpHが10になるまで分離した担体を超純水で洗浄した。
【0037】
[通水試験]
調製したニッケル担持触媒50mLをカラムに充填し、飲料工場の着色排水(色度1200度)に酸化剤としてNaClOを150mg−Cl2/L添加し、通水速度500mL/hr(通水SV:10hr−1)で通水して処理を行った。
【0038】
通水30hr後の処理水(残留塩素濃度5mg−Cl2/L)の色度を調べ、結果を表1に示した(ここで色度とはJIS Z8722(物体色の測定方法)に準拠して測定した値であり、処理水色度の目標値は100度以下である。)。
【0039】
比較のため触媒を用いず、酸化剤のみを添加した場合の色度(比較例3)も表1に併記した。
【0040】
【表1】
【0041】
表1より、リン酸カルシウム系化合物にニッケルを担持した色度処理用触媒を用いる本発明の方法によれば、色度成分を効率的に除去することができ、処理効率の向上で装置のコンパクト化を図ることができることがわかる。
【0042】
【発明の効果】
以上詳述した通り、本発明の色度処理用触媒及び色度処理方法によれば、水中の色度成分を低コストで効率的に分解除去することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chromaticity treatment catalyst for efficiently removing a chromaticity component from water containing the chromaticity component, and a chromaticity treatment method using the chromaticity treatment catalyst.
[0002]
[Prior art]
Conventionally, as a method for removing chromaticity components from water containing chromaticity components, a coagulating and precipitating method by adding a coagulant such as aluminum sulfate or ferric chloride, an adsorption treatment method using activated carbon, chlorine or ozone. There are oxidative decomposition methods using oxidizing agents such as Among these methods, the coagulation sedimentation treatment method is inferior in processing efficiency, requires a large amount of flocculant added for the treatment, and increases the processing cost. In addition, the amount of sludge generated by adding a large amount of flocculant and aggregating it is large, and there is a problem of sludge treatment. In the activated carbon adsorption method, there is no problem of sludge generation, but there is a problem that the activated carbon has a small chromaticity component adsorption capacity and requires a large amount of expensive activated carbon, which also increases the treatment cost. Further, a sufficient treatment effect cannot be obtained even by the oxidative decomposition method, and there is a problem that residual chlorine and residual ozone are treated, and particularly when ozone is used, the equipment cost is high.
[0003]
In order to solve such a problem, Japanese Patent Application Laid-Open No. 7-256248 proposes a method of adsorbing and removing chromaticity components in water with hydroxyapatite.
[0004]
Japanese Patent Publication No. 58-8307 proposes a method for catalytic oxidative decomposition of chromaticity components using a catalyst in which cobalt and / or nickel is supported on a support such as zeolite or alumina together with an oxidizing agent. .
[0005]
[Patent Document 1]
JP-A-7-256248 [Patent Document 2]
Japanese Patent Publication No. 58-8307 [0006]
[Problems to be solved by the invention]
The method described in JP-A-7-256248 is a method for removing chromaticity components by adsorbing them to hydroxyapatite, and there is a limit to the effect of removing chromaticity components due to the adsorption ability of hydroxyapatite.
[0007]
On the other hand, the catalytic oxidative decomposition method described in Japanese Patent Publication No. 58-8307 can efficiently decompose and remove the chromaticity component as compared with the method using only the oxidizing agent. Improvement of the processing efficiency is desired.
[0008]
The present invention solves the above-mentioned conventional problems, a chromaticity treatment catalyst capable of decomposing and removing chromaticity components in water efficiently at low cost without generating sludge, and this chromaticity treatment catalyst. An object is to provide a chromaticity processing method used.
[0009]
[Means for Solving the Problems]
The chromaticity treatment catalyst of the present invention is a chromaticity treatment catalyst containing a calcium phosphate-based compound carrying a metal peroxide , wherein the calcium phosphate-based compound is hydroxyapatite or a naturally produced phosphate ore, and the metal is nickel. It is characterized by being.
[0010]
The chromaticity treatment method of the present invention is a method for removing a chromaticity component from water containing a chromaticity component, wherein the water is brought into contact with such a chromaticity treatment catalyst of the present invention in the presence of an oxidizing agent. It is characterized by that.
[0011]
Since calcium phosphate compounds have a high ability to adsorb chromaticity components, according to the present invention, the highly concentrated chromaticity components adsorbed on the catalyst surface are efficiently decomposed by metal catalysis by an oxidizing agent.
[0012]
In the present invention, the calcium phosphate-based compound, hydroxyapatite (Ca 10 (PO 4) 6 OH 2), Or, Ru using naturally occurring phosphate rock. Also, as the oxidizing agent, it is possible to use hypochlorite, chlorine-based oxidizing agent such as chlorine gas.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a chromaticity treatment catalyst and a chromaticity treatment method of the present invention will be described in detail below.
[0014]
First, the chromaticity treatment catalyst of the present invention will be described.
[0015]
The chromaticity treatment catalyst of the present invention is a calcium phosphate compound carrying a metal peroxide as a catalyst component.
[0016]
In the present invention, the calcium phosphate-based compound, hydroxyapatite, Ru with natural produce phosphorus ore. These calcium phosphate compounds may be used alone or in a combination of two or more.
[0017]
On the other hand, nickel is used as the metal of the catalyst component .
[0018]
Supported amount of nickel to the calcium phosphate compound as a carrier is preferably 0.1~100g- metal / 1000 g-dry carrier. If the amount is less than this, the catalytic action of the metal cannot be sufficiently obtained, and it is difficult to prepare a larger amount than this in terms of preparation of the catalyst.
[0019]
Chromaticity treatment catalyst of the present invention is state, and are not a metallic peroxide supported on calcium phosphate compound as a carrier, such metal peroxides supported catalyst, for example, as follows, nickel It is possible to prepare it by loading it on a calcium phosphate compound carrier and then reacting it with an oxidizing agent.
[0020]
First, sulfates of catalytic metals nickel, nitrate, an aqueous solution, such as chloride, or an aqueous solution of a mixture thereof is prepared and immersed calcium phosphate compound as a carrier to the catalyst metal solution. Alternatively, a catalytic metal aqueous solution is passed through a column packed with a calcium phosphate compound in a transient or circulating manner to make contact. The concentration and the contact time of the catalyst metal aqueous solution are appropriately set according to the amount of metal supported on the chromaticity treatment catalyst to be prepared.
[0021]
After washing the carrier carrying the ion exchange nickel this way is brought into contact with an alkaline aqueous solution containing an oxidizing agent. This contact method can be carried out by dipping or passing water through the column, as in the above-described supporting method.
[0022]
Here, as the oxidizing agent, hypochlorite such as sodium hypochlorite (NaClO), chlorine gas, or the like can be used. As the alkaline aqueous solution, sodium hydroxide (NaOH), potassium hydroxide (KOH) or the like can be used.
[0023]
Although there is no restriction | limiting in particular about the oxidizing agent density | concentration of an aqueous alkali solution containing this oxidizing agent, or an alkali density | concentration, Usually, an oxidizing agent density | concentration of 0.5 to 10 weight%, especially 1 to 5 weight%, alkali concentration 0.1-10 The aqueous solution is preferably 0.5% by weight, particularly 0.5 to 2.5% by weight.
[0024]
Thus the calcium phosphate compound carrier carrying the nickel and, after contacting in an aqueous alkaline solution containing an oxidizing agent, by washing with water, can be obtained chromaticity process catalyst of the present invention.
[0025]
Next, the chromaticity treatment method of the present invention using such a chromaticity treatment catalyst of the present invention will be described.
[0026]
In the chromaticity treatment method of the present invention, water to be treated containing a chromaticity component is brought into contact with the chromaticity treatment catalyst of the present invention in the presence of an oxidizing agent.
[0027]
Here, as the oxidizing agent, a chlorine-based oxidizing agent is preferable. There are no particular limitations on the chlorine-based oxidizer, for example, hypochlorite such as chlorine, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, sodium chlorite, potassium chlorite, etc. And chlorates such as sodium chlorate, sodium chlorate, potassium chlorate and calcium chlorate, and perchlorates such as sodium perchlorate and calcium perchlorate. Among these, hypochlorite has moderate oxidation properties and can be used preferably.
[0028]
If the amount of the chlorinated oxidant added is too small, the catalyst used is deteriorated. If the amount is too large, an effect commensurate with the added amount cannot be obtained, and a means for removing the chlorinated oxidant remaining after the treatment is obtained. This increases the load in the process, which is not preferable. Therefore, in order to prevent such a problem, a chlorine-based oxidizing agent is preferably the residual chlorine concentration in the treated water is added to a 2~50mg-Cl 2 / L, especially 5~50mg-Cl 2 / L .
[0029]
In the chromaticity treatment method of the present invention, the method for bringing the water to be treated into contact with the chromaticity treatment catalyst in the presence of an oxidizing agent is not particularly limited, but for example, the following method can be employed.
(1) After adding an oxidizing agent to the water to be treated, the water is passed through a column packed with a chromaticity treatment catalyst.
(2) An oxidizing agent and a chromaticity treatment catalyst are added to the water to be treated and stirred, followed by solid-liquid separation.
[0030]
In the method (1), the flow rate of the water to be treated is appropriately determined according to the chromaticity of the water to be treated, the target chromaticity of the water to be treated, the amount of the oxidizing agent added, etc. In this case, it is preferable to set the water flow SV to about 1 to 20 hr −1 .
[0031]
In the above method (2), the amount of the chromaticity treatment catalyst added to the water to be treated is appropriately determined according to the chromaticity of the water to be treated, the target chromaticity of the water to be treated, the amount of oxidizer added, and the like However, in the normal case, it is preferably about 50 to 500 mg / L.
[0032]
According to the chromaticity treatment method of the present invention, various kinds of colored wastewater discharged from drinking water manufacturing factories, food factories, dye factories, fertilizer factories, semiconductor factories, power plants, etc. without generating sludge. The waste water can be efficiently treated to obtain treated water with good water quality.
[0033]
According to the present invention, the COD component can be decomposed and removed together with the chromaticity component in the waste water.
[0034]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0035]
Examples 1 and 2 and Comparative Examples 1 to 3
[Preparation of nickel-supported catalyst]
Using the carrier shown in Table 1, a catalyst was prepared by the following procedure.
[0036]
(1) 1000 g of each carrier was taken and washed until the SS component disappeared.
(2) 112 g of nickel sulfate (NiSO 4 .6H 2 O) (25 g-Ni / 1000 g-dry carrier) was dissolved in 800 mL of ultrapure water. This was added to the carrier washed with water in (1) and allowed to stand for 20 hours (2.5 wt% -Ni added to the carrier).
(3) The supernatant liquid of (2) was discarded.
(4) The carrier separated in (3) was washed 3 times with 1000 mL of ultrapure water.
(5) 35 g of sodium hydroxide (NaOH) was dissolved in 500 mL of ultrapure water, and 400 mL of a 10 wt% sodium hypochlorite (NaClO) aqueous solution was added to the carrier of (4) , and 20 hr I left it alone.
(6) After discarding the supernatant of (5), the separated carrier was washed with ultrapure water until the pH of the washing water reached 10.
[0037]
[Water flow test]
50 mL of the prepared nickel-supported catalyst is packed into a column, 150 mg-Cl 2 / L of NaClO as an oxidizing agent is added to the colored wastewater (coloring 1200 ° C.) of a beverage factory, and the water flow rate is 500 mL / hr (water flow SV: 10 hr). -1 ), water was passed for treatment.
[0038]
The chromaticity of treated water (residual chlorine concentration 5 mg-Cl 2 / L) after 30 hours of water flow was examined, and the results are shown in Table 1 (here, chromaticity is based on JIS Z8722 (object color measurement method)). The target value of the treated water chromaticity is 100 degrees or less.)
[0039]
For comparison, the chromaticity (Comparative Example 3) when only the oxidizing agent is added without using a catalyst is also shown in Table 1.
[0040]
[Table 1]
[0041]
From Table 1, according to the method of the present invention using a chromaticity treatment catalyst in which nickel is supported on a calcium phosphate compound, chromaticity components can be efficiently removed, and the processing efficiency can be improved and the apparatus can be made compact. It can be seen that it can be planned.
[0042]
【The invention's effect】
As described in detail above, according to the chromaticity treatment catalyst and chromaticity treatment method of the present invention, chromaticity components in water can be efficiently decomposed and removed at low cost.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002348157A JP4165199B2 (en) | 2002-11-29 | 2002-11-29 | Chromaticity treatment catalyst and chromaticity treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002348157A JP4165199B2 (en) | 2002-11-29 | 2002-11-29 | Chromaticity treatment catalyst and chromaticity treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004181283A JP2004181283A (en) | 2004-07-02 |
JP4165199B2 true JP4165199B2 (en) | 2008-10-15 |
Family
ID=32751143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002348157A Expired - Fee Related JP4165199B2 (en) | 2002-11-29 | 2002-11-29 | Chromaticity treatment catalyst and chromaticity treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4165199B2 (en) |
-
2002
- 2002-11-29 JP JP2002348157A patent/JP4165199B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004181283A (en) | 2004-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0490317B1 (en) | Active carbon materials, process for the preparation thereof and the use thereof | |
JPH10174976A (en) | Method for treating water containing nitrogen compound | |
JP4165199B2 (en) | Chromaticity treatment catalyst and chromaticity treatment method | |
JP5003058B2 (en) | Decolorization treatment method for colored beverage drainage | |
JP4085797B2 (en) | Chromaticity processing method | |
JP2004074088A (en) | Treatment method for waste liquid containing chemical polishing liquid | |
JP2010149050A (en) | Solid catalyst for treating nitrate nitrogen-containing water and method of treating nitrate nitrogen-containing water using the catalyst | |
JP2001300553A (en) | Method for treating cyanide-containing wastewater | |
JPH0249798B2 (en) | JUKIKAGOBUTSUGANJUSUINOSHORIHOHO | |
JP4399854B2 (en) | Treatment method of waste water containing hydrazine | |
WO2022050838A1 (en) | Wastewater ozone treatment | |
JP2004181284A (en) | Chromaticity treatment method and treatment apparatus | |
JPH0780479A (en) | Treatment of organic compound-containing waste liquid | |
JP2008200599A (en) | Method for cleaning waste water containing ammonia nitrogen | |
JPH09276881A (en) | Treatment of nitrogen compound-containing water | |
JP2011161365A (en) | Hydrazine-containing wastewater treatment method | |
JP2003001277A (en) | Method for decomposing persistent substance | |
JP4450146B2 (en) | COD component-containing water treatment method | |
JP2014129566A (en) | Electrolysis method for sodium chloride aqueous solution | |
JP2006314952A (en) | Hardly biodegradable organic matter-containing water treatment apparatus and method | |
JPH0249158B2 (en) | ||
JP2003080276A (en) | Method for treating hard-to-decompose organic substance | |
JP2008229434A (en) | Method for purifying ammonia nitrogen-containing wastewater | |
JPS58112088A (en) | Purification of hydrazine-contg. waste water | |
JPS6216153B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051004 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080708 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080721 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |