JP3653593B2 - Water quality improvement methods in closed and stagnant water systems - Google Patents
Water quality improvement methods in closed and stagnant water systems Download PDFInfo
- Publication number
- JP3653593B2 JP3653593B2 JP2002317054A JP2002317054A JP3653593B2 JP 3653593 B2 JP3653593 B2 JP 3653593B2 JP 2002317054 A JP2002317054 A JP 2002317054A JP 2002317054 A JP2002317054 A JP 2002317054A JP 3653593 B2 JP3653593 B2 JP 3653593B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- treatment tank
- closed
- tank
- filtration tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
- Physical Water Treatments (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、閉鎖・停滞性水系における有機性成分を高濃度で含有する汚水の浄化方法に関する。本発明は、さらに詳しくは、生活廃水の流入、水鳥・魚類への給餌残渣および水鳥・魚類からの排泄物の堆積、農業肥料の流入などの少なくとも一つの原因により富栄養化して、アオコなどの水生生物の大量発生、悪臭発生、透視度および美観の低下などを生じている閉鎖・停滞性水系で発生する汚水を、低コストでかつ簡単な管理手法で高度に浄化することにより、CODの低減、高度の脱窒および脱リン、透視度および美観の回復などを達成するための技術に関する。
【0002】
【従来の技術】
ため池、中小河川/運河の滞留或いは停滞部、動物園・遊園地ならびに公園などにおける水鳥・魚類飼育池、掘り割り、湖沼、ゴルフ場の池などの水の出入りが少ない閉鎖性或いは停滞性の水系(以下においては、「閉鎖・停滞性水系」という)では、有機性成分を含む汚濁水(本明細書においては、この様な水を「停滞汚水」ということがある)が発生しやすい。しかしながら、停滞汚水の処理は、閉鎖・停滞性水系のおかれた自然環境による制約のために、一般に極めて困難である。
【0003】
都市下水、工場廃水などを代表例とする通常の廃水は、発生源が特定されていること、有機分組成なども発生源に応じて比較的限定されていること、廃水がほぼ定量的に発生するので、大型の常設処理施設を設置して連続的に処理を行う場合にも、経済的に許容出来ることなどの理由により、その処理は容易であり、処理方法も確立されている。この様な廃水(以下「典型的廃水」ということがある)の処理方法は、下記に要約する通り、物理化学的処理方法と生物学的処理方法とに大別される。しかしながら、典型的廃水の処理方法を自然環境的ならびに経済的な制約を伴う停滞汚水の処理にそのまま転用することは、できない。
【0004】
典型的廃水の物理化学的処理方法としては、凝集沈殿法、吸着法、中和法、イオン交換法などがあり、アルミニウム、鉄などを含む金属含有物(硫酸アルミニウム、アルミン酸ナトリウム、硫酸鉄など)、高分子材料、化学的処理剤などを使用する。従って、この様な方法により上記の様な停滞汚水を処理する場合には、使用する材料に起因する副次的な汚染による生態系への悪影響が懸念されるので、実質的に実施不可能である。また、仮に何らかの方法により悪影響を回避できたとしても、膨大な費用が必要となる。
【0005】
生物学的処理法には、活性汚泥法、生物膜法、酸化池法、嫌気処理法などがあり、処理対象に応じてそれぞれ特有の効果を奏する。
【0006】
例えば、下水処理などにおいて広く採用されている活性汚泥法は、好気性微生物による有機物の分解効率(CODの低減)には優れているが、脱窒素・脱リンは実質的に不可能であり、また浮遊物質ならびにリン成分を沈殿させるために、凝集沈殿剤を併用する必要がある。さらに、大型の処理施設を必要とし、発生する大量の余剰汚泥の処理が容易でないという難点がある。
砂などにより形成されるろ過槽を利用する砂ろ床法は、浮遊物質(SS)の除去による処理水の透視度改善に有効であり、また、脱窒素効率も高いが、脱リンはできない。また、この方法を実施するためには、別に砂ろ床設備を設ける必要があるので、上記の様な停滞汚水の処理には、やはり経済的に不適である。
【0007】
生物酸化池法は、脱窒素および脱リンの効率が高いが、プランクトン、藻類などを主役とする浄化方法であるため、被処理水の透視度はあまり改善されないので、この方法を停滞汚水の処理に使用する場合には、停滞汚水を抜き出して、別個に設置した生物酸化池に送り、そこで処理を行う必要があるので、やはり経済的に実用性に欠ける。
【0008】
嫌気処理法(メタン発酵法)は、炭素系成分を含有するヘドロなどの基質をガス化するので、余剰汚泥が少なく、かつ発生したメタンガスを燃料として利用できるという利点を備えている。従って、今後の発展が大いに期待される生物学的処理法であるが、景観の維持が求められる停滞汚水には、この方法を採用することはできない。
【0009】
従って、低コストでCODの低減、透視度の改善による美観の向上、脱リンおよび脱窒素を達成しうる新規な停滞汚水処理方法の開発が求められている。
【0010】
【発明が解決しようとする課題】
従って、本発明は、停滞汚水を処理するに際し、イニシャルコストおよびランニングコストを抑制しつつ、CODの低減、透視度の改善、脱リンおよび脱窒素を自然浄化に近い方式で同時に達成できる新規な方法を提供することを主な目的とする。
【0011】
【課題を解決するための手段】
本発明者は、典型的廃水の処理方法を停滞汚水の処理に転用した場合の問題点に留意しつつ研究を進めてきた結果、閉鎖・停滞性水系内とその周辺にそれぞれ少なくとも1基づつの第2次処理槽および下部ろ過槽を設置し、当該水系中の停滞汚水を、第1次処理槽を経て第2次処理槽にくみ上げた後、再び閉鎖・停滞性水系に自然流下により循環させる場合には、その目的を達成しうることを見出した。
【0012】
すなわち、本発明は、下記の閉鎖・停滞性水系における水質改善方法を提供するものである。
1 閉鎖・停滞水系における水質改善方法であって、水中に少なくとも1基の第1次処理槽とその周辺に少なくとも1基の第2次処理槽とを設置し、第1次処理槽で得られる1次浄化水をポンプを介して殺菌灯を設けた第2次処理槽に送給した後、第2次処理槽で得られる2次浄化水を閉鎖・停滞水系に自然流下させることにより、当該水系を好気状態に保持しつつ、当該水系内に右回りの旋回流を発生させることを特徴とする水質改善方法。
2 第1次処理槽および第2次処理槽がそれぞれ可動式である上記1項に記載の水質改善方法。
3 第1次処理槽が藻類固定用のネットを備え、第2次処理槽が気泡性多孔質無機塊状体および藻類固定用ネットを収容している上記1項に記載の水質改善方法。
【0013】
【発明の実施の形態】
以下図面を参照しつつ、本発明方法をさらに詳細に説明する。
【0014】
本発明方法の基本構成の概要を示すフローチャートを図1に示す。また、本発明方法で使用する装置のより具体的な構成を図2、図3および図4に示す。なお、図2、図3および図4における装置各部分の大きさは、実装置における相対的な大きさを示すものでない。
【0015】
図1に示すフローチャートから明らかな様に、本発明は、基本的に閉鎖・停滞性水系における停滞汚水を水系内で処理する第1次処理槽(下部ろ過槽)と第1次処理水を水系周辺で処理するための第2次処理槽(上部ろ過槽)とを必須の構成要素とする。
【0016】
まず、停滞汚水を第1次処理槽内のろ過材中を通過させて第1次処理を行った後、ポンプにより第2次処理槽に汲み上げる。第2次処理槽の入口部分には、紫外線殺菌灯を備えた沈殿槽が配置されており、第1次処理水中に含まれる浄化に不要な生物体(アオコ類など)を死滅させるとともに、有機物分解を促進して、それらの残渣の少なくとも一部を汚泥として沈殿させ、適宜装置外に排出する。
【0017】
生物体の少なくとも一部を除去された第1次処理水は、第2次処理槽本体に連続的に送給され、生物膜法により、さらに第2次処理される。第2次処理水は、閉鎖・停滞性水系に自然流下させる。この際、第2次処理水の流下は、水系内に右回りの旋回流を生じさせる方向に向けて行う。
【0018】
図2は、閉鎖・停滞性水系中に配置される第1次処理槽(以下「下部ろ過槽」という)の概要を示す模式的な断面図である。下部ろ過槽は、例えば、通水用の孔を設けた鋼板、鋼メッシュなどからなる収容容器内に、ろ過材となる岩石類、コンクリート類、金属ネット材、繊維製材(繊維製包装袋材、ネット材、漁網材など)などの藻類固定用ネットを積み重ねて形成したろ過部の中心に、水中ポンプを設置した構造を有している。水中ポンプの周囲には、汲み上げ操作を妨げない様に、ろ過材を置かない円周状空間を設けてある。
【0019】
ろ過材としては、特に限定されないが、例えば、少なくともその一部を軽石などの多孔質のカルシウム系材料により構成することが、好ましい。この様な多孔質材料は、比表面積が大きいので、各種の微生物コロニーにより形成される生物膜の生育面積を大きくすることができ、有機物分解効率を高めることができる。ただし、木炭のような孔は微細すぎるので、適度の大きさの孔を有する軽石のような多孔質材料がより好ましい。さらに、現在のところ十分に解明されている訳ではないが、カルシウム系材料は、停滞汚水中にしばしば高濃度で含まれている燐成分をリン酸カルシウムなどの形態で固定し、除去する効果を発揮するものと推測される。従って、この様な形態での燐成分の固定・除去のためには、さらに補助的材料として、カルシウム源となる貝殻(カキ殻、ホタテ貝殻など)或いはその破砕片を上記ろ過材と併用することが有効であろうと推測される。
【0020】
また、金属ネット材、繊維製材などは、汚水中の窒素成分、燐成分などの吸収に大きな役割を果たす藻額を固定保持する“足がかり"としての機能をも発揮する。さらに、繊維製包装袋材を使用する場合には、袋内に岩石類、コンクリート類などを収容した状態で併用することにより、下部ろ過槽内での水流動速度を制御して、汚水処理効果を改善することができる。
【0021】
下部ろ過槽は、例えば、ろ過材とポンプを収容した容器(外枠構造体)の外周部上部に複数個の釣上げ部材を設けておくことにより、クレーンによる釣り上げと車載移動を可能とする構造(可搬構造)としておくことが、実用的に有利である。この場合、取り扱いを容易とするために、必要ならば、枠材、支柱などにより補強した収容容器の形態とすることができる。
【0022】
図3は、上記の下部ろ過槽に近接して配置する上部ろ過槽の概要を示す摸式的な断面図である。上部ろ過槽は、処理済み水(第2次処理水)を自然流下により閉鎖・停滞性水系に循環するために、下部ろ過槽よりも高い位置に配置されている。
【0023】
上部ろ過槽は、下部ろ過槽からポンプにより汲み上げられた第1次処理水を受け入れる沈殿槽、ろ過部および第2次処理水を閉鎖・停滞性水系に循環させるための放水パイプを主要な構成要素としている。これらの構成要素は、下部ろ過槽と同様に収容容器内に設置されている。
【0024】
下部ろ過槽から送られてきた第1次処理水は、上部ろ過槽中の沈殿槽に入り、ここで殺薗灯からの紫外線照射を受ける。この紫外線照射により、第1次処理水中に含まれる浄化に不要な生物体(アオコ類など)の大部分が死滅し、それらの残渣は、第1次処理水中に含まれていた他の固形分とともに、沈殿槽下部に順次沈降して、汚泥として堆積する。この堆積汚泥は、必要に応じて、適宜装置外に排出すれば良い。なお、実際の装置において、短波長の紫外線により、アオコ類は、細胞膜が破壊された易分解性の有機物となり、それがろ過部に送られて、分解されるので、汚泥の堆積量は、非常に少なくなることが明らかとなった。
【0025】
沈殿槽において生物体などの固形分の少なくとも一部を沈降除去された第1次処理水(生物体死滅残渣などの固形分の一部を含む)は、ろ過部に入り、上述の下部ろ過槽におけると同様のろ過材を用いる第2次処理に供される。
【0026】
上部ろ過槽における処理を終えた第2次処理水は、放水パイプを経て自然流下により、閉鎖・停滞性水系に循環される。放水は、閉鎖・停滞性水系に右回り(時計方向)の旋回流を発生させることにより、処理効果を向上させるために、着水位置と水系中心とを結ぶ軸に対して、一定範囲の角度方向(上方から見て60〜85度程度)でかつ水平方向から下方向(15度程度)にパイプを配向させて行う。なお、右回りの旋回流が、左回りの旋回流よりも良好な水質改善効果を発揮する理由は、今のところ解明されていない。
【0027】
また、第2次処理水の放水は、着水地点に水の飛沫が最大に発生する程度の量と強度で行うことが好ましい。この場合には、空気の混入による強力な曝気が行われるので、停滞汚水の処理効率が向上する。
【0028】
上部ろ過槽も、下部ろ過槽の場合と同様に、可搬構造とすることが実用的に有利である。
【0029】
図4は、後記実施例において詳述する東武動物園内の鯉の池(コンクリート製、水深約1m)において、図2および図3にそれぞれ示す下部ろ過槽および上部ろ過槽を組み合わせて、停滞汚水の浄化を行った実例の概要を示す断面図である。なお、浄化操作開始前の池の状態は、アオコが水面の大部分を覆っており、アオコの存在しない箇所においても、濁りのため池底を直接見ることは不可能であった。また、池底面を凌ったところ、ヘドロ状物が底面に堆積していることが確認された。この様な停滞汚水の汚濁現象は、日照エネルギー量が増大し、かつ温度が高くなる晩春から初秋にかけて、閉鎖・停滞性水系において一般的に見られるものである。
【0030】
まず、池底部のコンクリート面上に下部ろ過槽(図2参照)を配置するとともに、池周辺の地上部に上部ろ過槽(図3参照)を配置する。次いで、ポンプを駆動させ、停滞汚水を下部ろ過槽から配管を経て上部ろ過槽の沈殿槽に流下させる。沈殿槽で紫外線による殺菌を受けた水は、ろ過槽内においてろ過材と接触した後、鯉の池内に右回りの旋回水流を発生させる様に、放水パイプから循環放流される。停滞・閉鎖性水系が、例えば、コンクリート池或いは石積み池である場合には、その壁面にも生物膜が形成されるので、旋回水の壁面上生物膜による水処理効果も、併せて達成される。
【0031】
晩春から初秋の好適条件下では、ポンプの駆動開始から約24時間後に、下部ろ過槽および上部ろ過槽中のろ材に微生物類が自然に定着成育し始め、生物膜(多数の微生物からなるコロニー)が形成される。また、生物膜処理の進行を示すフロックも発生する。
【0032】
さらに、上記の循環操作を継続すると、下部ろ過槽には、藻類が定着し、生育し始めて、池表面を覆っていたアオコが消滅し、水の透明性が次第に改善され、池底のヘドロ状堆積物も分解され始める。一定時間の経過後(浄化前のCOD値、日照量、温度などにより異なる)には、池の外観および水の性状は、ほぼ定常状態となる。この定常状態においては、アオコは短波長の紫外線により分解され、気泡性多孔質塊状体に吸着またはそれに付着した微生物により分解され、完全に消滅するので、水の透明度は、池底の小きな凹凸が明確に観察できる程度にまで大幅に改善される。また、水のBOD、SS、窒素含有量、燐含有量などにおいても、著しく改善される。
【0033】
上記においては、下部ろ過槽と上部ろ過槽とを1基ずつ組み合わせて使用する実施態様について説明したが、本発明は図示の実施態様に限定されるものではない。例えば、大型の下部ろ過槽1基とより小型の上部ろ過槽複数基とを組み合わせて使用することができる。この場合には、第2次処理水の着水地点が複数となるので、右回りの旋回水流をより効果的に発生させることができる。
【0034】
さらに、面積の大きい停滞・閉鎖性水系においては、仕切構造体を用いて複数の独立した区画を形成し、それぞれの区画毎に本発明による水質改善方法を同時に或いは順次実施しても良い。
【0035】
なお、長期にわたり操作を継続する場合には、池→下部ろ過槽→上部ろ過槽からなる循環系における水質改善性能が徐々に低下して、COD低下効果、脱窒素効果、脱リン効果などが低下する可能性がある。この様な揚合には、(1)下部ろ過槽に定着生育する藻類の一部を除去して、残りの藻類の再生成長による活性化を行う、(2)下部ろ過槽を大気中に引き上げて、徴生物の一部を除去した後、池に戻して、微生物の増殖によるコロニーの再活性化を行う、(3)下部ろ過槽および/または上部ろ過槽のろ過材を更新するなどの手法により、水質改善性能の向上を図ることができる。
【0036】
【発明の効果】
本発明によれば、停滞汚水のCODを低減させ、透視度を改善し、脱リンおよび脱窒素を行うことができる。
【0037】
使用する下部ろ過槽および上部ろ過槽は、特殊な材料或いは特別な構造部品などを一切切必要とせず、その大部分を一般的な材料により構成することができるので、建設費を大幅に低減出来る。
【0038】
装置全体の運転費も、実質的に水中ポンプを駆動する電力費用のみとなるので、安価である。
【0039】
水質浄化操作は、処理対象である停滞・閉鎖水系内で行われ、かつ化学薬品などを一切使用しないので、環境に対する悪影響はない。
【0040】
【実施例】
以下に実施例を示し、本発明の特徴とするところをより一層明らかにする。
実施例1
前記図4に関連して記述した動物園(東武動物公園)内の鯉の池(コンクリ―ト製、水深約1m、水量約800トン)の一部を仕切って、水量約100トンの区画(停滞・閉鎖性水系)を形成した。
【0041】
次いで、この区画内の停滞汚水中に設置した下部ろ過槽(3m×3m×0.5m、普通鋼製メッシュ材からなる外枠内に水中ポンプとろ過材としての軽石4,500kgを収容)と池周辺の陸地に設置した上部ろ過槽(1m×1.5m×1m、FRP材からなる外枠内にろ過材として軽石、ネット廃材など1.5m3を収容 )とを用いて、停滞汚水の水質改善を行った。停滞・閉鎖性水系→下部ろ過槽→上部ろ過槽(沈殿槽+ろ過部)→放水パイプ→停滞・閉鎖性水系における水循環量は、10m3/hrとした。水循環開始日は、5月1日であった。
【0042】
ポンプによる水循環を開始して約24時間後に、下部ろ過槽および上部ろ過槽中のろ過材に微生物が定着成育し始め、生物膜(微生物コロニー)が形成され始めた。さらに約21日間にわたり水循環を続けたところ、透視度は、当初の0度から100度に改善された。また、この時点での水質は、「水質汚濁に関する基準」において、「水道3級」のレべルであった。処理区画外の水質と処理開始36日後および220日後における処理区画内の水質とを表1に示す。
【0043】
【表1】
【0044】
なお、水質を示す各パラメーターの測定は、下記の方法で行った。
*BOD JIS K 0102 21
*SS 昭和46環境庁告示第59号付表8
*窒素含有量 JIS K 0102 45.2
*燐含有量 JIS K 0102 46.3.1
表1に示す結果から、本発明方法による顕著な水質改善効果が明らかである。
【図面の簡単な説明】
【図1】本発明の概要を示すフローチャートである。
【図2】 本発明方法において使用する下部ろ過槽(第1次処理槽)の概要を示す断面図である。
【図3】本発明方法において使用する上部ろ過層(第2次処理槽)の概要を示す断面図である。
【図4】下部ろ過槽と上部ろ過槽とを組み合せて行う本発明方法の概要を示す断面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying sewage containing an organic component at a high concentration in a closed / stagnation water system. In more detail, the present invention is eutrophied by at least one of the causes such as inflow of domestic wastewater, accumulation of feed residue to waterfowl / fish and excrement from waterfowl / fish, inflow of agricultural fertilizer, etc. Reduce COD by highly purifying sewage generated in closed and stagnant water systems that generate large numbers of aquatic organisms, bad odors, reduced transparency and aesthetics, etc. with a low cost and simple management method The present invention relates to a technique for achieving high denitrification and dephosphorization, transparency and restoration of aesthetics.
[0002]
[Prior art]
Closed or stagnant water systems such as ponds, small / medium river / canal stagnation or stagnation, waterfowl / fish breeding ponds, digging, lakes, golf course ponds, etc. In the following, in the “closed / stagnation water system”, polluted water containing an organic component (in this specification, such water may be referred to as “stagnation sewage”) is likely to occur. However, the treatment of stagnant sewage is generally extremely difficult due to the restrictions imposed by the natural environment where the closed and stagnant water system is located.
[0003]
Normal wastewater, such as municipal sewage and factory wastewater, has been identified as a source, the organic composition is relatively limited depending on the source, and wastewater is generated almost quantitatively. Therefore, even when a large permanent processing facility is installed and continuously processed, the processing is easy and a processing method has been established for reasons such as being economically acceptable. Such wastewater treatment methods (hereinafter sometimes referred to as “typical wastewater”) are roughly classified into physicochemical treatment methods and biological treatment methods as summarized below. However, the typical wastewater treatment method cannot be directly used for the treatment of stagnant sewage with natural environmental and economic constraints.
[0004]
Typical wastewater physicochemical treatment methods include coagulation sedimentation method, adsorption method, neutralization method, ion exchange method, etc., and metal containing materials including aluminum, iron, etc. (aluminum sulfate, sodium aluminate, iron sulfate, etc. ), Polymer materials, chemical treatment agents, etc. are used. Therefore, when the above-mentioned stagnant sewage is treated by such a method, there is a concern about the adverse effect on the ecosystem due to the secondary pollution caused by the materials used. is there. Moreover, even if an adverse effect can be avoided by some method, enormous costs are required.
[0005]
Biological treatment methods include an activated sludge method, a biofilm method, an oxidation pond method, an anaerobic treatment method, and the like, and each has a specific effect depending on the treatment target.
[0006]
For example, the activated sludge method widely used in sewage treatment, etc. is excellent in the decomposition efficiency (reduction of COD) of organic substances by aerobic microorganisms, but denitrification and dephosphorization are practically impossible. Moreover, in order to precipitate floating substances and phosphorus components, it is necessary to use a coagulating precipitant together. Furthermore, a large-scale treatment facility is required, and there is a drawback that it is not easy to treat a large amount of excess sludge that is generated.
The sand filter method using a filtration tank formed of sand and the like is effective in improving the transparency of treated water by removing suspended solids (SS) and has high denitrification efficiency, but cannot be dephosphorized. Moreover, in order to implement this method, it is necessary to provide a sand filter bed facility separately, so it is still economically unsuitable for the treatment of stagnant sewage as described above.
[0007]
Biooxidation pond method has high denitrification and dephosphorization efficiency, but because it is a purification method mainly using plankton and algae, the transparency of treated water is not improved so much. When it is used for the above, it is necessary to extract the stagnation sewage and send it to a separately installed biooxidation pond where it must be treated.
[0008]
The anaerobic treatment method (methane fermentation method) gasifies a substrate such as sludge containing carbon-based components, and thus has an advantage that there is little excess sludge and the generated methane gas can be used as fuel. Therefore, although it is a biological treatment method that is expected to be developed in the future, this method cannot be used for stagnant sewage that requires maintenance of the landscape.
[0009]
Accordingly, there is a need to develop a new stagnation sewage treatment method that can achieve COD reduction, improved aesthetics by improving transparency, dephosphorization and denitrification at low cost.
[0010]
[Problems to be solved by the invention]
Therefore, the present invention is a novel method capable of simultaneously reducing COD, improving transparency, dephosphorization and denitrification in a manner close to natural purification while suppressing initial costs and running costs when treating stagnant sewage. The main purpose is to provide
[0011]
[Means for Solving the Problems]
The present inventor has conducted research while paying attention to the problems when the typical wastewater treatment method is diverted to the treatment of stagnant sewage. As a result, at least one of each is present in and around the closed / stagnation water system. A secondary treatment tank and a lower filtration tank are installed, and stagnant sewage in the water system is pumped up to the secondary treatment tank through the first treatment tank and then circulated again through the closed / stagnation water system by natural flow. In some cases, we have found that we can achieve that goal.
[0012]
That is, this invention provides the water quality improvement method in the following closed / stagnation water system.
1 A method for improving water quality in a closed / stagnate water system, wherein at least one primary treatment tank and at least one secondary treatment tank are installed in the water and obtained in the primary treatment tank. After the primary purified water is fed to the secondary treatment tank provided with the germicidal lamp via the pump, the secondary purified water obtained in the secondary treatment tank is allowed to flow down naturally into the closed / stagnation water system. A water quality improvement method characterized by generating a clockwise swirling flow in the water system while maintaining the water system in an aerobic state.
2. The method for improving water quality according to 1 above, wherein the primary treatment tank and the secondary treatment tank are movable.
3. The water quality improving method according to 1 above, wherein the primary treatment tank is provided with a net for algae fixation, and the secondary treatment tank contains a cellular porous inorganic block and a net for algae fixation.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method of the present invention will be described in more detail with reference to the drawings.
[0014]
A flowchart showing an outline of the basic configuration of the method of the present invention is shown in FIG. A more specific configuration of the apparatus used in the method of the present invention is shown in FIGS. The size of each part of the device in FIGS. 2, 3 and 4 does not indicate a relative size in the actual device.
[0015]
As is apparent from the flowchart shown in FIG. 1, the present invention basically includes a first treatment tank (lower filtration tank) for treating stagnant sewage in a closed / stagnation water system in the water system and the first treated water in the water system. A secondary processing tank (upper filtration tank) for processing in the vicinity is an essential component.
[0016]
First, stagnant sewage is passed through the filter medium in the primary treatment tank to perform the primary treatment, and then pumped up to the secondary treatment tank by a pump. A sedimentation tank equipped with an ultraviolet germicidal lamp is arranged at the entrance of the secondary treatment tank, and it kills organisms (such as sea cucumbers) unnecessary for purification contained in the primary treatment water, and organic matter. Decomposition is promoted, and at least a part of those residues is precipitated as sludge and appropriately discharged outside the apparatus.
[0017]
The primary treated water from which at least a part of the organism has been removed is continuously fed to the secondary treatment tank main body, and further subjected to secondary treatment by the biofilm method. The secondary treated water is allowed to flow naturally into a closed / stagnation water system. At this time, the secondary treated water flows down in a direction in which a clockwise swirling flow is generated in the water system.
[0018]
FIG. 2 is a schematic cross-sectional view showing an outline of a primary treatment tank (hereinafter referred to as “lower filtration tank”) disposed in a closed / stagnation water system. The lower filtration tank is, for example, a steel container provided with holes for water passage, a container made of steel mesh, etc., rocks, concrete, metal net material, fiber material (fiber packaging bag material, It has a structure in which a submersible pump is installed at the center of a filtration section formed by stacking algae-fixing nets such as net materials and fishing net materials. Around the submersible pump, a circumferential space where no filter material is placed is provided so as not to disturb the pumping operation.
[0019]
Although it does not specifically limit as a filter medium, For example, it is preferable to comprise at least one part with porous calcium-type materials, such as pumice. Since such a porous material has a large specific surface area, the growth area of the biofilm formed by various microbial colonies can be increased, and the organic matter decomposition efficiency can be increased. However, since pores such as charcoal are too fine, a porous material such as pumice having pores of an appropriate size is more preferable. Furthermore, although not fully elucidated at present, calcium-based materials have the effect of fixing and removing phosphorus components often contained in stagnant sewage in a form such as calcium phosphate. Presumed to be. Therefore, in order to fix and remove the phosphorus component in such a form, as a supplementary material, shells (oyster shells, scallop shells, etc.) that become a calcium source or fragments thereof are used in combination with the filter medium. Is presumed to be effective.
[0020]
In addition, metal net materials, fiber timbers, and the like also function as a “foothold” for fixing and holding the algae frame that plays a major role in absorbing nitrogen components, phosphorus components, and the like in sewage. Furthermore, when using fiber wrapping bags, the water flow rate in the lower filtration tank is controlled by using them together with rocks, concrete, etc. contained in the bags, and the sewage treatment effect Can be improved.
[0021]
The lower filtration tank has, for example, a structure that enables lifting by a crane and on-vehicle movement by providing a plurality of lifting members on the outer periphery of the container (outer frame structure) containing the filter medium and pump ( It is practically advantageous to have a portable structure. In this case, in order to facilitate handling, if necessary, the container can be in the form of a container reinforced with a frame material, a support column or the like.
[0022]
FIG. 3 is a schematic cross-sectional view showing an outline of an upper filtration tank disposed close to the lower filtration tank. The upper filtration tank is disposed at a higher position than the lower filtration tank in order to circulate the treated water (secondary treated water) to the closed / stagnation water system by natural flow.
[0023]
The upper filtration tank is composed mainly of a sedimentation tank that accepts the first treated water pumped from the lower filtration tank, a filtration section and a water discharge pipe for circulating the second treated water to the closed and stagnant water system. It is said. These components are installed in the container similar to the lower filtration tank.
[0024]
The primary treated water sent from the lower filtration tank enters the settling tank in the upper filtration tank and receives ultraviolet irradiation from the slaughter lamp here. By the irradiation with ultraviolet rays, most of the organisms (such as sea cucumbers) unnecessary for purification contained in the primary treated water are killed, and those residues are obtained from other solids contained in the primary treated water. At the same time, it settles in the lower part of the sedimentation tank and accumulates as sludge. This accumulated sludge may be discharged out of the apparatus as needed. In the actual device, the short-wave ultraviolet rays make the sea cucumbers an easily decomposable organic substance whose cell membrane has been destroyed, and it is sent to the filtration unit where it is decomposed. It became clear that it was less.
[0025]
The first treated water from which at least a part of solids such as organisms are settled and removed in the sedimentation tank (including a part of solids such as organism death residues) enters the filtration unit, and the above lower filtration tank It is subjected to a secondary treatment using the same filter medium as in the above.
[0026]
The secondary treated water that has been treated in the upper filtration tank is circulated into a closed / stagnation water system by natural flow through a water discharge pipe. In order to improve the treatment effect by generating a clockwise (clockwise) swirling flow in the closed / stagnation water system, the water discharge is an angle within a certain range with respect to the axis connecting the landing position and the water system center. The pipe is oriented in the direction (about 60 to 85 degrees when viewed from above) and downward from the horizontal direction (about 15 degrees). The reason why the clockwise swirling flow exhibits a better water quality improvement effect than the counterclockwise swirling flow has not been elucidated so far.
[0027]
Moreover, it is preferable to discharge the secondary treated water with such an amount and strength that the maximum amount of water droplets is generated at the landing point. In this case, since powerful aeration by air mixing is performed, the treatment efficiency of stagnant sewage is improved.
[0028]
As in the case of the lower filtration tank, it is practically advantageous that the upper filtration tank has a portable structure.
[0029]
FIG. 4 shows a stagnant sewage in combination with the lower filtration tank and the upper filtration tank shown in FIGS. 2 and 3, respectively, in a pond (concrete, water depth of about 1 m) in Tobu Zoo, which will be described in detail in the examples below. It is sectional drawing which shows the outline | summary of the example which performed purification | cleaning. In addition, the state of the pond before the start of the purification operation was such that the water octopus covered most of the water surface, and it was impossible to see the pond bottom directly because of the turbidity even in places where the water octopus did not exist. Moreover, when surpassing the pond bottom, it was confirmed that sludge was deposited on the bottom. Such a stagnation of stagnation sewage is generally observed in closed / stagnation water systems from late spring to early autumn when the amount of sunshine energy increases and the temperature rises.
[0030]
First, a lower filtration tank (see FIG. 2) is arranged on the concrete surface at the bottom of the pond, and an upper filtration tank (see FIG. 3) is arranged on the ground part around the pond. Next, the pump is driven, and the stagnant sewage flows down from the lower filtration tank to the settling tank of the upper filtration tank through the pipe. The water that has been sterilized by ultraviolet rays in the settling tank is circulated and discharged from the discharge pipe so as to generate a clockwise swirling water flow in the coral pond after contacting the filter medium in the filter tank. When the stagnant / closed water system is, for example, a concrete pond or a masonry pond, a biofilm is also formed on the wall surface, so that the water treatment effect by the biofilm on the wall surface of the swirling water is also achieved. .
[0031]
Under favorable conditions from late spring to early autumn, about 24 hours after the start of pump operation, microorganisms begin to naturally settle and grow on the filter medium in the lower filtration tank and the upper filtration tank, and biofilms (colony consisting of many microorganisms) Is formed. In addition, a floc indicating the progress of the biofilm treatment is also generated.
[0032]
Furthermore, if the above-mentioned circulation operation is continued, algae start to settle and grow in the lower filtration tank, the water-bloom covering the surface of the pond disappears, and the transparency of the water is gradually improved. Sediment also begins to decompose. After a certain period of time (depending on the COD value before purification, the amount of sunlight, the temperature, etc.), the appearance of the pond and the properties of the water are almost steady. In this steady state, the sea cucumber is decomposed by ultraviolet rays of short wavelength, and is absorbed by or adhering to the cellular porous mass and completely disappeared. Therefore, the transparency of water is small at the bottom of the pond. It is greatly improved to such an extent that irregularities can be clearly observed. In addition, the BOD, SS, nitrogen content, phosphorus content and the like of water are remarkably improved.
[0033]
In the above, although the embodiment which uses a lower filtration tank and an upper filtration tank in combination one by one was described, the present invention is not limited to the illustrated embodiment. For example, one large lower filtration tank and a plurality of smaller upper filtration tanks can be used in combination. In this case, since there are a plurality of landing points of secondary treated water, a clockwise swirling water flow can be generated more effectively.
[0034]
Furthermore, in a stagnant / closed water system having a large area, a plurality of independent sections may be formed using a partition structure, and the water quality improvement method according to the present invention may be simultaneously or sequentially performed for each section.
[0035]
If the operation is continued for a long time, the water quality improvement performance in the circulation system consisting of the pond, the lower filtration tank, and the upper filtration tank is gradually reduced, and the COD reduction effect, the denitrification effect, the dephosphorization effect, etc. are reduced. there's a possibility that. For this type of lifting, (1) a part of the algae that have settled and grown in the lower filtration tank is removed and the remaining algae are activated by regeneration growth. (2) The lower filtration tank is pulled up to the atmosphere. After removing a part of the organism, return to the pond and reactivate the colony by the growth of microorganisms. (3) Renew the filter material in the lower filtration tank and / or the upper filtration tank Thus, it is possible to improve the water quality improvement performance.
[0036]
【The invention's effect】
According to the present invention, the COD of stagnant sewage can be reduced, the transparency can be improved, and dephosphorization and denitrification can be performed.
[0037]
The lower filtration tank and upper filtration tank to be used do not require any special materials or special structural parts, and most of them can be composed of general materials, so construction costs can be greatly reduced. .
[0038]
The operating cost of the entire apparatus is also low because it is substantially only the power cost for driving the submersible pump.
[0039]
The water purification operation is performed in a stagnant / closed water system to be treated and does not use any chemicals, so there is no adverse effect on the environment.
[0040]
【Example】
Examples will be shown below to further clarify the features of the present invention.
Example 1
A partition of about 100 tons of water (stagnation) by partitioning a part of the pond (made by concrete, water depth of about 1 m, water volume of about 800 tons) in the zoo (Tobu Zoological Park) described in relation to FIG. -Closed water system was formed.
[0041]
Next, a lower filtration tank (3m x 3m x 0.5m, containing an underwater pump and 4,500kg of pumice as filter material in an outer frame made of ordinary steel mesh material) and the surroundings of the pond The quality of stagnant sewage is improved by using an upper filtration tank (1m x 1.5m x 1m, containing 1.5m 3 of pumice, net waste, etc. as filter material in the outer frame made of FRP material) It was. Stagnant / closed water system → lower filtration tank → upper filtration tank (precipitation tank + filtration section) → water discharge pipe → water circulation rate in the stagnation / closed water system was 10 m 3 / hr. The water circulation start date was May 1st.
[0042]
About 24 hours after the start of water circulation by the pump, microorganisms began to settle and grow on the filter medium in the lower filtration tank and the upper filtration tank, and biofilms (microbe colonies) began to form. When the water cycle was continued for about 21 days, the transparency improved from 0 degrees to 100 degrees. In addition, the water quality at this time was at the level of “Water Class 3” in the “Standard for Water Pollution”. Table 1 shows the water quality outside the treatment zone and the water quality inside the treatment zone 36 days and 220 days after the start of treatment.
[0043]
[Table 1]
[0044]
In addition, the measurement of each parameter indicating water quality was performed by the following method.
* BOD JIS K 0102 21
* SS Showa 46 Environment Agency Notification No. 59 Appendix 8
* Nitrogen content JIS K 0102 45.2
* Phosphorus content JIS K 0102 46.3.1
From the results shown in Table 1, the remarkable water quality improvement effect by the method of the present invention is clear.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an outline of the present invention.
FIG. 2 is a cross-sectional view showing an outline of a lower filtration tank (first treatment tank) used in the method of the present invention.
FIG. 3 is a sectional view showing an outline of an upper filtration layer (secondary treatment tank) used in the method of the present invention.
FIG. 4 is a cross-sectional view showing an outline of the method of the present invention performed by combining a lower filtration tank and an upper filtration tank.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002317054A JP3653593B2 (en) | 2002-10-31 | 2002-10-31 | Water quality improvement methods in closed and stagnant water systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002317054A JP3653593B2 (en) | 2002-10-31 | 2002-10-31 | Water quality improvement methods in closed and stagnant water systems |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004148218A JP2004148218A (en) | 2004-05-27 |
JP3653593B2 true JP3653593B2 (en) | 2005-05-25 |
Family
ID=32460539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002317054A Expired - Lifetime JP3653593B2 (en) | 2002-10-31 | 2002-10-31 | Water quality improvement methods in closed and stagnant water systems |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3653593B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109403416B (en) * | 2018-11-06 | 2024-01-19 | 泰州华昊废金属综合利用有限公司 | Water balance system for recycling metal surface treatment waste |
CN114620836A (en) * | 2022-03-23 | 2022-06-14 | 河北省科学院地理科学研究所 | Simulation method for lake and reservoir treatment stage |
-
2002
- 2002-10-31 JP JP2002317054A patent/JP3653593B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004148218A (en) | 2004-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3056361B2 (en) | Wastewater treatment device and wastewater treatment method | |
KR101303525B1 (en) | A livestock wastewater treatment system using constructed wetlands | |
CN102225803B (en) | Biomembrane reactor, waste water treating system and method for treating waste water | |
KR102311524B1 (en) | Circulation filtration aquaculture device connected in parallel with breeding tank and spawning tank | |
US20140346125A1 (en) | Desalting Salty Sludge System and Method | |
KR100752792B1 (en) | Ds-hf-rr | |
JP2020099846A (en) | Water quality purification method | |
Ahmad et al. | A review of municipal solid waste (MSW) landfill management and treatment of leachate | |
CN104276722A (en) | Novel tail water upgrading system | |
JP3653593B2 (en) | Water quality improvement methods in closed and stagnant water systems | |
CN100355672C (en) | Biological grid water body reinforcement purification and purifier | |
JP2005000784A (en) | Closed water area cleaning facility | |
CN1199559C (en) | Natural ecological aquarium and construction method thereof | |
JPH07275893A (en) | Water purifying apparatus for lake and marsh | |
JP3797296B2 (en) | Purification method of bottom sludge | |
CN109133442A (en) | It is drained outside a kind of pair of breeding wastewater and propose the improved system of mark and its process | |
KR100696604B1 (en) | System and Method for Treating Discharge Water of Industrial Facility | |
CN105645685A (en) | Mariculture wastewater discharge and disposal method and device | |
CN2647849Y (en) | Sewage nomal position purifier | |
JP2573902B2 (en) | Water purification method and apparatus | |
Rajpoot | Current Technologies for Waste Water Treatment in Chemical Industries in India | |
CN214990980U (en) | Rural black and odorous water body clean system based on magnetic coagulation | |
RU2142919C1 (en) | Method of cleaning natural and waste water and device "floating bank" for realization of this method | |
CN211311223U (en) | Ecological water purification facility of circulation based on aquatic plant and benthonic animal coordination effect | |
JP2002273471A (en) | Equipment and method for purifying water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3653593 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20230311 Year of fee payment: 18 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |