JP2020099846A - Water quality purification method - Google Patents

Water quality purification method Download PDF

Info

Publication number
JP2020099846A
JP2020099846A JP2018238219A JP2018238219A JP2020099846A JP 2020099846 A JP2020099846 A JP 2020099846A JP 2018238219 A JP2018238219 A JP 2018238219A JP 2018238219 A JP2018238219 A JP 2018238219A JP 2020099846 A JP2020099846 A JP 2020099846A
Authority
JP
Japan
Prior art keywords
water
coagulant
tank
ultraviolet
bloom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018238219A
Other languages
Japanese (ja)
Other versions
JP6614540B1 (en
Inventor
弘禧 町井
Hiroyoshi Machii
弘禧 町井
靖 村上
Yasushi Murakami
靖 村上
稲森 悠平
Yuhei Inamori
悠平 稲森
隆平 稲森
Ryuhei Inamori
隆平 稲森
翔 類家
Sho Ruike
翔 類家
理恵 鈴木
Rie Suzuki
理恵 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RUTECH CO Ltd
Original Assignee
RUTECH CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RUTECH CO Ltd filed Critical RUTECH CO Ltd
Priority to JP2018238219A priority Critical patent/JP6614540B1/en
Application granted granted Critical
Publication of JP6614540B1 publication Critical patent/JP6614540B1/en
Publication of JP2020099846A publication Critical patent/JP2020099846A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)

Abstract

To provide a water quality purification apparatus and a water quality purification method capable of effectively suppressing generation of microcystis by killing and removing microcystis and decreasing concentrations of nitrogen, phosphorus, and chlorophyll a in water by addition of flocculants together with UV radiation.SOLUTION: A water quality purification apparatus includes: intake means for intake of blue green algae-containing water containing microcystis (blue green algae, etc.); flocculant blending means for blending flocculants with water containing blue green algae and stirring; and UV radiation means for radiation of UV ray under convection current of water containing blue green algae. The flocculant blending means and the UV radiation means can be integrated together to constitute single means. Moreover, flocculants can be at least one of flocculants selected from aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric sulfate, ferric chloride, polychlorinated iron, and polymer flocculant, and a wavelength of the UV ray can be adjusted to 200-280 nm.SELECTED DRAWING: Figure 1

Description

本発明は、浄化対象の水域(湖沼等)における藍藻類を除去する水質浄化装置及び水質浄化方法に関する。 The present invention relates to a water purification device and a water purification method for removing cyanobacteria in a water area (lake, etc.) to be purified.

湖沼等において窒素やリンなどの栄養物質が多く流入すると、その栄養物質を使って藍藻類(以下、アオコと記す)が大量に増殖する。窒素やリンなどの栄養物質が過剰になりアオコが異常増殖する現象である富栄養化になる原因として、河川を通じて生活系・産業系等の点源および農作地帯などからの面源に由来する汚水、土砂の流入、湖沼の周辺で行われる人工的な活動、魚類等の腐敗分解、底泥からの溶出などが挙げられる。アオコが多量に増殖すると、水中の溶存酸素が不足し、魚類や藻類が死滅して水環境が悪化する。更に、悪臭の発生、硫化水素などのガスの発生、水の汚濁という自然環境や養殖環境の悪化、景観の悪化が問題となっている。そのため、アオコの発生による湖沼等の水質悪化の防止は、緊急の課題となっている。 When a large amount of nutrients such as nitrogen and phosphorus flow into lakes and marshes, cyanobacteria (hereinafter referred to as blue-green algae) are proliferated in large quantities using the nutrients. As a cause of eutrophication, which is a phenomenon in which nutrients such as nitrogen and phosphorus become excessive due to excessive growth of blue-green algae, sewage derived from point sources such as living and industrial areas and surface sources from agricultural areas through rivers. , Inflow of sediment, artificial activities around lakes, decomposition of fish, etc., elution from bottom mud. When a large amount of water-bloom grows, dissolved oxygen in the water becomes insufficient, fish and algae die, and the water environment deteriorates. Furthermore, the deterioration of natural environment and aquaculture environment, such as the generation of foul odor, the generation of gas such as hydrogen sulfide, and the pollution of water, and the deterioration of the landscape have become problems. Therefore, prevention of water quality deterioration in lakes and marshes due to the occurrence of water-bloom has become an urgent issue.

従来、アオコを増殖抑制する技術、或いは除去する技術として、汲み上げ濾過方法(湖沼水を汲み上げ、アオコを漉し取って水を戻し、アオコを脱水して処分する方法)、水車や水中ポンプなどで水流を攪拌させる方法、硫酸銅などの殺藻剤を使用する方法、紫外線をアオコに照射して殺藻する紫外線照射法、深層曝気法など様々な技術が開発されている。 Conventionally, as a technology for suppressing the growth of blue-green algae, or a technology for removing them, a pumping filtration method (a method of pumping lake water, filtering the blue-green algae to return the water, dewatering the blue-green algae and disposing of it), using a water wheel or a submersible pump, etc. Various techniques have been developed, such as a method of stirring algae, a method of using an algicidal agent such as copper sulfate, an ultraviolet ray irradiation method of irradiating algae with ultraviolet rays to kill algae, and a deep aeration method.

例えば特許文献1には、水域中のアオコの除去及びその異常発生を抑制する方法として、アオコが発生した水域の水をマグネシウムイオン供給剤と接触させる処理法と生物学的処理法と紫外線照射法を組み合わせる方法が開示されている。本発明によると、アオコと、アオコの栄養源である水中の有機態リン、無機態リンの水中からの迅速な同時除去が可能となり、その結果、アオコの除去および異常発生を抑制できるとされている。また、特許文献2には、浄化対象の水域における水中懸濁物質を、凝集剤を使用して凝集沈殿させ、凝集剤混合液を旋回流として送出して水質を浄化させる方法が開示されている。本発明によると、水中懸濁物質を有効に沈殿除去することができ、水域の透明度向上や、悪臭防止ができるとされている。 For example, in Patent Document 1, as a method for removing the water-bloom in the water area and suppressing its abnormal occurrence, a treatment method in which water in the water area in which the water-bloom is generated is brought into contact with a magnesium ion supplying agent, a biological treatment method, and an ultraviolet irradiation method. A method of combining is disclosed. According to the present invention, it is possible to rapidly remove water-soluble organic phosphorus and inorganic phosphorus from water, which is a nutrient source for water-bloom, as a result, and to suppress the removal and abnormal occurrence of water-bloom. There is. Further, Patent Document 2 discloses a method for purifying water quality by causing a suspended substance in water in a water area to be purified to coagulate and settle using a coagulant and send a coagulant mixed liquid as a swirl flow. .. According to the present invention, it is said that suspended solids in water can be effectively removed by precipitation, the transparency of water bodies can be improved, and the malodor can be prevented.

特開平8−257591号公報JP-A-8-257591 特開2016−78021号公報JP, 2016-78021, A

特許文献1に開示されているアオコの浄化方法では、アオコ含有水にマグネシウムイオン供給剤を添加して紫外線を照射するが、マグネシウムイオン供給剤と接触させる処理法と生物学的処理法と紫外線照射法の3種類の方法を組み合わせて利用するため、処理装置が複雑化し、製作やメンテナンスに手間がかかる。そのため、よりシンプルな構成で低コストかつ即効性のある実用的な方法が求められる。 In the method for purifying water-bloom disclosed in Patent Document 1, a magnesium ion-supplying agent is added to water containing water-blowing to irradiate with ultraviolet rays. Since three types of methods are used in combination, the processing apparatus becomes complicated, and it takes time and effort to manufacture and maintain. Therefore, a practical method that has a simple structure, low cost, and immediate effect is required.

特許文献2の浄化方法は、凝集剤を使用してアオコを凝集沈殿させる方法であるが、アオコを除去するためには、アオコの発生を抑制するために湖沼等の富栄養化を防止する対策、特に窒素、リン、クロロフィルaなどの原因物質の濃度を低下させる根本的な対策が必要となる。そのため、アオコ除去と同時に、湖沼等の富栄養化を防止する方法が望まれる。 The purification method of Patent Document 2 is a method of coagulating and precipitating water-bloom using a flocculant, but in order to remove the water-bloom, measures to prevent eutrophication of lakes and the like in order to suppress the generation of water-bloom. In particular, it is necessary to take fundamental measures to reduce the concentrations of causative substances such as nitrogen, phosphorus and chlorophyll a. Therefore, a method for preventing eutrophication of lakes and marshes at the same time as removing water-bloom is desired.

本発明は、上記課題に鑑み、凝集剤の添加と共に紫外線照射することにより、アオコを殺藻して除去し、かつ、水中の窒素、リン、クロロフィルaの濃度を下げてアオコの発生を効果的に抑制する水質浄化装置及び水質浄化方法を提供することを目的とする。 In view of the above-mentioned problems, the present invention effectively removes algal blooms by algae removal by irradiating ultraviolet rays together with addition of a flocculant, and lowers the concentrations of nitrogen, phosphorus, and chlorophyll a in water to effectively generate algal blooms. An object of the present invention is to provide a water purification apparatus and a water purification method that suppress the above.

上記の目的を達成するため、請求項1に記載の発明は、藍藻類を除去して水質を浄化させる水質浄化装置であって、藍藻類を含んだ藍藻類含有水を取水する取水手段と、前記藍藻類含有水に凝集剤を混合し、攪拌する凝集剤混合手段と、前記藍藻類含有水を対流させながら紫外線を照射する紫外線照射手段と、を有することを特徴とする。
請求項2に記載の発明は、請求項1に記載の水質浄化装置であって、前記凝集剤混合手段と、前記紫外線照射手段をまとめて1つの手段とすることを特徴とする。
請求項3に記載の発明は、請求項1または2に記載の水質浄化装置であって、前記凝集剤が、硫酸アルミニウム、ポリ塩化アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、ポリ塩化鉄、高分子凝集剤から選択される少なくとも1以上の凝集剤であることを特徴とする。
請求項4に記載の発明は、請求項1〜3のいずれかに記載の水質浄化装置であって、前記紫外線の波長が200〜280nmであることを特徴とする。
請求項5に記載の発明は、請求項1〜4のいずれかに記載の水質浄化装置であって、
前記水質浄化装置は、浄化対象の水域を運行する船形であることを特徴とする。
請求項6に記載の発明は、藍藻類を除去して水質を浄化させる水質浄化方法であって、藍藻類含有水を取水する工程と、前記藍藻類含有水に凝集剤を混合し、攪拌する工程と、前記藍藻類含有水を対流させながら紫外線を照射する工程と、を含むことを特徴とする。
請求項7に記載の発明は、請求項6に記載の水質浄化方法であって、前記藍藻類含有水に凝集剤を混合し、攪拌する工程と、前記藍藻類含有水を対流させながら紫外線を照射する工程を同時に行うことを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 is a water purification apparatus for purifying water quality by removing cyanobacteria, and water intake means for taking in cyanobacteria-containing water containing cyanobacteria, It is characterized by comprising a coagulant mixing means for mixing and stirring the cyanobacteria-containing water with a coagulant, and an ultraviolet irradiation means for irradiating ultraviolet rays while convection of the cyanobacteria-containing water.
The invention described in claim 2 is the water purification apparatus according to claim 1, wherein the coagulant mixing means and the ultraviolet irradiation means are combined into one means.
The invention according to claim 3 is the water purification apparatus according to claim 1 or 2, wherein the coagulant is aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric sulfate, ferric chloride. , At least one or more coagulant selected from polyiron chloride and polymer coagulant.
A fourth aspect of the present invention is the water purification apparatus according to any of the first to third aspects, wherein the wavelength of the ultraviolet rays is 200 to 280 nm.
The invention according to claim 5 is the water purification apparatus according to any one of claims 1 to 4,
The water purification device is in the form of a boat that operates in a water area to be purified.
The invention according to claim 6 is a water purification method for purifying water quality by removing cyanobacteria, wherein a step of taking in cyanobacteria-containing water and mixing and stirring the cyanobacteria-containing water with a flocculant. It is characterized by including a step and a step of irradiating with ultraviolet rays while convection of the cyanobacteria-containing water.
The invention according to claim 7 is the water purification method according to claim 6, wherein a step of mixing the cyanobacteria-containing water with a coagulant and stirring the mixture, and a step of convection of the cyanobacteria-containing water with ultraviolet rays. It is characterized in that the irradiation step is performed at the same time.

本発明の水質浄化装置及び水質浄化方法によると、凝集剤の添加と共に紫外線照射することにより、アオコを殺藻して除去し、かつ、水中の窒素、リン、クロロフィルaの濃度を下げてアオコの発生を効果的に抑制することができる。 According to the water purification apparatus and the water purification method of the present invention, by adding an aggregating agent and irradiating with ultraviolet rays, algae are removed by algae removal, and the concentration of nitrogen, phosphorus, and chlorophyll a in the water is reduced to remove algae. The generation can be effectively suppressed.

本発明の一実施例である水質浄化装置の全体構成を示す概略図である。It is a schematic diagram showing the whole composition of the water purification device which is one example of the present invention. 図1に示す水質浄化装置の1つの紫外線照射タンクの平面説明図である。It is a plane explanatory view of one ultraviolet irradiation tank of the water purification apparatus shown in FIG. 本発明の一実施例である水質浄化方法の流れを示す説明図である。It is explanatory drawing which shows the flow of the water purification method which is one Example of this invention. 本発明の一実施例である船型の水質浄化装置を示す説明図であり、(A)は平面図、(B)は斜視図である。It is explanatory drawing which shows the water purification apparatus of the ship form which is one Example of this invention, (A) is a top view, (B) is a perspective view. 水素イオン指数(pH)と処理水(原水を含む)との関係を示すグラフである。It is a graph which shows the relationship between a hydrogen ion index (pH) and treated water (including raw water). 水素イオン指数(pH)と紫外線照射時間との関係を示すグラフである。It is a graph which shows the relationship between a hydrogen ion index (pH) and ultraviolet irradiation time. クロロフィルaの濃度と処理水(原水を含む)との関係を示すグラフである。3 is a graph showing the relationship between the concentration of chlorophyll a and treated water (including raw water). クロロフィルaの濃度と紫外線照射時間との関係を示すグラフである。3 is a graph showing the relationship between the concentration of chlorophyll a and the ultraviolet irradiation time. 溶解性リンの濃度と処理水(原水を含む)との関係を示すグラフである。6 is a graph showing the relationship between the concentration of soluble phosphorus and treated water (including raw water). 溶解性リンの濃度と紫外線照射時間との関係を示すグラフである。It is a graph which shows the relationship between the density|concentration of soluble phosphorus, and ultraviolet irradiation time. 溶解性窒素の濃度と処理水(原水を含む)との関係を示すグラフである。6 is a graph showing the relationship between the concentration of soluble nitrogen and treated water (including raw water). 溶解性窒素の濃度と紫外線照射時間との関係を示すグラフである。It is a graph which shows the relationship between the density|concentration of soluble nitrogen, and ultraviolet irradiation time.

以下、本発明の実施例を図面に基づいて説明する。以下の図において、共通する部分には同一の符号を付しており、同一符号の部分に対して重複した説明を省略する。なお、以下の実施例では、水質浄化装置と浄化方法を湖沼の藍藻類に使用した例を説明するが、本発明の水質浄化装置と浄化方法は、湖沼の浄化処理のみならず、貯水池や濠、河川等の浄化対象水域や貯水槽内の水の浄化処理にも適用出来るものである。また、実施例では、藍藻類、特にアオコを例に挙げて説明するが、本発明はその他の藻類(緑藻類・珪藻類・渦鞭毛藻類など)にも適用することができる。 Embodiments of the present invention will be described below with reference to the drawings. In the following figures, common parts are designated by the same reference numerals, and duplicate description of the same reference numerals is omitted. In the following examples, an example in which the water purification device and the purification method are used for blue-green algae in lakes and marshes is described, but the water purification device and the purification method of the present invention are not limited to lake purification treatments, but also to reservoirs and moats. It can also be applied to the purification treatment of water in rivers and other water areas to be purified and in water tanks. Further, in the examples, cyanobacteria, particularly blue-green algae, will be described as an example, but the present invention can also be applied to other algae (green algae, diatoms, dinoflagellates, etc.).

〔水質浄化装置と水質浄化方法〕
まず、本実施例の水質浄化装置1の構成と、その方法について、図1〜図4を参照して説明する。図1は、水質浄化装置1の全体構成を示す概略図であり、図2は、図1に示す水質浄化装置の1つの紫外線照射タンクの平面説明図であり、図3は、水質浄化方法の流れを示す説明図である。図4は、船形の水質浄化装置1を示す説明図で、(A)は平面図、(B)は斜視図である。本実施例の水質浄化装置1は、湖沼の限られた水域において使用する装置であり、アオコを凝集剤で凝集させて沈殿させる機能と、紫外線照射によりアオコを殺藻する機能を備えた装置である。
[Water purification device and water purification method]
First, the structure and method of the water purification device 1 of this embodiment will be described with reference to FIGS. 1 to 4. 1 is a schematic diagram showing the overall configuration of the water purification device 1, FIG. 2 is a plan view of one ultraviolet irradiation tank of the water purification device shown in FIG. 1, and FIG. 3 shows a water purification method. It is explanatory drawing which shows a flow. 4A and 4B are explanatory views showing the boat-shaped water purification device 1, where FIG. 4A is a plan view and FIG. 4B is a perspective view. The water purification device 1 of the present embodiment is a device used in a limited water area of a lake and marsh, and is a device provided with a function of aggregating water-bloom with a coagulant and precipitating, and a function of algae killing water-bloom by ultraviolet irradiation. is there.

図1に示すように、水質浄化装置1は、アオコを含んだ水(以下、アオコ含有水と記載)を取水する取水手段と、取水した水に凝集剤を混合し、攪拌する凝集剤混合手段20(以下、凝集剤混合タンクと記す)と、このアオコ含有水を対流させながら紫外線を照射する紫外線照射手段40(以下、紫外線照射タンクと記す)を基本構成とする。水質浄化装置1は、更に、取水した水を貯える貯水タンク10と、凝集剤を保管するタンク30(以下、凝集剤保管タンクと記す)と、凝集剤混合手段20と紫外線照射手段40を通過した後の水を回収する回収タンク50や沈殿物を保管する沈殿槽70を備えてもよい。本実施例では、それらを備えた水質浄化装置1について説明する。 As shown in FIG. 1, the water purification apparatus 1 includes a water intake means for taking in water containing water-bloom (hereinafter referred to as water-containing water), and a coagulant mixing means for mixing the water taken in with a coagulant and stirring the mixture. 20 (hereinafter, referred to as a flocculant mixing tank) and ultraviolet irradiation means 40 (hereinafter, referred to as an ultraviolet irradiation tank) for irradiating ultraviolet rays while convection the water containing the water-bloom are basic components. The water purification device 1 further passed through a water storage tank 10 for storing the taken water, a tank 30 for storing a coagulant (hereinafter referred to as a coagulant storage tank), a coagulant mixing means 20, and an ultraviolet irradiation means 40. A recovery tank 50 for recovering later water and a settling tank 70 for storing the precipitate may be provided. In the present embodiment, a water purification device 1 including them will be described.

取水手段は、湖沼の水域からアオコ含有水を取水する手段であり、配管(ホース)12と、取水するためのポンプ11を備える。図3に示す本実施例の水質浄化方法は、まず、この取水手段によりアオコ含有水を取水する(ステップ1、以下S1等と記す)。配管12の基端が貯水タンク10(又は凝集剤混合タンク20)に接続され、先端が湖沼内に配置された状態でアオコ含有水をポンプ11の駆動で汲み上げる。ポンプ11は、必要な水の量を汲み上げることができれば、手動でも自動でもよい。配管12には開閉弁が設けられており、アオコ含有水を吸水する際に開き、吸水が終わった後に閉じられる。ポンプ11付近に濁度計(図示せず)を設置してもよい。濁度計を設置することにより、アオコの濃度を予測でき、その濃度に応じて吸引水量を、手動で変更(又は自動で制御)することができる。それにより、適切な濃度のアオコ含有水を必要な量だけ吸水でき、後述の紫外線照射を効率的に行うことができる。取水用の配管12の径は、アオコ含有水が滞らず、広範囲に取水できるよう少なくとも3cm程度必要である。配管12とポンプ11は、1つだけでなく、複数備える構成としてもよい。 The water intake means is a means for taking in water-containing water from the water of a lake and marshes, and includes a pipe (hose) 12 and a pump 11 for taking water. In the water purification method of the present embodiment shown in FIG. 3, first, the water-bloom-containing water is taken in by this water intake means (step 1, hereinafter referred to as S1 and the like). The base end of the pipe 12 is connected to the water storage tank 10 (or the flocculant mixing tank 20), and the water-containing water is pumped up by the drive of the pump 11 in a state where the tip is arranged in the lake. The pump 11 may be manual or automatic as long as it can pump up the required amount of water. The pipe 12 is provided with an on-off valve, which opens when absorbing the water containing water-bloom and closes after absorbing the water. A turbidimeter (not shown) may be installed near the pump 11. By installing a turbidimeter, the concentration of water-bloom can be predicted, and the amount of suction water can be manually changed (or automatically controlled) according to the concentration. As a result, it is possible to absorb a required amount of water-containing water of a suitable concentration of blue-green algae, and it is possible to efficiently perform the ultraviolet irradiation described below. The diameter of the pipe 12 for water intake needs to be at least about 3 cm so that the water containing the water-bloom will not be stagnant and water can be taken in a wide range. The number of the pipe 12 and the pump 11 is not limited to one and may be plural.

取水した水は、貯水タンク10で貯水され、必要な分だけ凝集剤混合タンク20に供給される。貯水タンク10で貯水せず、直接、凝集剤混合タンク20に給水する構成としてもよいが、貯水タンク10を備えることで、凝集剤混合タンク20に安定して所定の水量を供給できる。貯水タンク10で貯水された水は、ポンプ14の駆動により、配管を通って凝集剤混合タンク20に所定量、供給される。配管には開閉弁15が設けられており、凝集剤混合タンク20への給水の際に開き、給水が終わった後に閉じられる。 The water taken in is stored in the water storage tank 10 and is supplied to the coagulant mixing tank 20 in a necessary amount. Although the water may not be stored in the water storage tank 10 and may be directly supplied to the coagulant mixing tank 20, the provision of the water storage tank 10 allows the coagulant mixing tank 20 to be stably supplied with a predetermined amount of water. The water stored in the water storage tank 10 is supplied to the flocculant mixing tank 20 in a predetermined amount through the pipe by driving the pump 14. The pipe is provided with an on-off valve 15, which is opened when water is supplied to the coagulant mixing tank 20 and is closed after the water supply is completed.

凝集剤混合タンク20では、貯水タンク10(又は取水手段11)から供給された水と、凝集剤が混合され、攪拌される(図3のS2)。凝集剤は、凝集剤保管タンク30から必要な量だけポンプ31の駆動により、配管を通って凝集剤混合タンク20に供給される。配管には開閉弁32が設けられており、凝集剤混合タンク20への供給の際に開き、供給が終わった後に閉じられる。凝集剤保管タンク30は本発明の必須の構成ではなく、直接、凝集剤混合タンク20に凝集剤を所定量、供給する構成としてもよいが、凝集剤保管タンク30を備えることで、凝集剤混合タンク20に安定して所定の量の凝集剤を供給できる。 In the coagulant mixing tank 20, the water supplied from the water storage tank 10 (or the water intake means 11) and the coagulant are mixed and stirred (S2 in FIG. 3). The required amount of the coagulant is supplied from the coagulant storage tank 30 to the coagulant mixing tank 20 through the pipe by driving the pump 31. The pipe is provided with an on-off valve 32, which is opened when the coagulant mixing tank 20 is supplied, and is closed after the supply is completed. The coagulant storage tank 30 is not an indispensable component of the present invention and may be configured to directly supply a predetermined amount of the coagulant to the coagulant mixing tank 20. It is possible to stably supply a predetermined amount of the coagulant to the tank 20.

なお、凝集剤保管タンク30は1個ではなく、凝集剤の種類によって複数個あってもよい。凝集剤には、硫酸アルミニウム、ポリ塩化アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、ポリ塩化鉄、高分子凝集剤から選択される少なくとも1以上の凝集剤が使用される。本実施例では、特に硫酸アルミニウムとポリ塩化アルミニウムを使用する。このような凝集剤を使用することで、アオコを凝集させて沈殿させることができる。また、後述する実験結果で説明するように、水中の窒素、リン、クロロフィルaの濃度を下げることができる。 It should be noted that the coagulant storage tank 30 is not limited to one, and may be plural depending on the type of coagulant. As the aggregating agent, at least one aggregating agent selected from aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric sulfate, ferric chloride, polyiron chloride, and polymer aggregating agent is used. In this embodiment, aluminum sulfate and polyaluminum chloride are used in particular. By using such an aggregating agent, the water-bloom can be aggregated and precipitated. Further, as described in the experimental results described later, the concentrations of nitrogen, phosphorus and chlorophyll a in water can be lowered.

凝集剤の効果を発揮させるためには、貯水タンク10から供給された水に凝集剤を添加後、急速攪拌・緩速攪拌が必要となる。急速攪拌は凝集剤との反応、緩速攪拌はフロック(凝集体)形成促進に必要な操作である。そのため、凝集剤混合タンク20には、凝集剤を効果的に混合し、攪拌するために、空気を強力に供給する送風ブロア(遠心式送風機)21や水流を効率よく拡散させるディフューザー22を取り付けることができる。凝集剤を混合し、攪拌する手段はこれらに限定されず、他の手段、例えば対流板や振動装置を使用してもよい。なお、上記緩速攪拌の機能は本方式では特段の緩速攪拌を設けなくても放流後に緩やかな攪拌が自然に起こり沈殿機能を達成させることも可能である。 In order to exert the effect of the coagulant, rapid stirring/slow stirring is required after adding the coagulant to the water supplied from the water storage tank 10. Rapid stirring is a reaction necessary with a flocculant, and slow stirring is an operation necessary for promoting floc (aggregate) formation. Therefore, in order to effectively mix and stir the coagulant, the coagulant mixing tank 20 is provided with a blower (centrifugal fan) 21 that strongly supplies air and a diffuser 22 that efficiently diffuses the water flow. You can The means for mixing and stirring the coagulant is not limited to these, and other means such as a convection plate or a vibration device may be used. In the present system, the function of the slow-speed stirring can also be achieved without any special slow-speed stirring, whereby the gentle stirring naturally occurs after the discharge and the precipitation function can be achieved.

凝集剤混合タンク20で混合され、撹拌されたアオコ含有水は、凝集剤混合タンク20でから必要な量だけポンプ23の駆動により、配管を通って紫外線照射タンク40に供給される。配管には開閉弁24が設けられており、紫外線照射タンク40への供給の際に開き、供給が終わった後に閉じられる。紫外線照射タンク40は1つでもよいが、複数個あってもよい。本実施例では図1に示すように3個の紫外線照射タンク40を使用する。3個の紫外線照射タンク40のそれぞれが配管で繋がれており、ポンプ41と開閉弁42により、各紫外線照射タンク40で処理された水を所定量だけ供給する。 The water-containing water that has been mixed and stirred in the coagulant mixing tank 20 is supplied from the coagulant mixing tank 20 by a necessary amount to the ultraviolet irradiation tank 40 through the pipe by driving the pump 23. The pipe is provided with an on-off valve 24, which is opened when the ultraviolet irradiation tank 40 is supplied and closed after the supply is completed. The ultraviolet irradiation tank 40 may be one, but may be plural. In this embodiment, three ultraviolet irradiation tanks 40 are used as shown in FIG. Each of the three ultraviolet irradiation tanks 40 is connected by a pipe, and a pump 41 and an opening/closing valve 42 supply a predetermined amount of water treated in each ultraviolet irradiation tank 40.

紫外線照射タンク40は、紫外線ランプ43以外の光が入らないよう、遮光性を有する素材で遮光された密閉タンクであることが好ましい。紫外線照射タンク40は、アオコ含有水を対流させる複数の対流板44と、複数の紫外線ランプ43から構成される。また、紫外線照射タンク40の入口の配管には、更に磁気処理器45(マグネットリング)を備えてもよい。磁気処理器45は、配管の外周に、配管を挟んで対面する磁石相互の極性が異なるように配置された永久磁石で構成される。永久磁石は1対(N極とS極)でもよいが、複数個あることが好ましい。このように構成することで、配管を通る水に金属粉末が混合している場合でも有効に除去できる。 The ultraviolet irradiation tank 40 is preferably a closed tank that is shielded by a material having a light shielding property so that light other than the ultraviolet lamp 43 does not enter. The ultraviolet irradiation tank 40 is composed of a plurality of convection plates 44 for convection the water-containing water and a plurality of ultraviolet lamps 43. Further, a magnetic processor 45 (magnet ring) may be further provided in the pipe at the entrance of the ultraviolet irradiation tank 40. The magnetic processor 45 is composed of permanent magnets arranged on the outer circumference of the pipe so that the magnets facing each other with the pipe interposed therebetween have different polarities. A pair of permanent magnets (N pole and S pole) may be used, but a plurality of permanent magnets are preferable. With this configuration, even if the metal powder is mixed with the water passing through the pipe, it can be effectively removed.

紫外線ランプ43は、アオコ含有水中に直接入れるのではなく、紫外線が透過する石英ガラス管(図示せず)を紫外線照射タンク40内に入れ、紫外線ランプ43をその中に入れて紫外線を照射する構成とすることが好ましい。通常のガラスの場合には、可視光線や近赤外線は透過し、紫外線は吸収されるが、石英ガラスの場合には、紫外線が透過するため、本実施例では石英ガラス管を使用する。それにより、紫外線ランプ43の光をアオコ含有水に照射することができ、かつ紫外線ランプ43がアオコ含有水で汚れるのを防ぎ、耐久性を高めることができる。 The ultraviolet lamp 43 does not directly enter the water containing the water-bloom, but puts a quartz glass tube (not shown) through which ultraviolet rays pass into the ultraviolet irradiation tank 40, and puts the ultraviolet lamp 43 therein to irradiate ultraviolet rays. It is preferable that In the case of ordinary glass, visible light and near-infrared rays are transmitted, and ultraviolet rays are absorbed, but in the case of quartz glass, ultraviolet rays are transmitted, so in this embodiment, a quartz glass tube is used. Thereby, the light of the ultraviolet lamp 43 can be irradiated to the water-containing water, and the ultraviolet lamp 43 can be prevented from being contaminated with the water containing water and the durability can be improved.

紫外線照射タンク40の形状や大きさは、特に限定されないが、内部のアオコ含有水が紫外線ランプ43の光に充分に当たるような形状及び大きさで構成されることが好ましい。1個の紫外線照射タンク40の寸法は、例えば、円筒状で直径が400〜500mm、その直径部分の長手方向の長さが1000〜2000mmで構成することができる。また、紫外線ランプ43は、波長が200〜280nmの強い殺菌作用があり、細胞破壊をもたらす紫外線(UV−C)を照射できるランプを使用する。特に藻類などの細胞のDNAの吸収波長と一致する270nm程度の波長の紫外線で照射することが好ましい。本実施例では、253.7nm(203W)の波長で照射する。 The shape and size of the ultraviolet ray irradiation tank 40 are not particularly limited, but it is preferable that the ultraviolet ray irradiation tank 40 is configured in such a shape and size that the water containing the blue-green algae is sufficiently exposed to the light of the ultraviolet lamp 43. The size of one ultraviolet irradiation tank 40 may be, for example, cylindrical and has a diameter of 400 to 500 mm, and the diameter portion thereof has a longitudinal length of 1000 to 2000 mm. As the ultraviolet lamp 43, a lamp having a strong bactericidal action with a wavelength of 200 to 280 nm and capable of irradiating ultraviolet rays (UV-C) that causes cell destruction is used. In particular, it is preferable to irradiate with ultraviolet rays having a wavelength of about 270 nm that matches the absorption wavelength of DNA of cells such as algae. In this embodiment, irradiation is performed at a wavelength of 253.7 nm (203W).

紫外線ランプ43の光をアオコ含有水にできるだけ当たるようにするため、複数本(例えば2本〜7本)の紫外線ランプ43を1個の紫外線照射タンク40に設置してもよいし、表面積が広いU字型の紫外線ランプ43を複数本使用してもよい。本実施例では3本の紫外線ランプ43を設置している。また図1、図2に示すように紫外線照射タンク40の内部に、アオコ含有水が対流するよう複数の対流板44を備える。対流板44は、例えば1枚の平板を捩じることで構成される。この複数の対流板44は、図1では模式的に紫外線ランプ43の側面方向に、縦に配置されているように記載しているが、実際には、図2の紫外線照射タンク40の平面説明図に示すように、アオコ含有水が流れる方向の側面に対流板44が配置されている。図2中、矢印はアオコ含有水が対流44板で対流する向きを表している。アオコ含有水がポンプ23で供給されたあと、紫外線照射タンク40の短手方向に流れるが、対流板44の凹凸部に当たることで、左右、上下に流動し(対流し)、繰り返し紫外線ランプ43の紫外線に当たるようになる。このようにして、紫外線照射タンク40内でアオコ含有水を対流させながら紫外線を一定時間、照射する(図3のS3)。それにより、アオコ含有水を紫外線ランプ43の紫外線に充分に当てることができ、アオコを殺藻することができる。 A plurality of (for example, 2 to 7) ultraviolet lamps 43 may be installed in one ultraviolet irradiation tank 40 in order to make the light from the ultraviolet lamps 43 illuminate the water containing water as much as possible, or have a large surface area. A plurality of U-shaped ultraviolet lamps 43 may be used. In this embodiment, three ultraviolet lamps 43 are installed. Further, as shown in FIGS. 1 and 2, a plurality of convection plates 44 are provided inside the ultraviolet irradiation tank 40 so that the water containing blue-green algae convection. The convection plate 44 is configured by twisting one flat plate, for example. In FIG. 1, the plurality of convection plates 44 are described as being vertically arranged in the side direction of the ultraviolet lamp 43, but actually, the plan view of the ultraviolet irradiation tank 40 in FIG. As shown in the figure, a convection plate 44 is arranged on the side surface in the direction in which the water-containing water flows. In FIG. 2, the arrow indicates the direction in which the water containing water-bloom convects at the convection 44 plate. After the water containing the water-bloom is supplied by the pump 23, it flows in the lateral direction of the ultraviolet irradiation tank 40, but when it hits the concavo-convex portion of the convection plate 44, it flows vertically (convection) to the left and right of the ultraviolet lamp 43 repeatedly. It will be exposed to ultraviolet rays. In this way, ultraviolet rays are radiated for a certain period of time while the water containing water-bloom is convected in the ultraviolet ray irradiation tank 40 (S3 in FIG. 3). As a result, the water containing the water-bloom can be sufficiently exposed to the ultraviolet rays of the ultraviolet lamp 43, and the water-bloom can be killed.

最初(1番目)の紫外線照射タンク40で紫外線が照射(例えば1分間)されたアオコ含有水は、ポンプ41の駆動で汲み上げられ、次の紫外線照射タンク40に供給される。このポンプ41の駆動により、2番目の紫外線照射タンク40においてもアオコ含有水を、勢いよく対流させ、紫外線を照射することができる(例えば1分間)。さらに、3番目の紫外線照射タンク40内で紫外線を照射し(例えば1分間)、繰り返しアオコ含有水を紫外線ランプ43の紫外線に充分に当てることで、アオコを殺藻することができる。3番目の紫外線照射タンク40で紫外線処理されたアオコ含有水は、配管のポンプ41と開閉弁42により、回収タンク50に供給又は放流される(図3のS4)。 The water-containing water that has been irradiated with ultraviolet rays (for example, for 1 minute) in the first (first) ultraviolet irradiation tank 40 is pumped up by the drive of the pump 41 and supplied to the next ultraviolet irradiation tank 40. By driving the pump 41, the water-bloom-containing water can be vigorously convected in the second ultraviolet irradiation tank 40 and the ultraviolet irradiation can be performed (for example, for 1 minute). Further, by irradiating ultraviolet rays in the third ultraviolet irradiation tank 40 (for example, for 1 minute) and repeatedly applying the water-bloom-containing water sufficiently to the ultraviolet rays of the ultraviolet lamp 43, the algal blooms can be killed. The blue-green water containing water that has been subjected to the ultraviolet ray treatment in the third ultraviolet ray irradiation tank 40 is supplied or discharged to the recovery tank 50 by the pump 41 and the on-off valve 42 of the pipe (S4 in FIG. 3).

なお、本実施例では3個の紫外線照射タンク40を使用するが、必ずしも3個の紫外線照射タンク40を通過させる必要はない。例えばアオコの濃度が低い場合には、1番目の紫外線照射タンク40のみで紫外線処理するだけで充分な場合もあり、その場合には、1番目の紫外線照射タンク40で紫外線処理されたアオコ含有水は、配管のポンプ41と開閉弁42により、回収タンク50に供給又は放流される。また、アオコの濃度によっては、1番目と2番目の紫外線照射タンク40のみで紫外線処理する場合も考えられる。 Although three ultraviolet irradiation tanks 40 are used in this embodiment, it is not necessary to pass the three ultraviolet irradiation tanks 40. For example, when the density of the water-bloom is low, it may be sufficient to perform the UV treatment only with the first UV irradiation tank 40. In that case, the water-containing water containing the UV treated with the first UV irradiation tank 40 may be sufficient. Is supplied or discharged to the recovery tank 50 by the pump 41 and the on-off valve 42 of the pipe. Further, depending on the density of the blue-green algae, it may be considered that the first and second ultraviolet irradiation tanks 40 only perform the ultraviolet treatment.

制御装置(制御盤)60は、前述の紫外線ランプ43やポンプ41、開閉弁42などを制御する。特に紫外線の照射時間や波長の変更、電源のオン、オフを自動で行うように制御することができる。例えば、紫外線照射タンク40内にアオコ含有水が入り、密閉された後に紫外線ランプ43の電源がオンになり、紫外線照射タンク40から排出した後に、電源がオフになるように自動制御してもよい。また、紫外線照射タンク40のポンプ41、開閉弁42を制御してアオコ含有水が所定量だけ紫外線照射タンク40に供給、排出できるように制御する構成としてもよい。さらに、制御装置60が、紫外線ランプ43だけでなく、前述の取水手段付近に設置した濁度計を用いて、アオコの濃度に応じて吸引水量を自動制御する構成としてもよい(図示せず)。また、貯水タンク10、凝集剤混合タンク20、凝集剤保管タンク30のポンプや開閉弁の自動制御、凝集剤保管タンク30の混合や攪拌を促す送風ブロア21等を自動制御する構成としてもよい(図示せず)。 The control device (control panel) 60 controls the ultraviolet lamp 43, the pump 41, the opening/closing valve 42, and the like described above. In particular, it is possible to control so that the irradiation time and wavelength of ultraviolet rays are changed and the power is turned on and off automatically. For example, automatic control may be performed such that the blue-water containing water enters the ultraviolet irradiation tank 40 and is sealed and then the power of the ultraviolet lamp 43 is turned on, and after the water is discharged from the ultraviolet irradiation tank 40, the power is turned off. .. Further, the pump 41 and the opening/closing valve 42 of the ultraviolet irradiation tank 40 may be controlled so that a predetermined amount of water-containing water can be supplied to and discharged from the ultraviolet irradiation tank 40. Further, the control device 60 may use not only the ultraviolet lamp 43 but also a turbidimeter installed in the vicinity of the above-mentioned water intake means to automatically control the amount of suction water according to the concentration of water-bloom (not shown). .. Further, the water storage tank 10, the coagulant mixing tank 20, the pump and the opening/closing valve of the coagulant storage tank 30 may be automatically controlled, and the blowing blower 21 that promotes mixing and stirring of the coagulant storage tank 30 may be automatically controlled ( (Not shown).

なお、本実施例では凝集剤混合タンク20の後に紫外線照射タンク40を設置しているが、紫外線照射タンク40の後に凝集剤混合タンク20を設置する構成としてもよい。その場合には、アオコ含有水に凝集剤を混合、撹拌する工程(S2)の前に紫外線を照射する工程(S3)が行なわれる。また、本実施例では凝集剤混合タンク20と紫外線照射タンク40を別々に構成した例を説明しているが、凝集剤混合タンク20と、紫外線照射タンク40をまとめて1つのタンクとしてもよい。その場合には、紫外線照射タンク40に直接、凝集剤を供給することで、凝集剤を混合、撹拌する工程(S2)と、紫外線を照射する工程(S3)を同時に行うことができる。ここで「同時」の意味は完全に「同時」であることを意味するのではなく、凝集剤を混合、撹拌する工程が数秒程度早い場合、あるいは遅い場合も含む意味である(以下の「同時」も同じ意味で使用する)。前述のように紫外線照射タンク40には対流板44が備わっているため、紫外線照射と共に乱流が生じ、凝集剤の混合が充分に行われるが、更に送風ブロア21等をつけて攪拌を促す構成としてもよい。凝集剤混合タンク20と、紫外線照射タンク40をまとめて1つのタンクとすることで、アオコを凝集させて沈殿させると共にアオコを殺藻でき、効率よく、藍藻類を含んだ水を浄化処理できる。 Although the ultraviolet irradiation tank 40 is installed after the coagulant mixing tank 20 in this embodiment, the coagulant mixing tank 20 may be installed after the ultraviolet irradiation tank 40. In that case, a step (S3) of irradiating with ultraviolet rays is performed before the step (S2) of mixing and stirring the coagulant with the water-containing water. In addition, although the coagulant mixing tank 20 and the ultraviolet irradiation tank 40 are separately configured in this embodiment, the coagulant mixing tank 20 and the ultraviolet irradiation tank 40 may be integrated into one tank. In that case, by supplying the coagulant directly to the ultraviolet irradiation tank 40, the step of mixing and stirring the coagulant (S2) and the step of irradiating the ultraviolet ray (S3) can be simultaneously performed. Here, the meaning of "simultaneous" does not mean completely "simultaneous", but also includes the case where the step of mixing and stirring the flocculant is several seconds earlier or later (hereinafter, "simultaneous"). "Is also used interchangeably). As described above, since the ultraviolet irradiation tank 40 is provided with the convection plate 44, a turbulent flow is generated with the irradiation of ultraviolet rays, and the coagulant is sufficiently mixed. However, a blast blower 21 or the like is further provided to promote stirring. May be By coagulating the flocculant mixing tank 20 and the ultraviolet irradiation tank 40 into one tank, the water-bloom can be agglutinated and precipitated, the water-bloom can be killed, and the water containing cyanobacteria can be efficiently purified.

回収タンク50は、紫外線照射タンク40で処理された処理水を一時的に保管する。回収タンク50は、本発明の必須の構成ではなく、回収タンク50を備えずに、紫外線照射後の処理水を直接放流することもできる。回収タンク50を備える場合には、回収タンク50は、紫外線照射タンク40で処理された処理水を絶えず保管するため、1つではなく、複数個あることが好ましい。回収タンク50中の処理水は、殺藻されたアオコが沈殿する沈殿層、透明水(浄化水)となる上澄み層に分離される。より純度の高い浄化水を得るために、回収タンク50にはフィルター(図示せず)が備えられることが好ましい。フィルターは、本発明の必須の構成ではなく、回収タンク50にフィルターを備えない構成としてもよい。フィルターを備える場合には、フィルターでろ過されて得られた浄化水はポンプ51で汲み上げられ、開閉弁52が開けられ、放流用の配管を通って、湖沼に放流される。また、フィルターに残った沈殿物は、開閉弁71を介して配管を通って沈殿槽70に移されて回収される。沈殿槽70は、回収タンク50内に備えられる構成としてもよい。なお、回収タンク50にフィルターを備えない場合には、上澄みの浄化水がポンプ51で汲み上げられて湖沼に放流され、残った沈殿物もそのまま放流、又は沈殿槽70に移して回収することができる。 The recovery tank 50 temporarily stores the treated water treated by the ultraviolet irradiation tank 40. The recovery tank 50 is not an indispensable component of the present invention, and it is possible to directly discharge the treated water after the irradiation of ultraviolet rays without the recovery tank 50. When the recovery tank 50 is provided, it is preferable that the recovery tank 50 is provided in plural instead of one in order to constantly store the treated water treated in the ultraviolet irradiation tank 40. The treated water in the recovery tank 50 is separated into a settling layer in which the algae that have been killed algae settle, and a supernatant layer that becomes transparent water (purified water). In order to obtain purified water of higher purity, the recovery tank 50 is preferably equipped with a filter (not shown). The filter is not an essential component of the present invention, and the recovery tank 50 may not have a filter. When a filter is provided, the purified water obtained by filtering with the filter is pumped up by the pump 51, the on-off valve 52 is opened, and discharged through the discharge pipe into the lake. Further, the sediment remaining on the filter is transferred to the sedimentation tank 70 through the pipe through the opening/closing valve 71 and collected. The settling tank 70 may be provided in the recovery tank 50. If the recovery tank 50 is not equipped with a filter, the purified water of the supernatant is pumped up by the pump 51 and discharged into the lake, and the remaining precipitate can be discharged as it is or transferred to the precipitation tank 70 for recovery. ..

以上説明した様に、水質浄化装置が構成され、水質浄化方法の一連の工程が完了する(図3)。この一連の工程を繰り返し行うことで、湖沼の浄化対象水域の水質を浄化することができる。なお、本実施例は一例であり、本発明はこの構成や方法に限定されるものではない。例えば、本実施例では各タンク10〜50のそれぞれが、配管に備わった開閉弁とポンプを使用して所定量を次のタンクに供給していたが、ポンプを使用せず開閉弁のみを備えて、それぞれのタンクに段差を設けて、その高低差(水の重力)により所定量を供給する構成としてもよい。 As described above, the water purification apparatus is configured, and the series of steps of the water purification method is completed (FIG. 3). By repeating this series of steps, it is possible to purify the water quality of the purification target water area of the lake. The present embodiment is an example, and the present invention is not limited to this configuration and method. For example, in the present embodiment, each of the tanks 10 to 50 supplies a predetermined amount to the next tank by using the on-off valve and the pump provided in the pipe, but only the on-off valve is provided without using the pump. Then, a step may be provided in each tank, and a predetermined amount may be supplied by the height difference (gravitational force of water).

なお、前述の水質浄化装置は、地上や水上に設置することができるが、水上に設置する場合には、例えば船形に構成することができる。図4は、船形の水質浄化装置を示す説明図であり、(A)は平面図、(B)は斜視図である。湖沼の浄化対象水域が広範囲に亘る場合には、大型の船を使用することも考えられるが、本実施例では操作性のよい小型の船を使用する。 The water purification device described above can be installed on the ground or on the water, but when installed on the water, for example, it can be configured in a boat shape. FIG. 4 is an explanatory view showing a boat-shaped water purification device, (A) is a plan view and (B) is a perspective view. A large boat may be used when the water to be purified in the lake covers a wide area, but a small boat with good operability is used in this embodiment.

図4(A)の平面図に示すように、船形の水質浄化装置1は、小型船100に、前述の取水手段、貯水タンク10、凝集剤混合タンク20、凝集剤保管タンク30、紫外線照射タンク40、回収タンク50(沈殿槽70)、制御装置60、駆動装置等が載置されて構成される。船形の水質浄化装置1の取水手段として配管(ホース)12と、ポンプ11が使用される。図4(A)に示すように、配管12の先端が湖沼水面に浮かずに、湖沼内のアオコを好適に回収できるように、配管12の先端を湖沼内に固定する固定具(浮き又は重り)111を取り付けてもよい。取水手段により、アオコ含有水がポンプ11の駆動で汲み上げられて、貯水タンク10に供給される。前述のように、ポンプ11付近に濁度計を設置して、アオコの濃度に応じて吸引水量を自動制御する構成としてもよい(図示せず)。貯水タンク10に供給された水は、凝集剤混合タンク20、紫外線照射タンク40、回収タンク50(沈殿槽70)で処理される。 As shown in the plan view of FIG. 4(A), the water purification device 1 in the form of a boat includes a small boat 100, the above-mentioned water intake means, a water storage tank 10, a coagulant mixing tank 20, a coagulant storage tank 30, and an ultraviolet irradiation tank. 40, a recovery tank 50 (sedimentation tank 70), a control device 60, a drive device and the like are mounted. A pipe (hose) 12 and a pump 11 are used as water intake means of the boat-shaped water purification device 1. As shown in FIG. 4(A), the fixture (floating or weight) that fixes the tip of the pipe 12 in the lake so that the water-bloom in the lake can be suitably collected without the tip of the pipe 12 floating on the surface of the lake. ) 111 may be attached. The water-intake means pumps up the water-containing water by driving the pump 11, and supplies it to the water storage tank 10. As described above, a turbidimeter may be installed near the pump 11 to automatically control the amount of suction water according to the concentration of water-bloom (not shown). The water supplied to the water storage tank 10 is treated in the coagulant mixing tank 20, the ultraviolet irradiation tank 40, and the recovery tank 50 (precipitation tank 70).

図4(B)の斜視図に示すように、小型船100に帆101を付けて風により推進力を得る構成としてもよい。帆101は必須の構成ではなく、エンジンのみで運行する構成としてもよいが、帆船とすることで自然の力を利用でき、また、アオコ回収船のように見えないことで、湖沼の景観に溶け込むことができる。 As shown in the perspective view of FIG. 4B, a sail 101 may be attached to the small boat 100 to obtain a propulsive force by wind. The sail 101 is not an indispensable structure and may be operated only by an engine. However, by using a sail ship, it is possible to utilize the natural power, and because it does not look like a water-bloom recovery ship, it blends into the scenery of the lake. be able to.

船形の水質浄化装置1は、アオコが繁殖した水域に容易に移動できるため、地上に設置した水質浄化装置1と比較して、アオコ含有水の取水を容易に行うことができる。また、小型船100を運行することで、凝集剤混合タンク20や紫外線照射タンク40が揺動するため、より効率よくアオコ含有水が撹拌され、紫外線を充分に当てることができる。 Since the boat-shaped water purification device 1 can easily move to the water area where the water-bloom breeds, the water-containing water can be easily taken in compared to the water purification device 1 installed on the ground. In addition, since the flocculant mixing tank 20 and the ultraviolet irradiation tank 40 swing by operating the small boat 100, the water-containing water is agitated more efficiently and ultraviolet rays can be sufficiently applied.

更に、制御装置60にGPSが組み込まれ、湖沼の地図を読み込み、その地図に基づいて自動運転を制御する構成としてもよい。自動運転のためには、地図情報を記憶し、周辺状況の把握するためのカメラ、センサー等を備える必要がある。また、制御装置60には、把握した情報を元にして、小型船100の駆動装置を制御できるプログラム(ソフトウエア)が必要である。船形の水質浄化装置1が自動運転できる場合には、作業する人の労力を低減でき、広範囲に亘り湖沼のアオコ含有水を、取水して浄化処理することができる。 Further, a GPS may be incorporated in the control device 60 to read a map of lakes and marshes and control the automatic driving based on the map. For automatic driving, it is necessary to have a camera, a sensor, etc. for storing map information and grasping surrounding conditions. Further, the control device 60 needs a program (software) capable of controlling the drive device of the small boat 100 based on the grasped information. When the ship-shaped water purification device 1 can be automatically operated, the labor of the worker can be reduced, and the water-bloom-containing water in the lake can be taken in and purified over a wide range.

〔実験内容と結果〕
次に、本発明の方法の効果を検証した実験について説明する。アオコ含有水に紫外線を照射すると共に、凝集剤を添加した実験内容とその結果を、以下の表1と図5〜図12を参照しながら説明する。表1は、浄化対象の水域として、富栄養化湖沼の代表といえる千波湖(茨城県水戸市にある那珂川水系の湖)で採取したアオコ含有水(表1と図5〜12で原水と記載)と、アオコ含有水に紫外線(253.7nm、203W、UVと記載)を1〜3分照射したもの、紫外線と同時に凝集剤として硫酸アルミニウム(表1と図5〜12でバンドと記載)とポリ塩化アルミニウム(表1と図5〜12でPACと記載)を2モル比又は2.5モル比で添加したもの、紫外線を照射しないでポリ塩化アルミニウム(PAC)のみ添加させたものの実験結果である。その結果の水素イオン指数(pH)と、クロロフィルa(Chl−a)の濃度(μg/l)、水中の溶解性リン(溶存態P)(mg/l)と溶解性窒素(溶存態N)の濃度(mg/l)を表す。図5〜図12は、表1の結果を分析し易くするために、まとめたものである。
[Experiment content and results]
Next, an experiment for verifying the effect of the method of the present invention will be described. The details of the experiment in which the coagulant was added to the water containing the water-bloom containing ultraviolet light and the results thereof will be described with reference to Table 1 below and FIGS. 5 to 12. Table 1 lists the water containing blue-green algae (raw water in Table 1 and Figures 5 to 12) collected from Senba Lake (Nakagawa river system in Mito City, Ibaraki Prefecture), which is a representative of eutrophic lakes ), and water that contains blue-green algae irradiated with ultraviolet rays (253.7 nm, 203 W, described as UV) for 1 to 3 minutes, and aluminum sulfate as a coagulant simultaneously with the ultraviolet rays (described as a band in Table 1 and FIGS. 5 to 12). According to the experimental results, polyaluminum chloride (described as PAC in Table 1 and FIGS. 5 to 12) was added at a 2 mol ratio or a 2.5 mol ratio, and only polyaluminum chloride (PAC) was added without irradiation with ultraviolet rays. is there. The resulting hydrogen ion index (pH), concentration of chlorophyll a (Chl-a) (μg/l), soluble phosphorus (dissolved state P) (mg/l) and soluble nitrogen (dissolved state N) in water Represents the concentration (mg/l) of. 5-12 are a summary of the results of Table 1 for ease of analysis.

なお、本実験における上記の凝集剤添加量は、試験対象であるアオコ含有水が5(mg/l)のリンを含むと仮定し、各モル比に相当する凝集剤の量を算出した。例えば、アオコ含有水が100mlであった場合、含まれるリンの質量は0.5(mg/l)である。本実験のモル比は正確なモル比ではなく、近似的なモル比である。例えば、モル比2でアルミニウム系凝集剤を添加する場合は以下の様な計算になる。 In addition, the amount of the coagulant added in the present experiment was calculated on the assumption that the water-containing water containing the test sample contained 5 (mg/l) phosphorus, and the amount of the coagulant corresponding to each molar ratio was calculated. For example, when the water containing water-bloom is 100 ml, the mass of phosphorus contained is 0.5 (mg/l). The molar ratio in this experiment is not an exact molar ratio but an approximate molar ratio. For example, when an aluminum-based coagulant is added at a molar ratio of 2, the calculation is as follows.

上記の計算式でAlの原子量26.98g/mol、Pの原子量30.97g/molを使用した。モル比が1の場合は上記値が半分になる。また、アオコ含有水が500mlであれば添加量は5倍になる。添加溶液は市販のポリ塩化アルミニウム(PAC)溶液を100倍に希釈したものを用いた(電子天秤でポリ塩化アルミニウム溶液の質量を計り取り、1/100濃度になるようメスシリンダーを用いて超純水で希釈)。市販のポリ塩化アルミニウム溶液は比重が20℃で1.2程度であり、酸化アルミニウムの含有率が10%程度のものが多い。比重が完全に確定していないため、今回使用したポリ塩化アルミニウム溶液20kgの凡その体積を18Lとして計算した。計算の結果からアオコ含有水100mlに対して上記希釈液を1.5ml添加した場合がモル比1に相当することがわかる。なお、その際の希釈液添加による全体容量の微増は無視した。他の凝集剤の添加量に関しても同様に計算した。 In the above calculation formula, the atomic weight of Al was 26.98 g/mol and the atomic weight of P was 30.97 g/mol. When the molar ratio is 1, the above value becomes half. In addition, if the water containing blue-green algae is 500 ml, the addition amount will be 5 times. The additive solution used was a commercially available polyaluminum chloride (PAC) solution diluted 100 times (weigh the mass of the polyaluminum chloride solution with an electronic balance and use a graduated cylinder to make it ultra-pure to a concentration of 1/100). Diluted with water). A commercially available polyaluminum chloride solution has a specific gravity of about 1.2 at 20° C. and often has an aluminum oxide content of about 10%. Since the specific gravity was not completely determined, the volume of 20 kg of the polyaluminum chloride solution used this time was calculated to be 18 L. From the calculation results, it can be seen that the case where 1.5 ml of the above-mentioned diluted solution is added to 100 ml of water containing water-bloom corresponds to a molar ratio of 1. The slight increase in the total volume due to the addition of the diluent was ignored. Similar calculations were made for the amounts of other flocculants added.

表1に示すように、アオコ含有水(番号10)は、pHが10.56、クロロフィルa(Chl−a)の濃度は1500(μg/l)、溶解性リンの濃度は0.023(mg/l)、溶解性窒素は0.85(mg/l)であり、アオコ含有水の色は全体的に緑色に濁っている。番号1〜3の処理水は、アオコ含有水を乱流させながら、紫外線をそれぞれ1分、2分、3分照射したものである。また、番号4〜6、番号7〜9の処理水は、アオコ含有水に紫外線を1〜3分照射すると共に、それぞれ硫酸アルミニウム(バンド)とポリ塩化アルミニウム(PAC)を2.5モル比で添加して、急速攪拌(必要であれば緩速撹拌)させたものである。 As shown in Table 1, the water-containing water (No. 10) had a pH of 10.56, a chlorophyll a (Chl-a) concentration of 1500 (μg/l), and a soluble phosphorus concentration of 0.023 (mg). /L), the soluble nitrogen is 0.85 (mg/l), and the color of the water-bloom-containing water is cloudy in green as a whole. The treated waters of Nos. 1 to 3 were each irradiated with ultraviolet rays for 1 minute, 2 minutes, and 3 minutes while turbulently flowing the water-containing water. The treated waters of Nos. 4 to 6 and Nos. 7 to 9 were obtained by irradiating the water-containing water with ultraviolet rays for 1 to 3 minutes and adding aluminum sulfate (band) and polyaluminum chloride (PAC) at a molar ratio of 2.5, respectively. It was added and rapidly stirred (slowly stirred if necessary).

番号11の処理水は、アオコ含有水に紫外線を照射しないで、塩化アルミニウム(PAC)を2モル比で添加して、急速攪拌(必要であれば緩速撹拌)させたものである。また、番号12、13の処理水は、アオコ含有水に紫外線をそれぞれ1、3分照射すると共に、ポリ塩化アルミニウム(PAC)を2モル比で添加して、急速攪拌(必要であれば緩速撹拌)させたものである。 The treated water of No. 11 was obtained by adding aluminum chloride (PAC) at a 2 molar ratio without irradiating the water-containing water with ultraviolet rays and rapidly stirring (slowly stirring if necessary). Further, the treated water of Nos. 12 and 13 was irradiated with ultraviolet rays for 1 to 3 minutes, respectively, to the water-containing water, and polyaluminum chloride (PAC) was added at a molar ratio of 2 for rapid stirring (slow stirring if necessary. It was stirred).

まず、各処理水を観察し、緑色に濁っているアオコ含有水(番号10)と比較した外観について述べる。番号1〜3の処理水(紫外線照射のみ)は、紫外線を照射する時間が長い程、アオコの緑色が脱色されて(殺藻されて)白濁し、アオコ(緑色)の一部のみ浮上していた。特に番号3の紫外線照射3分では、全体的に白濁した様子が確認でき、紫外線照射の効果が明確になった。しかし、紫外線のみではアオコの脱色分解は行なわれるが、沈殿しない場合があり、水面に浮上する結果が見られた。アオコ濃度の低い場合はアオコの脱色分解は行われ、かつ浮上の問題は軽減されるため、凝集剤添加が不要な場合もある。 First, each treated water was observed, and the appearance compared with the water-containing green water containing blue water (No. 10) will be described. In the treated waters of Nos. 1 to 3 (UV irradiation only), the longer the time of UV irradiation, the more decolorized the green color of the water-bloom (being killed by algae) becomes cloudy, and only part of the water-bloom (green) floats. It was Particularly, when the ultraviolet irradiation of No. 3 was performed for 3 minutes, it was possible to confirm the appearance of cloudiness as a whole, and the effect of ultraviolet irradiation became clear. However, although the decolorization decomposition of the water-bloom was carried out only by the ultraviolet rays, there was a case where it did not precipitate, and the result that it floated on the water surface was seen. When the concentration of the water-bloom is low, the water-bloom is decolorized and decomposed, and the floating problem is reduced, so that the coagulant may not be added in some cases.

番号4〜6の処理水(紫外線照射と硫酸アルミニウム)は、いずれも脱色分解が確認され、照射する時間が長い程、アオコの緑色が脱色された。また、沈殿性はいずれも極めて高いことが確認された。よって、紫外線照射と硫酸アルミニウム(バンド)添加で、アオコは浮上することなく、効果的に沈殿する結果となった。 Decolorization decomposition was confirmed in all of the treated waters of Nos. 4 to 6 (UV irradiation and aluminum sulfate), and the longer the irradiation time, the more decolorized the green color of water-bloom. It was also confirmed that the precipitation properties were extremely high. Therefore, by the irradiation of ultraviolet rays and the addition of aluminum sulfate (band), the result was that the water-bloom did not float but effectively precipitated.

番号7〜9と12、13の処理水(紫外線照射とポリ塩化アルミニウム)は、番号4〜6の処理水と同様に、いずれも脱色分解が確認され、沈殿性も極めて高いことが確認された。よって、紫外線照射とポリ塩化アルミニウム(PAC)添加で、アオコは浮上することなく、効果的に沈殿する結果となった。番号11の処理水(ポリ塩化アルミニウムのみ)においても脱色分解が確認され、沈殿することが確認された。しかし、紫外線を照射していないため、アオコが殺藻されておらず、時間経過後、浮上することも考えられる。 As with the treated waters of Nos. 4 to 6, the treated waters of Nos. 7 to 9 and 12, 13 (ultraviolet irradiation and polyaluminum chloride) were all confirmed to be decolorized and decomposed, and it was also confirmed that the precipitation property was extremely high. .. Therefore, it was found that the blue-green algae did not float but was effectively precipitated by the irradiation of ultraviolet rays and the addition of polyaluminum chloride (PAC). Decolorization decomposition was also confirmed in the treated water of No. 11 (polyaluminum chloride only), and it was confirmed that precipitation occurred. However, since it is not irradiated with ultraviolet rays, the algae have not been killed by the algae, and it is possible that they will surface after a lapse of time.

次に、各処理水の水素イオン指数(pH)、クロロフィルaの濃度、溶解性リンの濃度、溶解性窒素濃度について説明する。図5は、水素イオン指数(pH)と処理水(原水を含む)との関係を示すグラフであり、図6は、水素イオン指数(pH)と紫外線照射時間との関係を示すグラフである。水素イオン指数(pH)は、アオコ含有水の処理後すぐと、処理から7日経過後に測定しているため、その両方のデータを表示している。図5では、7日後のデータを矢印で表している。一般に生態系を構成する生物群の生息に適したpH範囲は5.8〜8.5であり、この範囲を外れると栄養塩は植物に摂取されにくくなり、生物の生産性は低下し、湖沼全体の生産も低下するとされている。 Next, the hydrogen ion index (pH) of each treated water, the concentration of chlorophyll a, the concentration of soluble phosphorus, and the concentration of soluble nitrogen will be described. FIG. 5 is a graph showing the relationship between the hydrogen ion index (pH) and treated water (including raw water), and FIG. 6 is a graph showing the relationship between the hydrogen ion index (pH) and ultraviolet irradiation time. The hydrogen ion index (pH) is measured immediately after the treatment of the water-containing water and after 7 days from the treatment, and therefore both data are displayed. In FIG. 5, the data after 7 days are represented by arrows. Generally, the pH range suitable for the inhabitation of the organisms that compose the ecosystem is 5.8 to 8.5. If the pH range is outside this range, nutrients are less likely to be ingested by plants, the productivity of the organisms decreases, and Overall production is also expected to decline.

表1と図5により、本処理後のpHは、処理後に中性(6〜8)付近へ変化することから、生態系に影響は無いことがわかる。また、図6より、紫外線照射後、1分で硫酸アルミニウム(バンド)と、ポリ塩化アルミニウム(PAC)を高いモル比(モル比2と2.5)で添加した処理水のpHは大幅に下がり、ポリ塩化アルミニウム(PAC)を添加した処理水は中性化されることがわかった。硫酸アルミニウム(バンド)は、ポリ塩化アルミニウム(PAC)と比較してpHの低下が大きく、それは7日経過しても中性化されなかった。しかしながら、硫酸アルミニウム(バンド)の処理水のpHは、自然水の希釈により中性化すると考えられるため、放流しても問題ないと考えられる。また、凝集剤非添加の処理水も、7日ほど経過すれば中性化することが分かった。 It can be seen from Table 1 and FIG. 5 that the pH after the main treatment changes to around neutral (6 to 8) after the main treatment, so that the ecosystem is not affected. Further, as shown in FIG. 6, the pH of the treated water to which aluminum sulfate (band) and polyaluminum chloride (PAC) were added at a high molar ratio (molar ratios 2 and 2.5) was drastically decreased 1 minute after the irradiation with ultraviolet rays. It was found that the treated water containing polyaluminum chloride (PAC) was neutralized. Aluminum sulphate (band) had a greater decrease in pH compared to polyaluminum chloride (PAC), which was not neutralized after 7 days. However, the pH of the treated water of aluminum sulfate (band) is considered to be neutralized by the dilution of natural water, and therefore it is considered that there is no problem in discharging it. It was also found that the treated water to which the coagulant was not added was neutralized after about 7 days.

図7は、クロロフィルaの濃度と処理水(原水を含む)との関係を示すグラフであり、図8は、クロロフィルaの濃度と紫外線照射時間との関係を示すグラフである。クロロフィルaの濃度も、pHと同様に、アオコ含有水の処理後すぐの場合と、処理から7日経過後に測定しているため、その両方のデータを表示している。図7では、7日後のデータを矢印で表している。なお、紫外線照射と凝集剤の処理によりアオコが沈殿した後の上澄み液では、クロロフィルaの濃度が検出限界以下になるため、クロロフィルaの濃度は、処理後のアオコ含有水をよくかき混ぜて測定している。また、図8(B)の7日後のクロロフィルaの濃度と紫外線照射時間との関係を示すグラフは、均等目盛のグラフでは縦軸の値(クロロフィルaの濃度)が重なって、様子がわかりづらいことから、縦軸を対数目盛で表示している。 FIG. 7 is a graph showing the relationship between the concentration of chlorophyll a and treated water (including raw water), and FIG. 8 is a graph showing the relationship between the concentration of chlorophyll a and ultraviolet irradiation time. As with the pH, the concentration of chlorophyll a is measured immediately after the treatment with the water-containing water and after 7 days from the treatment, so both data are displayed. In FIG. 7, the data after 7 days are represented by arrows. Incidentally, in the supernatant after the water-blowing was precipitated by the ultraviolet irradiation and the treatment with the coagulant, the concentration of chlorophyll a was below the detection limit, so the concentration of chlorophyll a was measured by thoroughly stirring the water-containing water after treatment. ing. In the graph showing the relationship between the concentration of chlorophyll a after 7 days and the ultraviolet irradiation time in Fig. 8(B), the value on the vertical axis (the concentration of chlorophyll a) overlaps in the graph of the uniform scale, and the state is difficult to understand. Therefore, the vertical axis is displayed on a logarithmic scale.

表1と図7、8に示すように、原水のクロロフィルaの濃度は、1500(μg/l)と高いが、紫外線照射、約1分後にクロロフィルaの濃度が顕著に低下している。これは、紫外線照射によってアオコ細胞が破壊されたことを示している。図8に示すように、紫外線照射の時間が2分、3分と多くなるほど、クロロフィルaの濃度が低下していることがわかる。また、紫外線照射と共に硫酸アルミニウム(バンド)を添加した処理水の方がよりクロロフィルaの濃度が低下していることがわかる。硫酸アルミニウム(バンド)とポリ塩化アルミニウム(PAC)のクロロフィルaの濃度を比較すると、硫酸アルミニウム(バンド)の方がクロロフィルaの濃度が低かった。よって、クロロフィルaの除去は、硫酸アルミニウム(バンド)の方が効果的であることがわかる。 As shown in Table 1 and FIGS. 7 and 8, the concentration of chlorophyll a in the raw water is as high as 1500 (μg/l), but the concentration of chlorophyll a is remarkably reduced about 1 minute after irradiation with ultraviolet rays. This indicates that the blue-green cells were destroyed by UV irradiation. As shown in FIG. 8, it can be seen that the concentration of chlorophyll a decreases as the ultraviolet irradiation time increases to 2 minutes and 3 minutes. Further, it is found that the concentration of chlorophyll a is lower in the treated water to which aluminum sulfate (band) is added together with the irradiation of ultraviolet rays. Comparing the concentrations of chlorophyll a in aluminum sulfate (band) and polyaluminum chloride (PAC), the concentration of chlorophyll a was lower in aluminum sulfate (band). Therefore, it is found that aluminum sulfate (band) is more effective in removing chlorophyll a.

また、7日後には、原水のクロロフィルaの濃度は1900(μg/l)と増加していたが、紫外線照射の処理水のクロロフィルaの濃度は低下し、硫酸アルミニウム(バンド)を添加した処理水のクロロフィルaの濃度は更に低下していた。よって、紫外線照射と硫酸アルミニウム(バンド)を添加することにより、クロロフィルaは確実に分解された。また、ポリ塩化アルミニウム(PAC)のクロロフィルaの濃度も7日後にはより低下しており、クロロフィルaを95%近く除去できた。以上の結果から一旦アオコ細胞が紫外線により破壊されると7日経過後に、クロロフィルaの濃度が大幅に減少することがわかった。なお、経日変化の評価から紫外線照射1分でもアオコ細胞が破壊ダメージを受け2〜3日後には死滅化が起こることが確認されている。 After 7 days, the concentration of chlorophyll a in the raw water increased to 1900 (μg/l), but the concentration of chlorophyll a in the UV-treated water decreased, and treatment with the addition of aluminum sulfate (band) The concentration of chlorophyll a in water was further reduced. Therefore, chlorophyll a was surely decomposed by ultraviolet irradiation and addition of aluminum sulfate (band). Further, the concentration of chlorophyll a in polyaluminum chloride (PAC) was further lowered after 7 days, and chlorophyll a could be removed by almost 95%. From the above results, it was found that the concentration of chlorophyll a was significantly decreased after 7 days, once the water-bloom cells were destroyed by the ultraviolet rays. It has been confirmed from the evaluation of changes over time that even after 1 minute of ultraviolet irradiation, the water-bloom cells are destroyed and damaged, and die after 2-3 days.

図9は、溶解性リンの濃度と処理水(原水を含む)との関係を示すグラフであり、図10は溶解性リンの濃度と紫外線照射時間との関係を示すグラフである。図10は、図8(B)のグラフと同様に、均等目盛のグラフでは縦軸の値(溶解性リンの濃度)が重なって様子がわかりづらいことから、縦軸を対数目盛で表示している。表1と図9に示すように、紫外線の照射により、溶解性リンの濃度は増えていた。これは、紫外線照射によりアオコ群体細胞が破壊され、溶解性リンの濃度が増えたと思われる。しかし、硫酸アルミニウム(バンド)やポリ塩化アルミニウム(PAC)を添加することで溶解性リンの濃度は極端に著しく下がった。図10より、硫酸アルミニウム(バンド)添加では、溶解性リンの濃度は、紫外線照射の時間が長くなるほど、わずかに増加した。ポリ塩化アルミニウム(PAC)においても、溶解性リンの濃度は、紫外線照射の時間が長くなるほど、わずかに増加した。硫酸アルミニウム(バンド)とポリ塩化アルミニウム(PAC)の溶解性リンの濃度を比較すると、ポリ塩化アルミニウム(PAC)の方が低かった。よって、溶解性リンの除去は、ポリ塩化アルミニウム(PAC)が効果的であることがわかる。 FIG. 9 is a graph showing the relationship between the concentration of soluble phosphorus and treated water (including raw water), and FIG. 10 is a graph showing the relationship between the concentration of soluble phosphorus and ultraviolet irradiation time. 10 is similar to the graph of FIG. 8(B), it is difficult to see how the values on the vertical axis (concentration of soluble phosphorus) overlap in the graph on the uniform scale, so the vertical axis is displayed on a logarithmic scale. There is. As shown in Table 1 and FIG. 9, the concentration of soluble phosphorus was increased by the irradiation of ultraviolet rays. This seems to be because the blue-green alga colony cells were destroyed by the UV irradiation, and the concentration of soluble phosphorus increased. However, the concentration of soluble phosphorus decreased extremely significantly by adding aluminum sulfate (band) and polyaluminum chloride (PAC). From FIG. 10, when the aluminum sulfate (band) was added, the concentration of soluble phosphorus increased slightly as the irradiation time of ultraviolet light became longer. Also in polyaluminum chloride (PAC), the concentration of soluble phosphorus increased slightly as the irradiation time with ultraviolet light increased. Comparing the soluble phosphorus concentrations of aluminum sulfate (band) and polyaluminum chloride (PAC), polyaluminum chloride (PAC) was lower. Therefore, it is understood that polyaluminum chloride (PAC) is effective for removing soluble phosphorus.

図11は、表1の溶解性窒素の濃度と処理水(原水を含む)との関係を示すグラフであり、図12は、溶解性窒素の濃度と紫外線照射時間との関係を示すグラフである。表1と図11に示すように、紫外線の照射により、溶解性窒素の濃度は増えていた。これは、紫外線照射により、アオコ群体細胞が破壊され、溶解性窒素の濃度が増えたと思われる。しかし、硫酸アルミニウム(バンド)やポリ塩化アルミニウム(PAC)を添加することで溶解性窒素の濃度が下がった。図12より、硫酸アルミニウム(バンド)添加では、溶解性窒素の濃度は、紫外線照射時間によってほとんど変化が見られなかったが、ポリ塩化アルミニウム(PAC)においては、紫外線照射の時間が長くなるほど、わずかに増加した。硫酸アルミニウム(バンド)とポリ塩化アルミニウム(PAC)の溶解性窒素の濃度を比較すると、ポリ塩化アルミニウム(PAC)の方が低かった。よって、溶解性窒素の除去も、ポリ塩化アルミニウム(PAC)が効果的であることがわかる。 11 is a graph showing the relationship between the concentration of soluble nitrogen in Table 1 and treated water (including raw water), and FIG. 12 is a graph showing the relationship between the concentration of soluble nitrogen and ultraviolet irradiation time. .. As shown in Table 1 and FIG. 11, the concentration of soluble nitrogen was increased by the irradiation of ultraviolet rays. It is considered that the UV irradiation destroyed the water-bloom colony cells and increased the concentration of soluble nitrogen. However, the concentration of soluble nitrogen was lowered by adding aluminum sulfate (band) or polyaluminum chloride (PAC). From FIG. 12, the concentration of soluble nitrogen was hardly changed by the ultraviolet irradiation time when aluminum sulfate (band) was added, but in the case of polyaluminum chloride (PAC), the longer the ultraviolet irradiation time is, the smaller the concentration becomes. Increased. Comparing the concentrations of soluble nitrogen in aluminum sulfate (band) and polyaluminum chloride (PAC), polyaluminum chloride (PAC) was lower. Therefore, it is understood that polyaluminum chloride (PAC) is also effective for removing soluble nitrogen.

また、番号11の処理水は、アオコ含有水に紫外線を照射しないで、ポリ塩化アルミニウム(PAC)を2モル比で添加したものであるが、表1に示すように、原水と比較して、溶存態リンは減少し、pH適正基準内に維持された。従って、紫外線を照射しなくても、このようなリン除去効果は得られることがわかった(番号13の処理水との比較)。しかしながら、クロロフィルaの濃度は7日後にもあまり減少しておらず、紫外線を照射しないと、即効的な効果が得られないことがわかった。よって、アオコの沈殿を確実にするためにも、藻類細胞へのダメージを与えて死滅させる即効的な効果を得るためにも、紫外線照射と凝集剤の添加を共に行う浄化処理が好ましい。紫外線照射のみ又は凝集剤のみではなく、その両方を共に行う浄化処理が好ましい。 Further, the treated water of No. 11 was obtained by adding polyaluminum chloride (PAC) at a 2 molar ratio without irradiating the water containing blue water with ultraviolet rays, but as shown in Table 1, as compared with raw water, Dissolved phosphorus was reduced and maintained within the pH standard. Therefore, it was found that such a phosphorus removing effect can be obtained without irradiation of ultraviolet rays (compared with the treated water of No. 13). However, the concentration of chlorophyll a did not decrease much even after 7 days, and it was found that an immediate effect could not be obtained unless it was irradiated with ultraviolet rays. Therefore, in order to ensure the precipitation of water-bloom and to obtain an immediate effect of damaging and killing algal cells, a purification treatment in which both UV irradiation and addition of a coagulant are performed is preferable. It is preferable to carry out not only the ultraviolet irradiation or the coagulant, but a purifying treatment in which both of them are performed.

以上の結果から、クロロフィルaの分解(すなわちアオコの分解)は、紫外線照射のみでも効果はあるが、処理水の白濁化および分解アオコが水面に浮上する問題点があることがわかった。また、硫酸アルミニウム(バンド)はポリ塩化アルミニウム(PAC)と比較して高いクロロフィルaの分解効果を有していたが、pHの低下が大きく、それは時間が経過しても中性化されなかった。しかしながら、適正なモル比で硫酸アルミニウム(バンド)を添加すれば、pHの低下を抑えて処理可能な場合もあり得る。一方、ポリ塩化アルミニウム(PAC)の処理水は中性化されることがわかった。更に、紫外線照射によって溶出する溶解性リンや溶解性窒素の凝集効果は、硫酸アルミニウム(バンド)よりもポリ塩化アルミニウム(PAC)の方が効果的であることがわかる。従って、環境負荷の観点からポリ塩化アルミニウム(PAC)の使用が推奨される。なお、自然環境における環境容量の程度においてはpHが凝集剤添加においても影響ない場合もあることから凝集剤のモル比を高めた対応も可能であるといえる。 From the above results, it was found that the decomposition of chlorophyll a (that is, the decomposition of water-bloom) is effective only by UV irradiation, but there is a problem that the treated water becomes cloudy and the decomposed water-bloom floats on the water surface. Also, aluminum sulfate (band) had a higher effect of decomposing chlorophyll a than polyaluminum chloride (PAC), but the pH was greatly lowered, and it was not neutralized over time. .. However, if aluminum sulfate (band) is added at an appropriate molar ratio, it may be possible to suppress the decrease in pH and perform treatment. On the other hand, it was found that the treated water of polyaluminum chloride (PAC) was neutralized. Further, it is understood that polyaluminum chloride (PAC) is more effective than aluminum sulfate (band) in the aggregation effect of soluble phosphorus and soluble nitrogen eluted by ultraviolet irradiation. Therefore, use of polyaluminum chloride (PAC) is recommended from the viewpoint of environmental load. In addition, since the pH may not affect the addition of the coagulant in the degree of the environmental capacity in the natural environment, it can be said that it is possible to cope with the increase in the molar ratio of the coagulant.

また、本実験では、紫外線照射と凝集剤添加で処理後、7日〜10日経過するまで経時的変化を記録、解析したが、一旦細胞が破壊された後、2〜3日経過するとクロロフィルaの分解効果が顕著になり、本実験の浄化処理が効果的であることが検証できた。 In addition, in this experiment, the change with time was recorded and analyzed until 7 to 10 days after treatment with ultraviolet irradiation and addition of a flocculant, but chlorophyll-a was observed 2 to 3 days after the cells were once destroyed. The decomposition effect of was remarkable, and it was verified that the purification treatment of this experiment was effective.

本実験では、紫外線照射を凝集剤添加と同時に行うことで、処理に必要な凝集剤の急速撹拌等の操作を紫外線照射タンク内での撹拌により代用することができる。それにより、アオコを凝集させて沈殿させると共にアオコを殺藻でき、効率よく、藍藻類を含んだ水を浄化処理できる。前述のように凝集剤添加と紫外線照射を別のタンクで行うこともでき、その場合でも上記の実験結果と同様の結果が得られると推測される。 In this experiment, by performing the ultraviolet irradiation at the same time as the addition of the coagulant, the operation such as rapid stirring of the coagulant necessary for the treatment can be substituted by stirring in the ultraviolet irradiation tank. As a result, the water-bloom can be aggregated and precipitated, and the water-bloom can be killed, and the water containing cyanobacteria can be efficiently purified. As described above, the coagulant addition and the ultraviolet irradiation can be performed in different tanks, and even in that case, it is presumed that the same results as the above experimental results can be obtained.

実験で使用した千波湖のアオコ含有水のアオコの濃度(クロロフィルaの濃度)は極めて高く、試験時は1500(μg/l)、7日経過後は1900(μg/l)であったが、霞ケ浦のアオコ含有水の平均的なクロロフィルaの濃度は、50〜100(μg/l)であることから、実験のアオコ含有水は、アオコが水面に風等によって集積した場所から採取したものといえる。従って、本実験の方法は湖岸等の集積アオコに対してもポリ塩化アルミニウム(PAC)と紫外線照射で極めて大きな効果が得られると確証される。原液アオコのクロロフィルa濃度が50〜100(μg/l)の場合は、紫外線照射とポリ塩化アルミニウム(PAC)の添加で、クロロフィルa濃度が10(μg/l)以下になることが示唆される。なお、紫外線照射と凝集剤の処理によりアオコが沈殿した後の上澄み液では、クロロフィルaの濃度が検出限界以下になることは既に示した通りである。また、凝集剤添加濃度はモル比2〜2.5の範囲で使用することが推奨されるが、上記のようなアオコ濃度の低いアオコ含有水ではモル比1以下でも使用することも可能である。 The concentration of water-bloom (chlorophyll a) in the water containing water from Senba Lake used in the experiment was extremely high, 1500 (μg/l) during the test and 1900 (μg/l) after 7 days, but Kasumigaura Since the average concentration of chlorophyll a in the water-bloom containing water is 50 to 100 (μg/l), it can be said that the water-bloom containing water in the experiment was taken from the place where the water-bloom accumulated on the water surface due to wind or the like. .. Therefore, it is confirmed that the method of this experiment can obtain a very large effect by poly-aluminum chloride (PAC) and UV irradiation even for accumulated blue-green algae on the lake shore. When the chlorophyll a concentration of stock solution Aoko is 50-100 (μg/l), it is suggested that the chlorophyll a concentration becomes 10 (μg/l) or less by UV irradiation and addition of polyaluminum chloride (PAC). .. As described above, the concentration of chlorophyll a is below the detection limit in the supernatant after the blue-green algae are precipitated by the irradiation of ultraviolet rays and the treatment with the coagulant. The coagulant addition concentration is recommended to be used in a molar ratio range of 2 to 2.5, but it is also possible to use a molar ratio of 1 or less in the above-mentioned water-containing water with a low algal concentration. ..

なお、前述のように、本実施例のアオコ含有水は、浄化処理後に回収タンクで保管する場合と保管しない場合があり、すなわちそのまま放流してもよいこととしているが、漁業権のある水域では凝集剤添加の場合は、残った沈殿物(生成汚泥)を回収する必要がある。海洋汚染等及び海上災害の防止に関する法律施行規則によると、有害液体物質の汚染分類はX類、Y類、Z類に分類されている。X類物質は、海洋資源または人の健康に重大な危険をもたらすもの、Y類物質は、海洋資源または人の健康に危険をもたらすもの、Z類物質は、海洋資源または人の健康に軽微な危険をもたらすものである。ポリ塩化アルミニウム、水酸化マグネシウムなどは、Z類物質に分類されているため、問題とならない可能性が高いが、必要に応じて、残った沈殿物は回収することが好ましく、回収した後は廃棄する。そのため、必要に応じて、漁業権のある水域等では、紫外線照射のみの浄化方法を使用することもできる。その場合には、有害液体物質を含まないため、残った沈殿物を回収しなくてもよいが、回収した場合には、肥料等として利用することができる。 As described above, the water-containing water of the present example may or may not be stored in the recovery tank after the purification treatment, that is, it may be discharged as it is, but in the water area where the fishery right exists. When adding a coagulant, it is necessary to collect the remaining sediment (produced sludge). According to the law enforcement regulations concerning the prevention of marine pollution and marine disasters, the pollution classification of harmful liquid substances is classified into X, Y and Z. X-class substances pose a serious risk to marine resources or human health, Y-class substances pose a risk to marine resources or human health, and Z-class substances mean minor risks to marine resources or human health. It brings danger. Since polyaluminum chloride, magnesium hydroxide, etc. are classified as Z group substances, there is a high possibility that they will not be a problem, but it is preferable to collect the remaining precipitate, if necessary, and then discard it. To do. Therefore, if necessary, a purification method using only ultraviolet irradiation can be used in water areas where fishing rights are available. In that case, since the harmful liquid substance is not contained, the remaining precipitate does not have to be recovered, but when recovered, it can be used as a fertilizer or the like.

以上説明したように、本発明の水質浄化装置及び水質浄化方法によると、凝集剤の添加と共に紫外線照射することにより、アオコを殺藻して除去し、かつ、水中の窒素、リン、クロロフィルaの濃度を下げてアオコの発生を効果的に抑制することができる。 As described above, according to the water purification apparatus and the water purification method of the present invention, by irradiating ultraviolet rays together with the addition of a coagulant, algae are removed by algae removal, and nitrogen, phosphorus and chlorophyll a in water are removed. The concentration can be lowered to effectively suppress the generation of water-bloom.

なお、上述した水質浄化装置及び水質浄化方法は一例であり、その装置と方法は、発明の趣旨を逸脱しない範囲で、適宜変更可能である。例えば、本実施例では、凝集剤として、硫酸アルミニウムとポリ塩化アルミニウムを使用したが、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、ポリ塩化鉄、高分子凝集剤を使用することもできるし、それらを組み合わせて使用することもできる。 The above-described water purification apparatus and water purification method are examples, and the apparatus and method can be appropriately modified without departing from the spirit of the invention. For example, in this example, aluminum sulfate and polyaluminum chloride were used as the aggregating agent, but ferrous sulfate, ferric sulfate, ferric chloride, polyiron chloride, and polymer aggregating agent may also be used. They can be used, or they can be used in combination.

1…水質浄化装置、10…貯水タンク、11,14,23,31,41,51…ポンプ、12…配管(ホース)、15,24,32,42,52,71…開閉弁、20…凝集剤混合タンク、21…送風ブロア(遠心式送風機)、22…ディフューザー、30…凝集剤保管タンク、40…紫外線照射タンク、43…紫外線ランプ、44…対流板、45…磁気処理器、50…回収タンク、60…制御装置、70…沈殿槽、100…船、101…帆、111…固定具。 DESCRIPTION OF SYMBOLS 1... Water purification apparatus, 10... Water storage tank, 11, 14, 23, 31, 41, 51... Pump, 12... Piping (hose), 15, 24, 32, 42, 52, 71... Open/close valve, 20... Aggregation Agent mixing tank, 21... Blower blower (centrifugal fan), 22... Diffuser, 30... Coagulant storage tank, 40... UV irradiation tank, 43... UV lamp, 44... Convection plate, 45... Magnetic processor, 50... Recovery Tank, 60... Control device, 70... Settling tank, 100... Ship, 101... Sail, 111... Fixing device.

上記の目的を達成するため、請求項1に記載の発明は、アオコを除去して水質を浄化させる水質浄化方法であって、クロロフィルaの濃度が1500(μg/l)以下のアオコ含有水を取水する工程と、アオコ含有水に凝集剤を混合し、攪拌する工程と、アオコ含有水を対流させながら波長が253.7nmの紫外線を照射する工程と、を含むことを特徴とする水質浄化方法である。
請求項2に記載の発明は、請求項1に記載の水質浄化方法であって、前記アオコ含有水に凝集剤を混合し、攪拌する工程と、前記アオコ含有水を対流させながら前記紫外線を照射する工程を同時に行うことを特徴とする。
請求項3に記載の発明は、請求項1または2に記載の水質浄化方法であって、前記凝集剤が、硫酸アルミニウム、ポリ塩化アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、ポリ塩化鉄、高分子凝集剤から選択される少なくとも1以上の凝集剤であることを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 is a water purification method for removing water-bloom and purifying water quality, wherein a water-containing water containing chlorophyll a of 1500 (μg/l) or less is used. A water purification method comprising: a step of collecting water; a step of mixing a flocculant in water-containing water and stirring; and a step of irradiating ultraviolet rays having a wavelength of 253.7 nm while convection the water-containing water. Is.
The invention according to claim 2 is the water purification method according to claim 1 , wherein a step of mixing a flocculant in the water-containing water and stirring the mixture, and irradiating the ultraviolet rays while convection the water-containing water It is characterized in that the steps of performing are performed simultaneously.
The invention according to claim 3 is the water purification method according to claim 1 or 2 , wherein the coagulant is aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric sulfate, ferric chloride. , At least one or more coagulant selected from polyiron chloride and polymer coagulant.

上記の目的を達成するため、請求項1に記載の発明は、光触媒を使用せずに、アオコを除去して水質を浄化させる水質浄化方法であって、クロロフィルaの濃度が1500(μg/l)以下のアオコ含有水を取水する工程と、アオコ含有水に凝集剤を混合し、送風ブロア及びディフューザーで攪拌する工程と、アオコ含有水を対流させながら波長が253.7nmの紫外線を照射する工程と、を含み、前記攪拌する工程と、前記紫外線を照射する工程を同時に行うことを特徴とする水質浄化方法である。
請求項2に記載の発明は、請求項1に記載の水質浄化方法であって、前記凝集剤が、硫酸アルミニウム、ポリ塩化アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、ポリ塩化鉄、高分子凝集剤から選択される少なくとも1以上の凝集剤であることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a water purification method for removing water-bloom and purifying water quality without using a photocatalyst, wherein the concentration of chlorophyll a is 1500 (μg/l). ) A step of taking in the following water-containing water, a step of mixing the water-containing water with a coagulant and stirring with a blower blower and a diffuser, and a step of irradiating ultraviolet rays having a wavelength of 253.7 nm while convectioning the water-containing water. And a step of irradiating with the ultraviolet ray at the same time .
The invention according to claim 2 is the water purification method according to claim 1 , wherein the coagulant is aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric sulfate, ferric chloride, poly. It is characterized by being at least one or more flocculants selected from iron chloride and polymer flocculants.

Claims (7)

藍藻類を除去して水質を浄化させる水質浄化装置であって、
藍藻類を含んだ藍藻類含有水を取水する取水手段と、
前記藍藻類含有水に凝集剤を混合し、攪拌する凝集剤混合手段と、
前記藍藻類含有水を対流させながら紫外線を照射する紫外線照射手段と、
を有することを特徴とする水質浄化装置。
A water purification device for purifying water quality by removing cyanobacteria,
Water intake means for taking in blue-green alga-containing water containing blue-green algae,
A coagulant mixing means for mixing the algae-containing water with a coagulant and stirring,
Ultraviolet irradiation means for irradiating ultraviolet rays while convection the cyanobacteria-containing water,
A water purification device having:
前記凝集剤混合手段と、前記紫外線照射手段をまとめて1つの手段とすることを特徴とする請求項1に記載の水質浄化装置。 The water purification apparatus according to claim 1, wherein the coagulant mixing unit and the ultraviolet irradiation unit are combined into one unit. 前記凝集剤が、硫酸アルミニウム、ポリ塩化アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、ポリ塩化鉄、高分子凝集剤から選択される少なくとも1以上の凝集剤であることを特徴とする請求項1または2に記載の水質浄化装置。 The aggregating agent is at least one or more aggregating agent selected from aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric sulfate, ferric chloride, polyiron chloride, and polymer aggregating agent. The water purification device according to claim 1 or 2. 前記紫外線の波長が200〜280nmであることを特徴とする請求項1〜3のいずれかに記載の水質浄化装置。 The water purification apparatus according to claim 1, wherein the wavelength of the ultraviolet rays is 200 to 280 nm. 前記水質浄化装置は、浄化対象の水域を運行する船形であることを特徴とする請求項1〜4のいずれかに記載の水質浄化装置。 The water purification device according to any one of claims 1 to 4, wherein the water purification device has a boat shape that operates in a water area to be purified. 藍藻類を除去して水質を浄化させる水質浄化方法であって、
藍藻類含有水を取水する工程と、
前記藍藻類含有水に凝集剤を混合し、攪拌する工程と、
前記藍藻類含有水を対流させながら紫外線を照射する工程と、
を含むことを特徴とする水質浄化方法。
A water purification method for removing blue-green algae to purify the water quality,
A step of taking water containing cyanobacteria,
A step of mixing the algae-containing water with a flocculant and stirring,
Irradiating with ultraviolet rays while convection of the cyanobacteria-containing water,
A water purification method comprising:
前記藍藻類含有水に凝集剤を混合し、攪拌する工程と、前記藍藻類含有水を対流させながら紫外線を照射する工程を同時に行うことを特徴とする請求項6に記載の水質浄化方法。 The water purification method according to claim 6, wherein the step of mixing the algae-containing water with a flocculant and stirring and the step of irradiating with ultraviolet rays while convection of the cyanobacteria-containing water are performed at the same time.
JP2018238219A 2018-12-20 2018-12-20 Water purification method Active JP6614540B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018238219A JP6614540B1 (en) 2018-12-20 2018-12-20 Water purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018238219A JP6614540B1 (en) 2018-12-20 2018-12-20 Water purification method

Publications (2)

Publication Number Publication Date
JP6614540B1 JP6614540B1 (en) 2019-12-04
JP2020099846A true JP2020099846A (en) 2020-07-02

Family

ID=68763409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018238219A Active JP6614540B1 (en) 2018-12-20 2018-12-20 Water purification method

Country Status (1)

Country Link
JP (1) JP6614540B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022073863A (en) * 2020-11-02 2022-05-17 江西省▲環▼境保▲護▼科学研究院 Water purifying material mainly formed of kaolin and preparation method and use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336391B (en) * 2021-04-01 2022-11-25 华南理工大学 Method for efficiently removing blue algae in aquaculture water by combining modified clay with advanced oxidation
CN113213576B (en) * 2021-04-27 2022-11-29 哈尔滨工业大学 Drum car type adsorption-photocatalytic degradation micro-plastic device applied to water area

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022073863A (en) * 2020-11-02 2022-05-17 江西省▲環▼境保▲護▼科学研究院 Water purifying material mainly formed of kaolin and preparation method and use thereof
JP7125974B2 (en) 2020-11-02 2022-08-25 江西省▲環▼境保▲護▼科学研究院 Kaolin-based water purification material, its preparation method and its use

Also Published As

Publication number Publication date
JP6614540B1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP6614540B1 (en) Water purification method
EP0743925A1 (en) Novel compositions and methods for water treatment
CN108585283A (en) Hydroxyl radical free radical kills wawter bloom microalgae and mineralising organic pollution processing system and its method
US6875363B2 (en) Process and device for the treatment of water, particularly for ships
KR101280430B1 (en) Continuous system for removing algaes and suspended solids on water using micro bubble
WO2005035128A2 (en) Carbonaceous waste treatment system and method
CN105692969A (en) Circulating water treatment method of seawater for cultivation and device thereof
KR101702345B1 (en) Apparatus and Method for Removing Algae
US20140346125A1 (en) Desalting Salty Sludge System and Method
JP2016165688A (en) Water treatment method and water treatment equipment
JP2007216201A (en) Natural flocculation precipitant for water purification
CN111439884A (en) Municipal drainage treatment method
JP4997389B2 (en) Water purification system and water purification method
JP6258277B2 (en) Water purification method and water purification system
KR101702346B1 (en) Movable Apparatus and Method for Removing Floating Matter
JP6588709B2 (en) Water treatment method and water treatment equipment
Makhtar et al. High lead ion removal in a single synthetic solution utilising plant-based Tacca leontopetaloides biopolymer flocculant (TBPF)
JP3013249B1 (en) Coagulating sedimentation agent
CN105645685A (en) Mariculture wastewater discharge and disposal method and device
JP3653593B2 (en) Water quality improvement methods in closed and stagnant water systems
US20230416126A1 (en) System and method for removing microparticles and nanoparticles from water using gelatinous zooplankton mucus
CN214990980U (en) Rural black and odorous water body clean system based on magnetic coagulation
Santhi et al. Priority metal pollutants and their toxicological effects in the ecosystem
Olifirenko et al. Technology of water reservoirs cleaning of various origin and special purpose in Zhejiang province
JPS63229111A (en) Flocculant for water purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190419

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191025

R150 Certificate of patent or registration of utility model

Ref document number: 6614540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250