JP3653383B2 - Method for producing silica-containing alumina molded body - Google Patents

Method for producing silica-containing alumina molded body Download PDF

Info

Publication number
JP3653383B2
JP3653383B2 JP36715897A JP36715897A JP3653383B2 JP 3653383 B2 JP3653383 B2 JP 3653383B2 JP 36715897 A JP36715897 A JP 36715897A JP 36715897 A JP36715897 A JP 36715897A JP 3653383 B2 JP3653383 B2 JP 3653383B2
Authority
JP
Japan
Prior art keywords
silica
alumina
acid
molded body
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36715897A
Other languages
Japanese (ja)
Other versions
JPH11189409A (en
Inventor
和孝 江上
孝一 大浜
Original Assignee
触媒化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 触媒化成工業株式会社 filed Critical 触媒化成工業株式会社
Priority to JP36715897A priority Critical patent/JP3653383B2/en
Publication of JPH11189409A publication Critical patent/JPH11189409A/en
Application granted granted Critical
Publication of JP3653383B2 publication Critical patent/JP3653383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、触媒担体、吸着剤、充填剤などに適した、α−アルミナへの相転移が起こりにくく、シャープな細孔分布を有するシリカ含有アルミナ成形体製造方法に関するものである。
【0002】
【従来の技術】
アルミナ成形体は各種触媒担体、吸着剤、充填剤等多くの分野で利用されている。この場合、それぞれの使用目的にあった表面積、細孔容積、細孔径、細孔分布や優れた耐熱性などが要求される。しかし、通常、触媒担体などに使用されるγ―アルミナなどの活性アルミナは熱安定性が低く、1000℃付近でα―アルミナへ相転移し、表面積等が著しく低下し、触媒担体としての機能が失われるなどの問題があった。
【0003】
一般に、γ―アルミナからα―アルミナへの相転移温度はγ―アルミナにシリカを添加すれば上昇し、高温下でもγ―アルミナの高い表面積を維持しうることが知られている。しかし、α―アルミナへの相転移率を小さくするためには、シリカの添加量を多くしなければならず、そのためにアルミナの特性が損なわれるという問題があった。
【0004】
また、一方シャ−プな細孔分布を有するアルミナ成形体ついても種々の提案がされている。例えば、特開平7−267632号公報には、高い比表面積を有し、孔径分布がシャ−プであり、しかも、耐熱性に優れたγ―アルミナ多孔体を製造する方法が記載されており、その方法は、カオリン鉱物および/またはアルミナ−シリカ系共沈ゲルを加熱して、スピネル相と非晶質シリカとに相分離された熱処理物をアルカリまたはフッ酸により処理して非晶質シリカを溶出させることを特徴とするものである。しかし、この方法ではスピネル相と非晶質シリカとに相分離するので、900〜1200℃の温度で加熱することが必要となり、製造コストが高くなるという欠点があった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、シャープな細孔分布を有し、耐熱性に優れ、かつα−アルミナへの相転移が起きにくく、シリカ含有量の少ないアルミナ成形体製造方法を提供する点にある。
【0006】
【課題を解決するための手段】
本発明の第1は、(a)アルミナ基準で2〜15wt%の可溶性カルボン酸の存在下に、可溶性アルミニウム塩水溶液と塩基性水溶液を反応させて擬ベーマイトアルミナヒドロゲルを生成させる工程、
(b)該アルミナヒドロゲルを洗浄して副生塩を除去し、アルミナ中のアルカリ金属を酸化物として1.0wt%以下にする工程、
(c)洗浄したアルミナヒドロゲルに
(イ)シリカ成分および
(ロ)アジピン酸、マロン酸エチル、フタル酸、安息香酸、トリメシン酸、グルタミン
酸、グルコン酸(グルコノ−δ−ラクトン)よりなる群から選ばれた有機高分子酸
を添加し、加熱熟成する工程、
(d)前記(c)工程で得られた熟成スラリーを押出成型が可能な状態に水分調整し、押出成形する工程、
(e)成形された成形体を乾燥し、次いで焼成してシリカ含有アルミナ成形体とする工程、からなることを特徴とするシリカ含有アルミナ成形体の製造方法に関する。
【0007】
本発明の第2は、(A)アルミナ基準で2〜15wt%の可溶性カルボン酸とシリカ成分の存在下に、可溶性アルミニウム塩水溶液と塩基性水溶液を反応させて擬ベーマイトアルミナヒドロゲルを生成させる工程、
(B)シリカを含有する該アルミナヒドロゲルを洗浄して副生塩を除去し、アルミナ中のアルカリ金属を酸化物として1.0wt%以下にする工程、
(C)洗浄済のシリカ含有アルミナヒドロゲルに、アジピン酸、マロン酸エチル、フタル酸、安息香酸、トリメシン酸、グルタミン酸、グルコン酸(グルコノ−δ−ラクトン)よりなる群から選ばれた有機高分子酸を添加し、加熱熟成する工程、
(D)前記(C)工程で得られた熟成スラリーを押出成型が可能な状態に水分調整し、押出成形する工程、
(E)成形された成形体を乾燥し、次いで焼成してシリカ含有アルミナ成形体とする工程、からなることを特徴とするシリカ含有アルミナ成形体の製造方法に関する。
【0008】
本発明の第3は、前記シリカ成分が珪酸液、及び/又はシリカ粒子径が50nm以下のシリカゾルであることを特徴とする請求項1または2記載のシリカ含有アルミナ成形体の製造方法に関する。
【0009】
本発明のシリカ含有アルミナ成形体は、全細孔容積が0.30ml/g以上、好ましくは、0.40〜1.00ml/gの範囲にあり、細孔直径100Å以上の細孔容積が0.10ml/g以下、好ましくは0〜0.05ml/gの範囲にあって、窒素吸脱着法(BJH法)で求めた細孔分布における、平均細孔直径が35〜80Åの範囲にあり、平均細孔直径(Å)±5Åの占める細孔容積が全細孔容積の60%以上、好ましくは70%以上、更に好ましくは80〜100%の範囲で、表面積が250m2/g以上、好ましくは、300〜600m2/gの範囲にある。さらに、本発明のシリカ含有アルミナ成形体は、α―アルミナへの相転移率が20%以下、好ましくは0〜15%の範囲である。なお、本発明でのα―アルミナへの相転移率は、試薬特級α―アルミナのX―線回折強度から2θが25.6度、35.1度、37.8度、43.3度、52.5度、57.4度におけるピーク・ハイを100として、シリカ含有アルミナを1050℃で3時間焼成した試料の2θがそれぞれの角度におけるピーク・ハイの相対比(%)で求めた。
【0010】
シリカ含有アルミナ成形体の全細孔容積が0.30ml/g未満の場合は触媒担体、吸着剤等としての性能が不十分になり、細孔直径100Å以上の細孔容積が0.10ml/gより大きくなると成形体の機械的強度が弱くなる傾向にあるので好ましくない。また、表面積が250m2/gよりも小さい場合にも触媒担体、吸着剤等としての性能が不十分になる傾向にある。
【0011】
前述のシリカ含有アルミナ成形体のシリカ含有量は、0.1〜5.0wt%の範囲であることが好ましい。シリカ含有量が0.1wt%より少ない場合には、α―アルミナへの相転移率が高くなる傾向にあり、また、5.0wt%より多い場合には、アルミナ自体の特性が薄らぎ、押出成形する際に成形性が困難になる傾向にある。シリカ含有アルミナ成形体のシリカ含有量は、さらに好ましくは1〜3wt%の範囲が望ましい。
【0012】
前述のシリカ含有アルミナ成形体は、前記第2発明または第3発明の製造方法により得ることができる。以下、製造方法について詳述する。
【0013】
本発明での可溶性カルボン酸としては、グルコン酸、コハク酸、シュウ酸、クエン酸、マロン酸、酒石酸、アジピン酸等が好適に使用できる。
【0014】
前記、可溶性アルミニウム塩水溶液としては、硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウム、酢酸アルミニウムなどの水溶液が使用可能である。また、前記、塩基性水溶液としては、アルミン酸ナトリウム、アルミン酸カリウムなどのアルミン酸アルカリ金属、苛性ソーダ、苛性カリウムなどのアルカリ金属水酸化物、および/またはアンモニアなどの水溶液が使用可能である。
【0015】
本発明で使用されるシリカ成分としては、水硝子、珪酸液、シリカゾル、アルコキシシランなどが例示される。特に、洗浄したアルミナヒドロゲルに添加するシリカ成分としては、アルカリ金属などの不純分を含まない、珪酸液、シリカゾルなどが好ましい。シリカゾルでは、分散質のシリカ粒子の粒子径が50nm以下、好ましくは、4〜40nmの範囲にあるゾルが望ましい。シリカ粒子の粒子径が小さいゾルは少量の添加量でα―アルミナへの相転を抑制する効果が大きいので望ましい。
【0016】
本発明では、前述の可溶性アルミニウム塩水溶液と塩基性水溶液を可溶性カルボンまたは可溶性カルボンとシリカ成分の存在下に反応させて得られた擬ベーマイトアルミナヒドロゲルは、例えばアンモニア水を掛けながら濾過洗浄して副生塩を除去し、アルミナ中のアルカリ金属を酸化物として1.0wt%以下、好ましくは0.5wt%以下にすることが望ましい。
【0017】
次いで、洗浄されたアルミナヒドロゲルは、シリカ成分および有機高分子酸、または有機高分子酸を添加したあと、加熱熟成される。
【0018】
有機高分子酸としては、例えば、アジピン酸、マロン酸エチルなどのアルキルカルボン酸、フタル酸、安息香酸、トリメシン酸などの芳香族系カルボン酸、グルタミン酸、グルコン酸(グルコノーδ―ラクトン)などのタンパク質・糖類誘導カルボン酸などが例示される。有機高分子酸の添加は、得られるシリカ含有アルミナ成形体の細孔分布をシャープにし、平均細孔直径を小さい方向に制御する作用を有し、添加量はアルミナに対し1〜10wt%の範囲が望ましい。また、本発明での加熱熟成は、50℃以上、好ましくは、80〜200℃の温度で1〜100時間、撹拌下にあるいは撹拌なしに、行うことが望ましい。
【0019】
本発明における加熱熟成された熟成スラリー(シリカ含有アルミナヒドロゲル)は、公知の方法、例えば、熟成スラリーを噴霧乾燥して得られた粉末に水を加えて水分調整する方法、あるいは熟成スラリーを加熱捏和して成形可能な捏和物にする方法などにより押出成形が可能な状態に水分調整し、押出成形する。成形体の形状としては、円柱状、ハニカム状、三葉状など任意の形状に選択される。
【0020】
前述の方法で得られた成形品は、通常の方法で、乾燥、焼成、例えば、400〜800℃で0.5〜10時間焼成してシリカ含有アルミナ成形体を得る。
【0021】
【実施例】
以下に実施例を示し本発明を具体的説明するが、本発明はこれらに限定されるものではない。
【0022】
実施例1
Al23としての濃度が22wt%のアルミン酸ソーダ水溶液18.18Kgに26wt%のグルコン酸ソーダ2.31Kgと純水59.51Kgを加えて57℃に加温した水溶液(i)を調製した。Al23としての濃度が7wt%の硫酸アルミニウム水溶液28.57Kgに純水51.43Kgを加えて希釈し57℃に加温した水溶液を前記水溶液(i)に添加して擬ベーマイトアルミナヒドロゲルを生成させた。次いで、この擬ベーマイトアルミナヒドロゲルを濃度0.3wt%アンモニア水をかけながら濾過洗浄した。得られた洗浄ケーキは、Al23基準でNa2Oが0.05wt%、SO4が0.20wt%残存していた。この洗浄ケーキをスラリー化したものに、グルコノデルタラクトン300g(Al23基準で5wt%)と珪酸液をシリカとして186g(Al23基準で3wt%)を添加し、95℃で10時間撹拌しながら熟成した。この熟成スラリーを噴霧乾燥してシリカ含有アルミナ粉末を得た。このシリカ含有アルミナ粉末に純水を加えて捏和した後、径4mmの円柱状に押出成形した。成形品は、50℃で24時間乾燥した後600℃で2時間焼成してシリカ含有アルミナ成形体(イ)を得た。このシリカ含有アルミナ成形体(イ)の性状を表1に、また、これをBJH法で測定したときの細孔分布を図1に示す。図1から明らかなとおり、このシリカ含有アルミナ成形体(イ)はシャープな細孔分布を示す。
【0023】
実施例2、3、4
実施例1において、珪酸液の代わりにシリカ粒子径がそれぞれ4.5nm、
8nm、15nmのシリカゾルをシリカとしてAl23基準で2wt%添加した以外は実施例1と全く同様にしてシリカ含有アルミナ成形体(ロ)、(ハ)、(ニ)を得た。シリカ含有アルミナ成形体(ロ)、(ハ)、(ニ)の性状を表1に示す。
【0024】
実施例5
Al23としての濃度が22wt%のアルミン酸ソーダ水溶液18.18Kgに26wt%のグルコン酸ソーダ2.31Kgと純水59.51Kgを加えて57℃に加温した水溶液を調製した。この水溶液に濃度1wt%に希釈した3号水硝子(Al23基準で3wt%)を添加し、水溶液(ii)を調製した。Al23としての濃度が7wt%の硫酸アルミニウム水溶液28.57Kgに純水51.43Kgを加えて希釈し57℃に加温した水溶液を前記水溶液(ii)に添加して擬ベーマイトアルミナヒドロゲルを生成させた。次いで、この擬ベーマイトアルミナヒドロゲルを濃度0.3wt%のアンモニア水をかけながら濾過洗浄した。得られた洗浄ケーキは、Al23基準でNa2Oが0.08wt%、SO4が0.01wt%残存していた。この洗浄ケーキをスラリー化したものに、アジピン酸(Al23基準で10wt%)を添加し、95℃で10時間撹拌しながら熟成した。得られた熟成スラリーを使用して、実施例1と同様にしてシリカ含有アルミナ成形体(ホ)を得た。シリカ含有アルミナ成形体(ホ)の性状を表1に示す。
【0025】
下記表1および2中、GRはグルコノデルタラクトンを指し、シリカゾルの項の括弧内はシリカ粒子径を示す。また*の特定細孔直径とは、全細孔容積に対する「平均細孔直径(Å)±5Åの占める細孔容積」の割合(%)を示す。
【0026】
【表1】

Figure 0003653383
【0027】
比較例1
Al23としての濃度が22wt%のアルミン酸ソーダ水溶液18.18Kgに26wt%のグルコン酸ソーダ2.31Kgと純水59.51Kgを加えて57℃に加温した水溶液(iii)を調製した。Al23としての濃度が7wt%の硫酸アルミニウム水溶液28.57Kgに純水51.43Kgを加えて希釈し57℃に加温した水溶液を前記水溶液(iii)に添加して擬ベーマイトアルミナヒドロゲルを生成させた。次いで、この擬ベーマイトアルミナヒドロゲルを濃度0.3wt%アンモニア水をかけながら濾過洗浄した。得られた洗浄ケーキは、Al23基準でNa2Oが0.05wt%、SO4が0.24wt%残存していた。この洗浄ケーキをスラリー化したものに、グルコノデルタラクトン300g(Al23基準で5wt%)を添加し、95℃で10時間撹拌しながら熟成した。この熟成スラリーを噴霧乾燥してアルミナ粉末を得た。このアルミナ粉末に純水を加えて、さらにAl23基準で3wt%に相当する珪酸液を添加して加熱捏和した後、径4mmの円柱状に押出成形した。成形品は、実施例1と同様にしてシリカ含有アルミナ成形体(ヘ)を得た。このシリカ含有アルミナ成形体(ヘ)の性状を表2に示す。
【0028】
比較例2
実施例1において、珪酸液を添加しなかった以外は実施例1と全く同様にしてアルミナ成形体(ト)を得た。アルミナ成形体(ト)の性状を表2に示す。
【0029】
比較例3
実施例1において、グルコノデルタラクトンを添加しなかった以外は実施例1と全く同様にしてシリカ含有アルミナ成形体(チ)を得た。シリカ含有アルミナ成形体(チ)の性状を表2に示す。
【0030】
比較例4
実施例1において、グルコノデルタラクトンと珪酸液を添加しなかった以外は実施例1と全く同様にしてアルミナ成形体(リ)を得た。アルミナ成形体(リ)の性状を表2に示す。
【0031】
【表2】
Figure 0003653383
【0032】
【発明の効果】
本発明の製造方法で得られたシリカ含有アルミナ成形体は、細孔直径100Å以上の細孔容積が少なく、細孔分布がシャープであり、熱安定性に優れているため、各種触媒担体、吸着剤、充填剤等に有用である。
【図面の簡単な説明】
【図1】実施例1におけるシリカ含有アルミナ成形体(イ)のBJH法による細孔分布を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is a catalyst carrier, adsorbent, suitable for such fillers, the phase transition hardly occurs to the α- alumina, a process for producing a silica-containing alumina compact having a sharp pore distribution.
[0002]
[Prior art]
Alumina molded bodies are used in many fields such as various catalyst carriers, adsorbents, and fillers. In this case, a surface area, a pore volume, a pore diameter, a pore distribution, excellent heat resistance, etc. suitable for each purpose of use are required. However, activated alumina such as γ-alumina usually used for catalyst carriers has low thermal stability, phase transition to α-alumina near 1000 ° C., surface area and the like are remarkably reduced, and the function as a catalyst carrier is reduced. There were problems such as being lost.
[0003]
In general, it is known that the phase transition temperature from γ-alumina to α-alumina increases when silica is added to γ-alumina, and the high surface area of γ-alumina can be maintained even at high temperatures. However, in order to reduce the phase transition rate to α-alumina, the amount of silica added has to be increased, which causes a problem that the characteristics of alumina are impaired.
[0004]
Various proposals have also been made for an alumina molded body having a sharp pore distribution. For example, JP-A-7-267632 describes a method for producing a γ-alumina porous body having a high specific surface area, a pore size distribution that is sharp, and excellent in heat resistance, In the method, a kaolin mineral and / or an alumina-silica coprecipitated gel is heated, and the heat-treated product phase-separated into a spinel phase and an amorphous silica is treated with an alkali or hydrofluoric acid. It is characterized by elution. However, in this method, the spinel phase and the amorphous silica are phase-separated, so that it is necessary to heat at a temperature of 900 to 1200 ° C., and the production cost is increased.
[0005]
[Problems to be solved by the invention]
An object of the present invention have a sharp pore distribution, excellent heat resistance, and α- phase transition hardly occurs to the alumina, in that it provides a method of manufacturing a small alumina molded article having silica content.
[0006]
[Means for Solving the Problems]
The first of the present invention is: (a) a step of reacting a soluble aluminum salt aqueous solution with a basic aqueous solution in the presence of 2 to 15 wt% soluble carboxylic acid based on alumina to produce a pseudo boehmite alumina hydrogel,
(B) The alumina hydrogel is washed to remove by-product salts, and the alkali metal in alumina is reduced to 1.0 wt% or less as an oxide,
(C) To the washed alumina hydrogel
(A) Silica component and
(B) Adipic acid, ethyl malonate, phthalic acid, benzoic acid, trimesic acid, glutamine
Organic polymer acid selected from the group consisting of acid and gluconic acid (glucono-δ-lactone)
Adding and aging by heating,
(D) a step of adjusting the moisture of the ripened slurry obtained in the step (c) to a state in which it can be extruded and extruding,
(E) It relates to a method for producing a silica-containing alumina molded body comprising the steps of drying the molded molded body and then firing to form a silica-containing alumina molded body .
[0007]
The second of the present invention is (A) a step of reacting a soluble aluminum salt aqueous solution with a basic aqueous solution in the presence of 2 to 15 wt% of a soluble carboxylic acid and a silica component based on alumina to produce a pseudo boehmite alumina hydrogel,
(B) washing the alumina hydrogel containing silica to remove by-product salts, and setting the alkali metal in alumina to 1.0 wt% or less as an oxide;
(C) Organic polymer acid selected from the group consisting of washed silica-containing alumina hydrogel and adipic acid, ethyl malonate, phthalic acid, benzoic acid, trimesic acid, glutamic acid and gluconic acid (glucono-δ-lactone) Adding and aging by heating,
(D) Adjusting the moisture of the ripened slurry obtained in the step (C) so that it can be extruded and extruding it,
(E) It is related with the manufacturing method of the silica containing alumina molded object characterized by consisting of the process which dries the shape | molded molded object and then bakes and makes a silica containing alumina molded object .
[0008]
A third aspect of the present invention relates to the method for producing a silica-containing alumina molded body according to claim 1 or 2 , wherein the silica component is a silicic acid solution and / or a silica sol having a silica particle diameter of 50 nm or less .
[0009]
The silica-containing alumina molded body of the present invention has a total pore volume of 0.30 ml / g or more, preferably in the range of 0.40 to 1.00 ml / g, and a pore volume of 100 or more pore diameters of 0 or more. .10 ml / g or less, preferably in the range of 0 to 0.05 ml / g, the average pore diameter in the pore distribution determined by the nitrogen adsorption / desorption method (BJH method) is in the range of 35 to 80 mm, The pore volume occupied by the average pore diameter (Å) ± 5Å is 60% or more of the total pore volume, preferably 70% or more, more preferably 80 to 100%, and the surface area is 250 m 2 / g or more, preferably Is in the range of 300-600 m 2 / g. Furthermore, the silica-containing alumina molded body of the present invention has a phase transition rate to α-alumina of 20% or less, preferably 0 to 15%. The phase transition rate to α-alumina in the present invention is 25.6 °, 35.1 °, 37.8 °, 43.3 °, 2θ from the X-ray diffraction intensity of the reagent-grade α-alumina. The peak height at 52.5 degrees and 57.4 degrees was taken as 100, and 2θ of the sample obtained by firing the silica-containing alumina at 1050 ° C. for 3 hours was determined by the relative ratio (%) of the peak height at each angle.
[0010]
When the total pore volume of the silica-containing alumina molded body is less than 0.30 ml / g, the performance as a catalyst carrier, an adsorbent, etc. is insufficient, and the pore volume with a pore diameter of 100 mm or more is 0.10 ml / g. A larger value is not preferable because the mechanical strength of the molded product tends to be weak. Further, when the surface area is smaller than 250 m 2 / g, the performance as a catalyst carrier, an adsorbent and the like tends to be insufficient.
[0011]
The silica content of the silica-containing alumina molded body is preferably in the range of 0.1 to 5.0 wt%. When the silica content is less than 0.1 wt%, the phase transition rate to α-alumina tends to be high. When the silica content is more than 5.0 wt%, the characteristics of the alumina itself are thinned and extrusion molding is performed. When forming, the formability tends to be difficult. The silica content of the silica-containing alumina molded body is more preferably in the range of 1 to 3 wt%.
[0012]
The silica-containing alumina molded body described above can be obtained by the production method of the second invention or the third invention. Hereinafter, a manufacturing method is explained in full detail.
[0013]
As the soluble carboxylic acid in the present invention, gluconic acid, succinic acid, oxalic acid, citric acid, malonic acid, tartaric acid, adipic acid and the like can be suitably used.
[0014]
As the soluble aluminum salt aqueous solution, an aqueous solution of aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum acetate or the like can be used. As the basic aqueous solution, alkali metal aluminates such as sodium aluminate and potassium aluminate, alkali metal hydroxides such as caustic soda and caustic potassium, and / or aqueous solutions such as ammonia can be used.
[0015]
Examples of the silica component used in the present invention include water glass, silicic acid solution, silica sol, and alkoxysilane. In particular, the silica component added to the washed alumina hydrogel is preferably a silicic acid solution or silica sol that does not contain impurities such as alkali metals. As the silica sol, a sol having a particle size of dispersoidal silica particles of 50 nm or less, preferably in the range of 4 to 40 nm is desirable. A sol having a small silica particle diameter is desirable because it has a large effect of suppressing phase transformation to α-alumina with a small addition amount.
[0016]
In the present invention, the pseudoboehmite alumina hydrogel obtained by reacting the aforementioned aqueous solution of soluble aluminum salt and basic aqueous solution in the presence of soluble carboxylic acid or soluble carboxylic acid and silica component is filtered and washed with, for example, aqueous ammonia, and added as a secondary solution. It is desirable that the raw salt is removed and the alkali metal in alumina is 1.0 wt% or less, preferably 0.5 wt% or less as an oxide.
[0017]
Next, the washed alumina hydrogel is heated and aged after adding the silica component and the organic polymer acid or the organic polymer acid.
[0018]
Examples of organic polymer acids include alkylcarboxylic acids such as adipic acid and ethyl malonate, aromatic carboxylic acids such as phthalic acid, benzoic acid and trimesic acid, proteins such as glutamic acid and gluconic acid (glucono δ-lactone) -Examples include sugar-derived carboxylic acids. The addition of the organic polymer acid has the effect of sharpening the pore distribution of the resulting silica-containing alumina molded article and controlling the average pore diameter in a smaller direction, and the addition amount is in the range of 1 to 10 wt% with respect to the alumina. Is desirable. In addition, the heat aging in the present invention is desirably performed at a temperature of 50 ° C. or higher, preferably 80 to 200 ° C. for 1 to 100 hours with or without stirring.
[0019]
The heat-aged aging slurry (silica-containing alumina hydrogel) in the present invention is a known method, for example, a method of adjusting water by adding water to a powder obtained by spray-drying the aging slurry, or heating the aging slurry. The moisture is adjusted to a state where extrusion molding is possible by a method such as adding to a kneaded product, and extrusion molding is performed. The shape of the molded body is selected as an arbitrary shape such as a columnar shape, a honeycomb shape, or a trilobal shape.
[0020]
The molded product obtained by the above-described method is dried and fired, for example, at 400 to 800 ° C. for 0.5 to 10 hours by a usual method to obtain a silica-containing alumina molded body.
[0021]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0022]
Example 1
An aqueous solution (i) prepared by adding 2.31 kg of 26 wt% sodium gluconate and 59.51 kg of pure water to 18.18 kg of an aqueous solution of sodium aluminate having a concentration of 22 wt% as Al 2 O 3 and heating to 57 ° C. was prepared. . Aqueous boehmite alumina hydrogel was added to the aqueous solution (i) by adding 51.43 Kg of pure water to 28.57 Kg of aluminum sulfate aqueous solution having a concentration of 7 wt% as Al 2 O 3 and diluting and heating to 57 ° C. Generated. Next, this pseudo boehmite alumina hydrogel was filtered and washed while applying ammonia water having a concentration of 0.3 wt%. The obtained washed cake had 0.05 wt% Na 2 O and 0.20 wt% SO 4 on the basis of Al 2 O 3 . The washed cake obtained by slurrying, glucono (5 wt% in Al 2 O 3 basis) delta-lactone 300g and silicic acid solution was added 186 g (3 wt% in Al 2 O 3 basis) as silica, 10 at 95 ° C. The mixture was aged with stirring for a period of time. This aging slurry was spray-dried to obtain silica-containing alumina powder. The silica-containing alumina powder was kneaded with pure water, and then extruded into a cylindrical shape having a diameter of 4 mm. The molded product was dried at 50 ° C. for 24 hours and then calcined at 600 ° C. for 2 hours to obtain a silica-containing alumina molded body (I). Table 1 shows the properties of this silica-containing alumina molded body (I), and FIG. 1 shows the pore distribution when measured by the BJH method. As is clear from FIG. 1, this silica-containing alumina molded body (A) shows a sharp pore distribution.
[0023]
Examples 2, 3, 4
In Example 1, each silica particle diameter is 4.5 nm instead of silicic acid solution,
Silica-containing alumina molded bodies (B), (C), and (D) were obtained in the same manner as in Example 1 except that silica sols of 8 nm and 15 nm were added as silica and 2 wt% based on Al 2 O 3 . Table 1 shows the properties of the silica-containing alumina molded bodies (b), (c), and (d).
[0024]
Example 5
An aqueous solution prepared by adding 2.31 kg of 26 wt% sodium gluconate and 59.51 kg of pure water to 18.18 kg of an aqueous solution of sodium aluminate having a concentration of 22 wt% as Al 2 O 3 and heating to 57 ° C. was prepared. To this aqueous solution, No. 3 water glass diluted to a concentration of 1 wt% (3 wt% based on Al 2 O 3 ) was added to prepare an aqueous solution (ii). Aqueous boehmite alumina hydrogel was added to the aqueous solution (ii) by adding 51.43 Kg of pure water to 28.57 Kg of an aluminum sulfate aqueous solution having a concentration of 7 wt% as Al 2 O 3 and diluting and heating to 57 ° C. Generated. Next, this pseudo boehmite alumina hydrogel was washed by filtration while applying ammonia water having a concentration of 0.3 wt%. The obtained washed cake had 0.08 wt% Na 2 O and 0.01 wt% SO 4 remaining on the basis of Al 2 O 3 . Adipic acid (10 wt% based on Al 2 O 3 ) was added to the slurry of the washed cake and aged with stirring at 95 ° C. for 10 hours. Using the obtained aging slurry, a silica-containing alumina molded body (e) was obtained in the same manner as in Example 1. Table 1 shows the properties of the silica-containing alumina molded body (e).
[0025]
In Tables 1 and 2 below, GR indicates glucono delta lactone, and the parenthesis in the silica sol section indicates the silica particle diameter. The specific pore diameter of * indicates the ratio (%) of “average pore diameter (Å) ± pore volume occupied by 5Å” to the total pore volume.
[0026]
[Table 1]
Figure 0003653383
[0027]
Comparative Example 1
An aqueous solution (iii) was prepared by adding 2.31 kg of 26 wt% sodium gluconate and 59.51 kg of pure water to 18.18 kg of an aqueous solution of sodium aluminate having a concentration of 22 wt% as Al 2 O 3 and heating to 57 ° C. . Aqueous boehmite alumina hydrogel was added to the aqueous solution (iii) by adding 51.43 Kg of pure water to 28.57 Kg of an aluminum sulfate aqueous solution having a concentration of 7 wt% as Al 2 O 3 and diluting and heating to 57 ° C. Generated. Next, this pseudo boehmite alumina hydrogel was filtered and washed while applying ammonia water having a concentration of 0.3 wt%. The obtained washed cake had 0.05 wt% Na 2 O and 0.24 wt% SO 4 on the basis of Al 2 O 3 . To this slurry of the washed cake, 300 g of glucono delta lactone (5 wt% based on Al 2 O 3 ) was added and aged with stirring at 95 ° C. for 10 hours. This aging slurry was spray-dried to obtain alumina powder. Pure water was added to the alumina powder, and a silicic acid solution corresponding to 3 wt% on the basis of Al 2 O 3 was added and heat-kneaded, followed by extrusion molding into a cylindrical shape having a diameter of 4 mm. As the molded product, a silica-containing alumina molded body (f) was obtained in the same manner as in Example 1. Table 2 shows the properties of the silica-containing alumina molded body (f).
[0028]
Comparative Example 2
In Example 1, an alumina molded body (g) was obtained in the same manner as in Example 1 except that the silicic acid solution was not added. Table 2 shows the properties of the alumina molded body (g).
[0029]
Comparative Example 3
In Example 1, a silica-containing alumina molded body (H) was obtained in exactly the same manner as in Example 1 except that glucono delta lactone was not added. Table 2 shows the properties of the silica-containing alumina molded body (H).
[0030]
Comparative Example 4
In Example 1, an alumina molded body (Li) was obtained in exactly the same manner as in Example 1 except that glucono delta lactone and silicic acid solution were not added. Table 2 shows the properties of the molded alumina (Li).
[0031]
[Table 2]
Figure 0003653383
[0032]
【The invention's effect】
The silica-containing alumina molded body obtained by the production method of the present invention has a small pore volume with a pore diameter of 100 mm or more, a sharp pore distribution, and excellent thermal stability. Useful for agents, fillers and the like.
[Brief description of the drawings]
FIG. 1 is a graph showing the pore distribution of a silica-containing alumina molded body (I) in Example 1 by the BJH method.

Claims (3)

(a)アルミナ基準で2〜15wt%の可溶性カルボン酸の存在下に、可溶性アルミニウム塩水溶液と塩基性水溶液を反応させて擬ベーマイトアルミナヒドロゲルを生成させる工程、(A) reacting a soluble aluminum salt aqueous solution with a basic aqueous solution in the presence of 2 to 15 wt% soluble carboxylic acid based on alumina to produce a pseudo boehmite alumina hydrogel;
(b)該アルミナヒドロゲルを洗浄して副生塩を除去し、アルミナ中のアルカリ金属を酸化物として1.0wt%以下にする工程、(B) washing the alumina hydrogel to remove by-product salts and reducing the alkali metal in the alumina to 1.0 wt% or less as an oxide;
(c)洗浄したアルミナヒドロゲルに(C) To the washed alumina hydrogel
(イ)シリカ成分および(I) Silica component and
(ロ)アジピン酸、マロン酸エチル、フタル酸、安息香酸、トリメシン酸、グルタミン(B) Adipic acid, ethyl malonate, phthalic acid, benzoic acid, trimesic acid, glutamine
酸、グルコン酸(グルコノ−δ−ラクトン)よりなる群から選ばれた有機高分子酸Organic polymer acid selected from the group consisting of acid and gluconic acid (glucono-δ-lactone)
を添加し、加熱熟成する工程、Adding and aging by heating,
(d)前記(c)工程で得られた熟成スラリーを押出成型が可能な状態に水分調整し、押出成形する工程、(D) a step of adjusting the moisture of the ripened slurry obtained in the step (c) to a state where extrusion molding is possible, and performing extrusion molding;
(e)成形された成形体を乾燥し、次いで焼成してシリカ含有アルミナ成形体とする工程、からなることを特徴とするシリカ含有アルミナ成形体の製造方法。(E) A method for producing a silica-containing alumina molded body comprising the steps of drying the molded molded body and then firing to form a silica-containing alumina molded body.
(A)アルミナ基準で2〜15wt%の可溶性カルボン酸とシリカ成分の存在下に、可溶性アルミニウム塩水溶液と塩基性水溶液を反応させて擬ベーマイトアルミナヒドロゲルを生成させる工程、(A) a step of reacting a soluble aluminum salt aqueous solution with a basic aqueous solution in the presence of 2 to 15 wt% of a soluble carboxylic acid and a silica component based on alumina to produce a pseudoboehmite alumina hydrogel;
(B)シリカを含有する該アルミナヒドロゲルを洗浄して副生塩を除去し、アルミナ中のアルカリ金属を酸化物として1.0wt%以下にする工程、(B) washing the alumina hydrogel containing silica to remove by-product salts, and setting the alkali metal in alumina to 1.0 wt% or less as an oxide;
(C)洗浄済のシリカ含有アルミナヒドロゲルに、アジピン酸、マロン酸エチル、フタル酸、安息香酸、トリメシン酸、グルタミン酸、グルコン酸(グルコノ−δ−ラクトン)よりなる群から選ばれた有機高分子酸を添加し、加熱熟成する工程、(C) Organic polymer acid selected from the group consisting of washed silica-containing alumina hydrogel and adipic acid, ethyl malonate, phthalic acid, benzoic acid, trimesic acid, glutamic acid, gluconic acid (glucono-δ-lactone) Adding and aging by heating,
(D)前記(C)工程で得られた熟成スラリーを押出成型が可能な状態に水分調整し、押出成形する工程、(D) Adjusting the moisture to a state in which the aging slurry obtained in the step (C) can be subjected to extrusion molding, and extruding.
(E)成形された成形体を乾燥し、次いで焼成してシリカ含有アルミナ成形体とする工程、からなることを特徴とするシリカ含有アルミナ成形体の製造方法。(E) A method for producing a silica-containing alumina molded body comprising the steps of drying the molded molded body and then firing to form a silica-containing alumina molded body.
前記シリカ成分が珪酸液、及び/又はシリカ粒子径が50nm以下のシリカゾルであることを特徴とする請求項1または2記載のシリカ含有アルミナ成形体の製造方法。 The method for producing a silica-containing alumina molded body according to claim 1 or 2, wherein the silica component is a silicic acid solution and / or a silica sol having a silica particle diameter of 50 nm or less .
JP36715897A 1997-12-25 1997-12-25 Method for producing silica-containing alumina molded body Expired - Lifetime JP3653383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36715897A JP3653383B2 (en) 1997-12-25 1997-12-25 Method for producing silica-containing alumina molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36715897A JP3653383B2 (en) 1997-12-25 1997-12-25 Method for producing silica-containing alumina molded body

Publications (2)

Publication Number Publication Date
JPH11189409A JPH11189409A (en) 1999-07-13
JP3653383B2 true JP3653383B2 (en) 2005-05-25

Family

ID=18488615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36715897A Expired - Lifetime JP3653383B2 (en) 1997-12-25 1997-12-25 Method for producing silica-containing alumina molded body

Country Status (1)

Country Link
JP (1) JP3653383B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE280737T1 (en) * 1999-08-11 2004-11-15 Akzo Nobel Nv QUASICRYSTALLINE BOEMITE CONTAINING NON-LANTHANIDE ADDITIVES
JP4756782B2 (en) * 2001-07-12 2011-08-24 大明化学工業株式会社 Method for producing α-alumina
EP1773969B1 (en) * 2004-06-17 2015-08-12 ExxonMobil Research and Engineering Company Two-step hydroprocessing method for heavy hydrocarbon oil
SG11201403322XA (en) 2011-12-22 2014-07-30 Advanced Refining Technologies Llc Silica containing alumina supports, catalysts made therefrom and processes using the same
KR101602693B1 (en) * 2014-04-30 2016-03-14 전남대학교산학협력단 Method for manufacturing alumina pellet

Also Published As

Publication number Publication date
JPH11189409A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
Buelna et al. Sol–gel-derived mesoporous γ-alumina granules
Chuah et al. The effect of digestion on the surface area and porosity of alumina
JP5072136B2 (en) Method for producing porous spinel complex oxide
JP4925086B2 (en) Thin or fibrous organic / inorganic porous silica particles and method for producing the same
JP4831663B2 (en) Thin plate-like porous silica metal composite particles and production method thereof
JPH0581301B2 (en)
KR20070102525A (en) Thermally stable doped and undoped porous aluminum oxides and nanocomposite ce02-zro2 and al203 containing mixed oxides
SK36299A3 (en) Method for producing zeolite bodies and zeolite bodies
JP4916157B2 (en) Alumina support for hydrodemetallation catalyst, production method thereof, and hydrodemetallation catalyst using the same
JP3653383B2 (en) Method for producing silica-containing alumina molded body
JPH0834607A (en) Mesoporous silica and its production
US3948807A (en) Oxide catalysts and process for preparation thereof
RU2362620C1 (en) Manufacturing method of aluminium oxide, used in capacity of carrier of catalyst for hydrofining
JP2003313027A (en) Method of producing boehmite sol, boehmite sol, method of producing recording medium and recording medium
JP5841413B2 (en) Humidifier
JPH08268716A (en) Method for controlling particle diameter of pseudo-boehmite powder
JP3332817B2 (en) Mesoporous silica and method for producing the same
RU2729612C1 (en) Active granulated aluminium oxide
CN107155324B (en) Amorphous mesoporous alumina with optimized pore distribution and method of making same
CN110844919B (en) Preparation method of NaY molecular sieve and NaY molecular sieve prepared by preparation method
Lei et al. Zeolite beta monoliths with hierarchical porosity by the transformation of bimodal pore silica gel
CN1323740A (en) Prepn. of aluminium sol
JP4610589B2 (en) Method for producing phosphorus-containing activated alumina
US20230025198A1 (en) DLM-1 Molecular Sieve, Process for Preparing the Same, and Use Thereof
JP2000053413A (en) Highly heat-resistant mesoporous silica and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term