JP3653372B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP3653372B2
JP3653372B2 JP11615097A JP11615097A JP3653372B2 JP 3653372 B2 JP3653372 B2 JP 3653372B2 JP 11615097 A JP11615097 A JP 11615097A JP 11615097 A JP11615097 A JP 11615097A JP 3653372 B2 JP3653372 B2 JP 3653372B2
Authority
JP
Japan
Prior art keywords
heat storage
refrigeration capacity
capacity
air conditioning
outdoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11615097A
Other languages
Japanese (ja)
Other versions
JPH10292937A (en
Inventor
公二 永江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11615097A priority Critical patent/JP3653372B2/en
Publication of JPH10292937A publication Critical patent/JPH10292937A/en
Application granted granted Critical
Publication of JP3653372B2 publication Critical patent/JP3653372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は氷蓄熱ユニットを備え、この氷蓄熱ユニットを介して冷却された冷媒を室内ユニットに導いて蓄熱利用冷房運転を行う空気調和システムに関する。
【0002】
【従来の技術】
一般に、室外ユニットと室内ユニットとの間に氷蓄熱ユニットを設け、例えば夜間10時から翌朝8時までの電力料金の低い時間帯には、室外ユニットからの液冷媒を前記氷蓄熱ユニットに供給して氷を作り、例えば昼間、気温が上昇する時間帯には、室外ユニットからの液冷媒を氷蓄熱ユニットに循環させて、過冷却状態の液冷媒を作り、この過冷却状態の液冷媒を室内ユニットに供給して蓄熱利用冷房運転を行う空気調和システムは知られている。
【0003】
この種の空気調和システムでは、空調負荷に応じて冷凍能力を増大させるため、室外ユニットを複数台並列に接続することが行われる。
【0004】
【発明が解決しようとする課題】
しかしながら、氷蓄熱ユニットを備える空気調和システムでは、室外ユニットを複数台並列に接続する場合、氷蓄熱ユニットの台数を増すか或いは大容量の氷蓄熱ユニットに交換するか等仕様を変更しなければならない。
【0005】
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、氷蓄熱ユニットの能力を変更することなく、室外ユニットを複数台接続することのできる空気調和システムを提供することにある。
【0006】
【課題を解決するための手段】
請求項1記載の発明は、室外ユニットと室内ユニットとの間に氷蓄熱ユニットを設け、製氷運転および蓄熱利用冷房運転を可能にした空気調和システムにおいて、前記室外ユニットを複数台接続可能に形成し、前記氷蓄熱ユニットの氷蓄熱槽を通過する冷媒量を制御する電子制御弁の弁開度を制御し、前記室外ユニットの総合冷凍能力に応じて前記蓄熱利用冷房運転時の冷凍能力を所定のシフト率だけ増大させた冷凍能力に調整する調整手段を設けたことを特徴とするものである。
【0007】
請求項2に記載の発明は、請求項1に記載のものにおいて、前記調整手段は、前記室外ユニットの総合冷凍能力が所定能力以上である場合、前記蓄熱利用冷房運転時の冷凍能力を前記室外ユニットの総合冷凍能力を基準にして一定シフト率だけ増大させた冷凍能力に調整することを特徴とするものである。
【0008】
請求項3に記載の発明は、請求項1または2に記載のものにおいて、前記調整手段は、前記室外ユニットの総合冷凍能力が所定能力以下である場合、前記蓄熱利用冷房運転時の冷凍能力を前記室外ユニットの総合冷凍能力に応じて一定シフト率以上の所定シフト率だけ増大させた冷凍能力に調整することを特徴とするものである。
【0010】
以上の発明によれば、蓄熱利用冷房運転時の冷凍能力を調整する調整手段を備えるので、室外ユニットを複数台接続しその総合冷凍能力が変更される場合であっても、氷蓄熱ユニットの能力を変更することなく蓄熱容量に不足の生じない空気調和システムを提供できる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0012】
図1において、符号100A、100Bはそれぞれ室外ユニットを示す。この室外ユニット100A、100Bには氷蓄熱ユニット200を介して複数台の室内ユニット300が接続されている。室外ユニット100A、100Bには三台の圧縮機1A、1B、1Cが設けられ、この圧縮機1A、1B、1Cには四方弁3を介して室外熱交換器5が接続されている。7は電子制御弁、9はレシーバタンク、11はアキュームレータである。この室外熱交換器5には、氷蓄熱ユニット200を介して、三台の室内熱交換器43,45,47が並列に接続されている。44,46,48はそれぞれ空調負荷に応じて開度が設定される電子制御弁である。氷蓄熱ユニット200には、レシーバタンク15と氷蓄熱槽17と電子制御弁MV1と電動切換弁SV1,SV2,SV3,SV4とが設けられている。E1,E2,E3は温度センサである。
【0013】
本実施形態による冷媒回路を動作と共に説明する。
【0014】
製氷運転
例えば、夜間10時から翌朝8時までの電力料金の低い時間帯には、室外熱交換器5からの液冷媒を氷蓄熱槽17に供給して蓄熱槽17内に氷を作る。蓄熱槽17に蓄熱された冷熱は後述するように昼間の冷房運転に利用される。
【0015】
この場合には、図1に示すように氷蓄熱ユニット200内の電動切換弁SV1,SV4が閉じられ、電子制御弁MV1と電動切換弁SV2(SV3)とが開かれる。これによれば圧縮機1A、1B、1Cからの冷媒は実線矢印で示すように室外熱交換器5を経た後、電子制御弁MV1を通じて氷蓄熱槽17に流入し、氷蓄熱槽17を経た後、開状態の電動切換弁SV2(SV3)を通じてガス管29に流入し、四方弁3、アキュームレータ11を通じて圧縮機1A、1B、1Cに戻される。この場合に余剰の液冷媒はレシーバタンク15に貯留される。
【0016】
すなわち、製氷運転時には室内熱交換器43,45,47がバイパスされて、冷媒の蒸発は氷蓄熱槽17内で行われ、この氷蓄熱槽17内では製氷動作が行われる。各種弁の開閉制御はコントローラ50が司る。
【0017】
蓄熱利用冷房運転
例えば、昼間、気温が上昇する時間帯には、室外熱交換器5からの液冷媒を氷蓄熱槽17に循環させて、過冷却状態の液冷媒を作り、この過冷却状態の液冷媒を室内熱交換器43,45,47に供給して蓄熱利用冷房運転が行われる。
【0018】
この場合には、図2に示すように氷蓄熱ユニット200内の電動切換弁SV2,SV3が閉じられ、電動切換弁SV1,SV4(必要に応じて電子制御弁MV1)が開かれる。これによれば圧縮機1A、1B、1Cからの冷媒は実線矢印で示すように室外熱交換器5を経た後、電動切換弁SV1を通じて氷蓄熱槽17に流入し、氷蓄熱槽17を経た後に、電動切換弁SV4、電子制御弁44,46,48を通じて室内熱交換器43,45,47に流入し、室内熱交換器43,45,47を経た冷媒はガス管29、四方弁3を通じて圧縮機1A、1B、1Cに戻される。各種弁の開閉制御はコントローラ50が司る。
【0019】
すなわち、蓄熱利用冷房運転時には前述の製氷運転によって蓄熱された冷熱により、冷媒を、氷蓄熱槽17内で過冷却状態にしてから室内熱交換器43,45,47に供給するので、冷房運転時の能力が増大する。
【0020】
次に、電子制御弁MV1の開閉制御について説明する。
【0021】
前述の蓄熱利用冷房運転時において室内熱交換器43,45,47のいずれかがアンロード運転される時には、アンロード運転される室内熱交換器43,45,47の電子制御弁44,46,48の開度がコントローラ50を介して減少される。すなわち、蓄熱利用冷房運転でない通常の冷房運転(非蓄熱冷房運転)制御においては、室内熱交換器43,45,47のコイル温度(蒸発温度)E2と室内熱交換器43,45,47の入口温度E1との差(=E2−E1)が所定温度差になるように、コントローラ50を通じて電子制御弁44,46,48の開度を制御するので、アンロード時運転時には蒸発温度E2が高くなる分だけ、入口温度E1を高くするため、冷媒の供給量を絞る制御が行われる。
【0022】
この場合において、アンロード運転される室内熱交換器43,45,47に対し、氷蓄熱槽17を介して過冷却された冷媒が供給され続けると、氷蓄熱槽17の出口の冷媒温度E3が、蒸発温度E2よりも低くなることがある。
【0023】
この冷媒温度E3が低くなると、室内熱交換器43,45,47の入口温度E1も必然的に低くなるので、室内熱交換器43,45,47のコイル温度(蒸発温度)E2と室内熱交換器43,45,47の入口温度E1との差(=E2−E1)が所定温度差以上に大きくなるので、通常の冷房運転制御に従って電子制御弁44,46,48の開度を大きくする制御が行われる。
【0024】
要するに、この状態を放置すると、アンロード運転時においては、本来であれば流量を絞る制御が行われるべきところを、電子制御弁44,46,48がいわゆる逆応答して、流量を増大させる制御が行われ、室内熱交換器43,45,47での冷媒蒸発が不十分になり圧縮機の液バックの問題を招来する。
【0025】
これを防ぐために氷蓄熱槽17の出口の冷媒温度E3が蒸発温度E2よりも低くなった場合には、全閉の状態にある氷蓄熱ユニット200内の電子制御弁MV1の開度を適宜開いて、室外熱交換器5からの冷媒を過冷却された冷媒に合流させて、冷媒の温度E3を上昇させることによっていわゆる電子制御弁44,46,48の逆応答を回避している。
【0026】
この実施形態によれば、室外ユニットは複数台接続可能に形成される。図1の例では、二台の室外ユニット100A、100Bを並列に接続しているが、この接続台数は変更が可能である。すなわち空調負荷に応じて例えば三台或いは四台以上の室外ユニットが接続される。通常であれば室外ユニットの接続台数に応じて、氷蓄熱ユニット200の能力が変更される。
【0027】
この実施形態では、氷蓄熱ユニット200の能力は変更せずに、過冷却制御を行って、蓄熱利用冷房運転時の冷凍能力を変更する。
【0028】
蓄熱利用冷房運転でない通常の冷房運転(非蓄熱冷房運転)では、図3に点線で示すように室外ユニット100の総合馬力に従う冷凍能力E0が得られる。この冷凍能力E0を増大させるには過冷却度SCを大きくとる必要がある。この実施形態では、前記氷蓄熱ユニット200内の電子制御弁MV1(図2)の開度を絞ることにより、過冷却度SCを増大させる。
【0029】
電子制御弁MV1の開度を例えば小さく絞る場合、細線で示すように過冷却度はSC1となり、冷凍能力はE1増大し、この場合の冷凍能力はE1+E0となる。前述した冷凍能力E0に対する冷凍能力増加度合い(以下「シフト率」という。)を見ると次式となる。
【0030】
シフト率=(E1+E0)/E0 (1)
電子制御弁MV1の開度を例えば大きく絞る場合、太線で示すように過冷却度はSC2となり、冷凍能力はE2増大し、この場合の冷凍能力はE2+E0となる。前述した冷凍能力E0に対するシフト率を見ると次式となる。
【0031】
シフト率=(E2+E0)/E0 (2)
この実施形態では、図3に示す温度差ΔTnを制御することにより例えば(1)(2)式に示すシフト率が制御される。このシフト率の制御は前述したコントローラ(「調整手段」)50が司る。
【0032】
室外ユニットの接続台数が変化し、図4に示すように室外ユニットの総合冷凍能力が14馬力から30馬力の間で変化するとする。
【0033】
この実施形態では室外ユニットの総合冷凍能力が所定能力(例えば20馬力)以上である場合、蓄熱利用冷房運転時の冷凍能力(室内ユニット能力に相当する)は、室外ユニットの総合冷凍能力を基準にして一定シフト率(例えば25%)だけ増大させた冷凍能力に調整される。例えば室外ユニットの総合冷凍能力が24馬力である場合、蓄熱利用冷房運転時の冷凍能力は、室外ユニットの総合冷凍能力24馬力を基準にして一定シフト率25%だけ増大させた冷凍能力30馬力に調整され、室外ユニットの総合冷凍能力が30馬力である場合、蓄熱利用冷房運転時の冷凍能力は、室外ユニットの総合冷凍能力30馬力を基準にして一定シフト率25%だけ増大させた冷凍能力37.5馬力に調整される。
【0034】
この制御では圧縮機1A、1B、1Cを100%運転したと仮定した場合、蓄熱利用可能な最大時間は図4に示すように徐々に減少し、室外ユニットの総合冷凍能力が30馬力の場合、7.1時間にまで減少する。
【0035】
この実施形態では室外ユニットの総合冷凍能力20馬力(所定能力)に対応するように氷蓄熱ユニット200の能力が設定されている。
【0036】
従って、蓄熱利用可能な最大時間が7.1時間にまで減少したのは、室外ユニットの総合冷凍能力が30馬力の場合、室外ユニットの総合冷凍能力に対して氷蓄熱ユニット200の能力が大きく不足するからである。蓄熱利用可能な最大時間が、7.1時間では空調システム上で少なすぎる場合にはシフト率25%を小さく設定することによって最大時間を延長することが望ましい。
【0037】
この実施形態では室外ユニットの総合冷凍能力が所定能力(例えば20馬力)以下である場合、蓄熱利用冷房運転時の冷凍能力(室内ユニット能力に相当する)は、室外ユニットの総合冷凍能力に応じて一定シフト率(例えば25%)以上の所定シフト率だけ増大させた冷凍能力に調整される。例えば室外ユニットの総合冷凍能力が18馬力である場合、蓄熱利用冷房運転時の冷凍能力は、室外ユニットの総合冷凍能力18馬力に応じて一定シフト率25%以上の所定シフト率28%だけ増大させた冷凍能力23馬力に調整され、室外ユニットの総合冷凍能力が14馬力である場合、蓄熱利用冷房運転時の冷凍能力は、室外ユニットの総合冷凍能力14馬力に応じて一定シフト率25%以上の所定シフト率35%だけ増大させた冷凍能力19馬力に調整される。
【0038】
室外ユニットの総合冷凍能力が所定能力以下である場合、この組み合わせによれば室外ユニットの総合冷凍能力に対して氷蓄熱ユニット200の能力が余ることになる。この実施形態では上述したように一定シフト率25%以上に大きくシフトさせることにより余剰蓄熱量を最大限利用できるので蓄熱利用冷房運転時における冷凍能力を増大させることができる。
【0039】
以上の実施形態では、氷蓄熱ユニット200を1台に限定した上で、室外ユニットを複数台接続することができるので、空調負荷に応じた空気調和システムを簡単に構築することができる等の効果が得られる。
【0040】
【発明の効果】
本発明によれば、氷蓄熱ユニットの能力を変更することなく、室外ユニットを複数台接続することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す回路図である。
【図2】蓄熱利用冷房運転時の回路図である。
【図3】シフト率を説明する図である。
【図4】蓄熱利用時間を説明する図である。
【符号の説明】
1A、1B、1C 圧縮機
3 四方弁
5 室外熱交換器
17 氷蓄熱槽
50 コントローラ(調整手段)
MV1 電子制御弁
SV1,SV2,SV3,SV4 電動切換弁
100A、100B 室外ユニット
200 氷蓄熱ユニット
300 室内ユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioning system that includes an ice heat storage unit and performs a cooling operation using heat storage by guiding a refrigerant cooled through the ice heat storage unit to an indoor unit.
[0002]
[Prior art]
In general, an ice heat storage unit is provided between the outdoor unit and the indoor unit. For example, during a low power charge period from 10:00 to 8:00 the next morning, liquid refrigerant from the outdoor unit is supplied to the ice heat storage unit. For example, during the daytime when the temperature rises, the liquid refrigerant from the outdoor unit is circulated to the ice heat storage unit to create a supercooled liquid refrigerant. An air conditioning system that supplies a unit to perform a cooling operation using heat storage is known.
[0003]
In this type of air conditioning system, a plurality of outdoor units are connected in parallel in order to increase the refrigeration capacity in accordance with the air conditioning load.
[0004]
[Problems to be solved by the invention]
However, in an air conditioning system equipped with an ice heat storage unit, when multiple outdoor units are connected in parallel, the specifications must be changed, such as whether the number of ice heat storage units is increased or replaced with a large capacity ice heat storage unit. .
[0005]
Then, the objective of this invention is providing the air conditioning system which can eliminate the subject which the prior art mentioned above has, and can connect two or more outdoor units, without changing the capability of an ice thermal storage unit. .
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is an air conditioning system in which an ice heat storage unit is provided between the outdoor unit and the indoor unit so that ice making operation and heat storage use cooling operation can be performed, and a plurality of the outdoor units can be connected. And controlling the valve opening degree of an electronic control valve that controls the amount of refrigerant passing through the ice heat storage tank of the ice heat storage unit, and the refrigeration capacity during the heat storage-based cooling operation is predetermined according to the total refrigeration capacity of the outdoor unit The adjusting means for adjusting the refrigeration capacity increased by the shift rate is provided .
[0007]
According to a second aspect of the present invention, in the first aspect of the present invention, when the total refrigeration capacity of the outdoor unit is equal to or greater than a predetermined capacity, the adjustment means sets the refrigeration capacity during the regenerative cooling operation using the heat storage. The unit is adjusted to a refrigeration capacity that is increased by a constant shift rate based on the total refrigeration capacity of the unit .
[0008]
The invention according to claim 3 is the one according to claim 1 or 2, wherein the adjusting means has a refrigerating capacity at the time of the regenerative cooling operation when the total refrigerating capacity of the outdoor unit is not more than a predetermined capacity. In accordance with the total refrigeration capacity of the outdoor unit, the refrigeration capacity is adjusted to be increased by a predetermined shift rate equal to or higher than a certain shift rate .
[0010]
According to the above invention, since the adjusting means for adjusting the refrigerating capacity at the time of cooling operation using heat storage is provided, even if a plurality of outdoor units are connected and the total refrigerating capacity is changed, the capacity of the ice heat storage unit is changed. It is possible to provide an air conditioning system in which there is no shortage in heat storage capacity without changing the temperature.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
In FIG. 1, reference numerals 100A and 100B denote outdoor units, respectively. A plurality of indoor units 300 are connected to the outdoor units 100 </ b> A and 100 </ b> B via an ice heat storage unit 200. The outdoor units 100A, 100B are provided with three compressors 1A, 1B, 1C, and an outdoor heat exchanger 5 is connected to the compressors 1A, 1B, 1C via a four-way valve 3. 7 is an electronic control valve, 9 is a receiver tank, and 11 is an accumulator. Three outdoor heat exchangers 43, 45, 47 are connected in parallel to the outdoor heat exchanger 5 via an ice heat storage unit 200. 44, 46 and 48 are electronic control valves whose opening degree is set according to the air conditioning load. The ice heat storage unit 200 is provided with a receiver tank 15, an ice heat storage tank 17, an electronic control valve MV1, and electric switching valves SV1, SV2, SV3, SV4. E1, E2, and E3 are temperature sensors.
[0013]
The refrigerant circuit according to the present embodiment will be described together with the operation.
[0014]
Ice making operation For example, during a low power bill period from 10:00 to 8:00 the next morning, liquid refrigerant from the outdoor heat exchanger 5 is supplied to the ice heat storage tank 17 to produce ice in the heat storage tank 17. The cold energy stored in the heat storage tank 17 is used for daytime cooling operation as described later.
[0015]
In this case, as shown in FIG. 1, the electric switching valves SV1 and SV4 in the ice heat storage unit 200 are closed, and the electronic control valve MV1 and the electric switching valve SV2 (SV3) are opened. According to this, the refrigerant from the compressors 1A, 1B, 1C passes through the outdoor heat exchanger 5 as indicated by solid arrows, then flows into the ice heat storage tank 17 through the electronic control valve MV1, and after passing through the ice heat storage tank 17 Then, it flows into the gas pipe 29 through the open electric switching valve SV2 (SV3), and is returned to the compressors 1A, 1B, and 1C through the four-way valve 3 and the accumulator 11. In this case, excess liquid refrigerant is stored in the receiver tank 15.
[0016]
That is, during the ice making operation, the indoor heat exchangers 43, 45, and 47 are bypassed, and the refrigerant is evaporated in the ice heat storage tank 17, and the ice making operation is performed in the ice heat storage tank 17. The controller 50 controls the opening and closing of the various valves.
[0017]
Cooling operation using heat storage For example, during the daytime, when the temperature rises, the liquid refrigerant from the outdoor heat exchanger 5 is circulated to the ice heat storage tank 17 to produce a supercooled liquid refrigerant. The liquid refrigerant is supplied to the indoor heat exchangers 43, 45, 47, and the regenerative cooling operation is performed.
[0018]
In this case, as shown in FIG. 2, the electric switching valves SV2 and SV3 in the ice heat storage unit 200 are closed, and the electric switching valves SV1 and SV4 (electronic control valve MV1 as necessary) are opened. According to this, after the refrigerant from the compressors 1A, 1B and 1C passes through the outdoor heat exchanger 5 as indicated by solid arrows, flows into the ice heat storage tank 17 through the electric switching valve SV1, and after passing through the ice heat storage tank 17 The refrigerant flows into the indoor heat exchangers 43, 45, 47 through the electric switching valve SV4 and the electronic control valves 44, 46, 48, and the refrigerant that has passed through the indoor heat exchangers 43, 45, 47 is compressed through the gas pipe 29, the four-way valve 3. Returned to machine 1A, 1B, 1C. The controller 50 controls the opening and closing of the various valves.
[0019]
That is, during the cooling operation using the heat storage, the refrigerant is supplied to the indoor heat exchangers 43, 45, 47 after being cooled in the ice heat storage tank 17 by the cold heat stored by the ice making operation described above. The ability of
[0020]
Next, opening / closing control of the electronic control valve MV1 will be described.
[0021]
When any one of the indoor heat exchangers 43, 45, 47 is unloaded during the above-described heat storage-use cooling operation, the electronic control valves 44, 46, 46 of the indoor heat exchangers 43, 45, 47 to be unloaded are used. The opening of 48 is reduced via the controller 50. That is, in the normal cooling operation (non-heat storage cooling operation) control other than the heat storage use cooling operation, the coil temperature (evaporation temperature) E2 of the indoor heat exchangers 43, 45, 47 and the inlets of the indoor heat exchangers 43, 45, 47 are used. Since the opening degree of the electronic control valves 44, 46, and 48 is controlled through the controller 50 so that the difference from the temperature E1 (= E2-E1) becomes a predetermined temperature difference, the evaporation temperature E2 becomes high during the unloading operation. In order to increase the inlet temperature E1 by that amount, control is performed to reduce the supply amount of the refrigerant.
[0022]
In this case, if the supercooled refrigerant continues to be supplied to the indoor heat exchangers 43, 45, 47 that are unloaded from the ice heat storage tank 17, the refrigerant temperature E3 at the outlet of the ice heat storage tank 17 is increased. The evaporation temperature may be lower than E2.
[0023]
When the refrigerant temperature E3 is lowered, the inlet temperature E1 of the indoor heat exchangers 43, 45, 47 is inevitably lowered, so that the coil heat (evaporation temperature) E2 of the indoor heat exchangers 43, 45, 47 and the indoor heat exchange are performed. Since the difference (= E2−E1) from the inlet temperature E1 of the chambers 43, 45, and 47 becomes larger than a predetermined temperature difference, the opening degree of the electronic control valves 44, 46, and 48 is increased in accordance with the normal cooling operation control. Is done.
[0024]
In short, if this state is left unattended, the electronic control valves 44, 46, and 48 respond to the so-called reverse response to increase the flow rate in the unload operation, where the control for reducing the flow rate should be performed. As a result, refrigerant evaporation in the indoor heat exchangers 43, 45, 47 becomes insufficient, resulting in a problem of compressor liquid back.
[0025]
In order to prevent this, when the refrigerant temperature E3 at the outlet of the ice heat storage tank 17 becomes lower than the evaporation temperature E2, the opening degree of the electronic control valve MV1 in the ice heat storage unit 200 in the fully closed state is appropriately opened. The reverse response of the so-called electronic control valves 44, 46, and 48 is avoided by combining the refrigerant from the outdoor heat exchanger 5 with the supercooled refrigerant and increasing the temperature E3 of the refrigerant.
[0026]
According to this embodiment, a plurality of outdoor units can be connected. In the example of FIG. 1, two outdoor units 100A and 100B are connected in parallel, but the number of connected units can be changed. That is, for example, three or four or more outdoor units are connected according to the air conditioning load. Normally, the capacity of the ice heat storage unit 200 is changed according to the number of outdoor units connected.
[0027]
In this embodiment, without changing the capacity of the ice heat storage unit 200, supercooling control is performed to change the refrigeration capacity during the heat storage-based cooling operation.
[0028]
In a normal cooling operation (non-heat storage cooling operation) that is not a heat storage-based cooling operation, a refrigerating capacity E0 according to the total horsepower of the outdoor unit 100 is obtained as shown by a dotted line in FIG. In order to increase the refrigerating capacity E0, it is necessary to increase the degree of supercooling SC. In this embodiment, the degree of supercooling SC is increased by reducing the opening of the electronic control valve MV1 (FIG. 2) in the ice heat storage unit 200.
[0029]
When the opening degree of the electronic control valve MV1 is reduced, for example, as shown by a thin line, the supercooling degree becomes SC1, the refrigeration capacity increases by E1, and the refrigeration capacity in this case becomes E1 + E0. When the degree of increase in the refrigerating capacity with respect to the refrigerating capacity E0 (hereinafter referred to as “shift rate”) is seen, the following equation is obtained.
[0030]
Shift rate = (E1 + E0) / E0 (1)
For example, when the opening degree of the electronic control valve MV1 is greatly reduced, the degree of supercooling becomes SC2 as indicated by the thick line, the refrigeration capacity increases by E2, and the refrigeration capacity in this case becomes E2 + E0. Looking at the shift rate with respect to the refrigerating capacity E0 described above, the following equation is obtained.
[0031]
Shift rate = (E2 + E0) / E0 (2)
In this embodiment, by controlling the temperature difference ΔTn shown in FIG. 3, for example, the shift rate shown in the equations (1) and (2) is controlled. Control of this shift rate is governed by the controller ("adjusting means") 50 described above.
[0032]
Assume that the number of outdoor units connected changes, and the total refrigeration capacity of the outdoor units changes between 14 to 30 horsepower as shown in FIG.
[0033]
In this embodiment, when the total refrigeration capacity of the outdoor unit is equal to or greater than a predetermined capacity (for example, 20 horsepower), the refrigeration capacity during the cooling operation using the heat storage (corresponding to the indoor unit capacity) is based on the total refrigeration capacity of the outdoor unit. Thus, the refrigeration capacity is increased by a certain shift rate (for example, 25%). For example, when the total refrigeration capacity of the outdoor unit is 24 hp, the refrigeration capacity during the cooling operation using heat storage is refrigeration capacity of 30 hp increased by a constant shift rate of 25% based on the total refrigeration capacity of 24 hp of the outdoor unit. When the total refrigeration capacity of the outdoor unit is adjusted to 30 horsepower, the refrigeration capacity at the time of cooling operation using heat storage is increased by a constant shift rate of 25% based on the total refrigeration capacity of 30 hp of the outdoor unit 37 Adjusted to 5 horsepower.
[0034]
In this control, assuming that the compressors 1A, 1B, and 1C are operated 100%, the maximum time for which heat storage can be used is gradually reduced as shown in FIG. 4, and when the total refrigeration capacity of the outdoor unit is 30 horsepower, 7.1 Decrease to 1 hour.
[0035]
In this embodiment, the capacity of the ice heat storage unit 200 is set so as to correspond to the total refrigeration capacity 20 horsepower (predetermined capacity) of the outdoor unit.
[0036]
Therefore, the maximum time for which heat storage can be used has been reduced to 7.1 hours because when the outdoor unit has a total refrigeration capacity of 30 horsepower, the capacity of the ice storage unit 200 is greatly insufficient with respect to the total refrigeration capacity of the outdoor unit. Because it does. If the maximum time available for heat storage is too short on the air conditioning system at 7.1 hours, it is desirable to extend the maximum time by setting the shift rate 25% small.
[0037]
In this embodiment, when the total refrigeration capacity of the outdoor unit is less than or equal to a predetermined capacity (for example, 20 horsepower), the refrigeration capacity at the time of cooling operation using heat storage (corresponding to the indoor unit capacity) depends on the total refrigeration capacity of the outdoor unit. The refrigeration capacity is adjusted to be increased by a predetermined shift rate equal to or higher than a certain shift rate (eg, 25%). For example, when the total refrigeration capacity of the outdoor unit is 18 hp, the refrigeration capacity during cooling operation using heat storage is increased by a predetermined shift ratio of 28%, which is a constant shift ratio of 25% or more, according to the total refrigeration capacity of the outdoor unit of 18 hp. When the outdoor unit's total refrigeration capacity is 14 hp, the refrigeration capacity during the regenerative cooling operation is a constant shift rate of 25% or more according to the total refrigeration capacity of the outdoor unit 14 hp. The refrigeration capacity is increased to 19 horsepower increased by a predetermined shift rate of 35%.
[0038]
When the total refrigeration capacity of the outdoor unit is less than or equal to a predetermined capacity, this combination leaves the capacity of the ice heat storage unit 200 with respect to the total refrigeration capacity of the outdoor unit. In this embodiment, as described above, the amount of surplus heat storage can be maximized by shifting it to a constant shift rate of 25% or more, so that the refrigerating capacity during the heat storage cooling operation can be increased.
[0039]
In the above embodiment, since the ice heat storage unit 200 is limited to one and a plurality of outdoor units can be connected, the effect of easily constructing an air conditioning system according to the air conditioning load, etc. Is obtained.
[0040]
【The invention's effect】
According to the present invention, a plurality of outdoor units can be connected without changing the capacity of the ice heat storage unit.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
FIG. 2 is a circuit diagram during cooling operation using heat storage.
FIG. 3 is a diagram illustrating a shift rate.
FIG. 4 is a diagram for explaining heat storage utilization time.
[Explanation of symbols]
1A, 1B, 1C Compressor 3 Four-way valve 5 Outdoor heat exchanger 17 Ice heat storage tank 50 Controller (Adjustment means)
MV1 Electronic control valve SV1, SV2, SV3, SV4 Electric switching valve 100A, 100B Outdoor unit 200 Ice heat storage unit 300 Indoor unit

Claims (3)

室外ユニットと室内ユニットとの間に氷蓄熱ユニットを設け、製氷運転および蓄熱利用冷房運転を可能にした空気調和システムにおいて、In an air conditioning system that provides an ice heat storage unit between an outdoor unit and an indoor unit, and enables ice-making operation and heat storage-use cooling operation,
前記室外ユニットを複数台接続可能に形成し、A plurality of the outdoor units are formed to be connectable,
前記氷蓄熱ユニットの氷蓄熱槽を通過する冷媒量を制御する電子制御弁の弁開度を制御し、前記室外ユニットの総合冷凍能力に応じて前記蓄熱利用冷房運転時の冷凍能力を所定のシフト率だけ増大させた冷凍能力に調整する調整手段を設けたことを特徴とする空気調和システム。Controls the valve opening of an electronic control valve that controls the amount of refrigerant passing through the ice heat storage tank of the ice heat storage unit, and shifts the refrigeration capacity during the heat storage-based cooling operation by a predetermined amount according to the total refrigeration capacity of the outdoor unit An air conditioning system comprising an adjusting means for adjusting the refrigeration capacity increased by a rate.
前記調整手段は、前記室外ユニットの総合冷凍能力が所定能力以上である場合、前記蓄熱利用冷房運転時の冷凍能力を前記室外ユニットの総合冷凍能力を基準にして一定シフト率だけ増大させた冷凍能力に調整することを特徴とする請求項1に記載の空気調和システム。When the total refrigeration capacity of the outdoor unit is greater than or equal to a predetermined capacity, the adjusting means increases the refrigeration capacity during the heat storage-based cooling operation by a fixed shift rate based on the total refrigeration capacity of the outdoor unit. The air conditioning system according to claim 1, wherein the air conditioning system is adjusted. 前記調整手段は、前記室外ユニットの総合冷凍能力が所定能力以下である場合、前記蓄熱利用冷房運転時の冷凍能力を前記室外ユニットの総合冷凍能力に応じて一定シフト率以上の所定シフト率だけ増大させた冷凍能力に調整することを特徴とする請求項1または2に記載の空気調和システム。When the total refrigeration capacity of the outdoor unit is less than or equal to a predetermined capacity, the adjustment means increases the refrigeration capacity during the heat storage-based cooling operation by a predetermined shift rate equal to or greater than a certain shift rate according to the total refrigeration capacity of the outdoor unit. It adjusts to the refrigerating capacity made to adjust, The air conditioning system of Claim 1 or 2 characterized by the above-mentioned.
JP11615097A 1997-04-18 1997-04-18 Air conditioning system Expired - Fee Related JP3653372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11615097A JP3653372B2 (en) 1997-04-18 1997-04-18 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11615097A JP3653372B2 (en) 1997-04-18 1997-04-18 Air conditioning system

Publications (2)

Publication Number Publication Date
JPH10292937A JPH10292937A (en) 1998-11-04
JP3653372B2 true JP3653372B2 (en) 2005-05-25

Family

ID=14680002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11615097A Expired - Fee Related JP3653372B2 (en) 1997-04-18 1997-04-18 Air conditioning system

Country Status (1)

Country Link
JP (1) JP3653372B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572579B2 (en) * 2011-04-14 2014-08-13 日立アプライアンス株式会社 Thermal storage air conditioner

Also Published As

Publication number Publication date
JPH10292937A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
US5445213A (en) Heat accumulator for heat energy and cold energy accumulating system
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
JP3352469B2 (en) Air conditioner
CN111619305B (en) Electric or hybrid vehicle, device for same, and control method
JP2005042943A (en) Heat storage type air conditioner
JP2980022B2 (en) Heat pump water heater
EP1925893A2 (en) Air conditioner
JP3653372B2 (en) Air conditioning system
JP3356386B2 (en) Environmental test equipment using refrigerant switching type refrigerator
JP3649853B2 (en) Air conditioning system
JP4273470B2 (en) Refrigeration apparatus and method for increasing capacity of refrigeration apparatus
JP3304866B2 (en) Thermal storage type air conditioner
JP2003065584A (en) Air-conditioning apparatus and its control method
JPH0328672A (en) Thermal accumulation type air conditioner
JPH024162A (en) Air conditioning device
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JP3082304B2 (en) Air conditioner
JP2000171078A (en) Cooler with ice heat storage tank and cooler/heater with ice heat storage tank
JP3412716B2 (en) Ice storage air conditioner
JPH11270938A (en) Ice heat accumulating system
JPH11337191A (en) Heat storage chiller
JPH11118265A (en) Heat storage unit
JPH11325613A (en) Regenerative refrigerator
JPH07280386A (en) Heat source apparatus system
JPS60256762A (en) Heat pump type air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees