JP2000171078A - Cooler with ice heat storage tank and cooler/heater with ice heat storage tank - Google Patents

Cooler with ice heat storage tank and cooler/heater with ice heat storage tank

Info

Publication number
JP2000171078A
JP2000171078A JP10345515A JP34551598A JP2000171078A JP 2000171078 A JP2000171078 A JP 2000171078A JP 10345515 A JP10345515 A JP 10345515A JP 34551598 A JP34551598 A JP 34551598A JP 2000171078 A JP2000171078 A JP 2000171078A
Authority
JP
Japan
Prior art keywords
cooling
heat storage
ice
heat exchanger
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10345515A
Other languages
Japanese (ja)
Inventor
Hisakatsu Kimura
寿克 木村
Yoshifumi Koyanagi
良文 小柳
Osamu Otsuka
修 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP10345515A priority Critical patent/JP2000171078A/en
Publication of JP2000171078A publication Critical patent/JP2000171078A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cooler with an ice heat storage tank in which oil return is improved while utilizing an outdoor heat exchanger effectively by practically equalizing the cooling capacity during cooling operation and ice heat storage operation. SOLUTION: A cooler with an ice heat storage tank performing cooling operation and ice heat storage operation comprises a cooling unit coupled with a compressor, an outdoor heat exchanger, a pressure reducing unit and an indoor heat exchanger sequentially through piping, and a heat storage tank for storing a heat storage material being cooled by a heat storage heat exchanger coupled in parallel with at least the indoor heat exchanger of the cooling unit wherein a control means controls the r.p.m. of the compressor such that the cooling capacity during cooling operation is substantially equal to that during ice heat storage operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、蓄熱槽の蓄熱材
へ蓄熱した熱を冷却運転時の室内熱交換器へ供給して活
用する氷蓄熱槽付冷却装置または氷蓄熱槽付冷暖房装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device with an ice storage tank or a cooling and heating device with an ice storage tank for utilizing heat stored in a heat storage material of a heat storage tank by supplying the heat to an indoor heat exchanger during a cooling operation. It is.

【0002】[0002]

【従来の技術】従来の氷蓄熱槽付冷却装置は、圧縮機の
回転数を負荷に応じて変えながら、深夜等の時間帯に氷
蓄熱運転を行って蓄熱槽内の蓄熱材に蓄熱し、この蓄熱
した熱を前記時間帯以外の時間帯に空調や産業冷却用途
に利用するものが一般的である。
2. Description of the Related Art A conventional cooling device with an ice storage tank performs an ice storage operation during a time period such as midnight while changing the rotation speed of the compressor in accordance with the load to store heat in a heat storage material in the storage tank. In general, the stored heat is used for air-conditioning and industrial cooling in a time period other than the time period.

【0003】次に、この従来の氷蓄熱槽付冷暖房装置に
ついて図10、11、12を用いて説明する。これらの
図に示すように、従来の氷蓄熱槽付冷暖房装置は、冷媒
を圧縮する圧縮機1と、この圧縮機1からの冷媒を後述
する室外熱交換器3または室内熱交換器7のいずれかに
流し、暖房運転時と冷房運転時とで冷媒の流を切換える
四方弁2と、この四方弁に接続され、冷媒の熱を室外へ
放出する室外熱交換器3と、この室外熱交換器3及び室
内熱交換器7と接続され、凝縮器として機能する熱交換
器3、7からの高圧冷媒を冷暖房運転用電磁弁5を介し
て冷暖房運転用減圧装置6に導き、この導いて減圧装置
6で減圧された低圧冷媒を蒸発器として機能する熱交換
器3、7へ流す冷媒流路制御機構4と、を備えると共
に、前述の冷暖房運転用電磁弁5から室内熱交換器7ま
での冷暖冷媒回路と並列に接続された蓄熱運転用電磁弁
8、蓄熱運転用減圧装置9、蓄熱用熱交換器10、及び
暖房時の冷媒の流入を防止する逆止弁11からなる蓄熱
冷媒回路で冷却される蓄熱材12を貯流する蓄熱槽13
とで構成されている。
Next, this conventional cooling / heating device with an ice heat storage tank will be described with reference to FIGS. As shown in these figures, a conventional cooling and heating apparatus with an ice heat storage tank includes a compressor 1 for compressing a refrigerant and an outdoor heat exchanger 3 or an indoor heat exchanger 7 for transferring the refrigerant from the compressor 1 to be described later. A four-way valve 2 that switches the flow of refrigerant between a heating operation and a cooling operation, an outdoor heat exchanger 3 that is connected to the four-way valve and that releases the heat of the refrigerant to the outside, and an outdoor heat exchanger 3 and the indoor heat exchanger 7, the high-pressure refrigerant from the heat exchangers 3 and 7 functioning as condensers is guided to the cooling and heating operation pressure reducing device 6 via the cooling and heating operation solenoid valve 5, and is led to the pressure reducing device. And a refrigerant flow path control mechanism 4 for flowing the low-pressure refrigerant decompressed in 6 to the heat exchangers 3 and 7 functioning as evaporators. The cooling / heating operation from the cooling / heating operation solenoid valve 5 to the indoor heat exchanger 7 is performed. A heat storage operation solenoid valve 8 connected in parallel with the refrigerant circuit; Use decompressor 9, regenerative heat exchanger 10, and 貯流 the heat storage material 12 is cooled by the heat storage refrigerant circuit comprising a check valve 11 for preventing the flow of refrigerant during the heating storage tank 13
It is composed of

【0004】なお、前述の冷媒流路制御機構4は、直列
に接続された2個の逆止弁のセット、4aと4b、及び
4cと4dが並列に接続されて構成されており、この構
成された4aと4bとの間に室外熱交換器3からの出口
配管が接続され、4cと4dとの間に室内熱交換器7の
入口配管が接続され、更に、この並列回路の入口側と出
口側と接続する配管に減圧装置6及び電磁弁5が接続さ
れることになる。また、図中の矢印は、冷媒の流れを示
し、実線は冷房時、点線は蓄熱運転時の冷媒の流れを示
す。
The above-described refrigerant flow path control mechanism 4 comprises a set of two check valves connected in series, 4a and 4b, and 4c and 4d connected in parallel. The outlet pipe from the outdoor heat exchanger 3 is connected between 4a and 4b, and the inlet pipe of the indoor heat exchanger 7 is connected between 4c and 4d. The pressure reducing device 6 and the solenoid valve 5 are connected to the pipe connected to the outlet side. The arrows in the figure indicate the flow of the refrigerant, the solid line indicates the flow of the refrigerant during cooling, and the dotted line indicates the flow of the refrigerant during the heat storage operation.

【0005】また、前述の冷暖冷媒回路、及び当該冷暖
冷媒回路と並列に接続されされる蓄熱冷媒回路は、図1
0に示すように、冷暖冷媒回路の冷暖房運転用電磁弁5
を室内熱交換器7の入口側に設け、かつ、蓄熱運転用電
磁弁8を蓄熱用熱交換器10入口側に設けて、蓄熱運転
用減圧装置9をなくする構造、言い換えれば、単に、蓄
熱運転用減圧装置9を除去し、蓄熱用熱交換器10を室
内熱交換器7と並列に接続して、蓄熱用熱交換器10と
室内熱交換器7のそれぞれの冷媒入口側にそれぞれ蓄熱
運転用電磁弁8と冷暖房運転用電磁弁とを設ける構造に
しても良い。即ち、高圧側からの冷媒を減圧装置6で減
圧し、この減圧した低圧冷媒を室内熱交換器7または蓄
熱用熱交換器10のいずれかへ流れるようにし、蓄熱用
熱交換器10へ流れたときは、蓄熱槽13の蓄熱材12
を冷却するような機構のものであれば、どのような機構
のものでも良い。
The cooling / heating refrigerant circuit described above and a heat storage refrigerant circuit connected in parallel with the cooling / heating refrigerant circuit are shown in FIG.
0, the solenoid valve 5 for cooling / heating operation of the cooling / heating refrigerant circuit
Is provided on the inlet side of the indoor heat exchanger 7 and the heat storage operation solenoid valve 8 is provided on the heat storage heat exchanger 10 inlet side to eliminate the heat storage operation decompression device 9, in other words, simply store heat. The operation pressure reducing device 9 is removed, the heat storage heat exchanger 10 is connected in parallel with the indoor heat exchanger 7, and the heat storage operation is performed on each of the refrigerant inlet sides of the heat storage heat exchanger 10 and the indoor heat exchanger 7. The electromagnetic valve 8 for cooling and the electromagnetic valve for cooling / heating operation may be provided. That is, the refrigerant from the high pressure side is decompressed by the decompression device 6, and the depressurized low pressure refrigerant is caused to flow to either the indoor heat exchanger 7 or the heat storage heat exchanger 10, and then flows to the heat storage heat exchanger 10. When the heat storage material 12 in the heat storage tank 13
Any mechanism may be used as long as it has a mechanism for cooling the air.

【0006】即ち、図5に示すように、蓄熱用熱交換器
10を蓄熱槽13の内部に設置せずに、蓄熱用熱交換器
10、ブラインポンプ15及び蓄熱槽13の内部に設置
したブラインコイル16により構成されるブライン回路
を介して、蓄熱材12を冷却する蓄熱装置でも良い。
That is, as shown in FIG. 5, the heat storage heat exchanger 10, the brine pump 15, and the brine installed inside the heat storage tank 13 are not installed inside the heat storage tank 13. A heat storage device that cools the heat storage material 12 via a brine circuit formed by the coil 16 may be used.

【0007】また、図11は、従来の氷蓄熱槽付冷暖房
装置の制御系統図であり、この図に示すように、制御装
置14が、圧縮機1、四方弁2、冷暖房運転用電磁弁
5、及び蓄熱運転用電磁弁8の運転動作を制御する。
FIG. 11 is a control system diagram of a conventional cooling and heating device with an ice heat storage tank. As shown in FIG. 11, the control device 14 includes a compressor 1, a four-way valve 2, and a solenoid valve 5 for cooling and heating operation. , And the operation of the heat storage operation solenoid valve 8 is controlled.

【0008】次に、図10、12用いて従来の氷蓄熱槽
付冷暖房装置の運転動作について説明する。
Next, the operation of the conventional air conditioner with an ice heat storage tank will be described with reference to FIGS.

【0009】まず、冷房動作について説明する。冷房運
転時においては、制御装置14が外部から入力された冷
房運転信号に基づいて、圧縮機1から室外熱交換器3へ
冷媒が直接流れるように四方弁2を制御すると共に、冷
暖房運転用電磁弁5を開き、蓄熱運転用電磁弁8を閉じ
る。従って、圧縮機1で圧縮された高温高圧の冷媒ガス
は四方弁2を介して室外熱交換器3へ流れ、外気と熱交
換され、凝縮液化する。この液化した高圧の冷媒は、冷
媒流路制御機構4の逆止弁4a及び冷暖房運転用電磁弁
5を流れて冷暖房運転用減圧装置6で絞られるため、低
圧の冷媒液となる。次に、この低圧の冷媒液は、冷媒流
路制御機構4の逆止弁4dを介して室内熱交換器7へ流
れ、室内熱交換器7を通過する被冷却物と熱交換される
ため、被冷却物の熱により、蒸発して低温低圧の冷媒ガ
スとなり、四方弁2を介して圧縮機1に戻り、再び同じ
動作を繰り返す。即ち、冷媒は図10の実線の矢印の流
れを繰り返す。
First, the cooling operation will be described. During the cooling operation, the control device 14 controls the four-way valve 2 based on the cooling operation signal input from the outside so that the refrigerant flows directly from the compressor 1 to the outdoor heat exchanger 3, and controls the cooling and heating operation. The valve 5 is opened, and the heat storage operation solenoid valve 8 is closed. Accordingly, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 flows through the four-way valve 2 to the outdoor heat exchanger 3, where heat exchange is performed with the outside air, and condensed and liquefied. The liquefied high-pressure refrigerant flows through the check valve 4a of the refrigerant flow path control mechanism 4 and the cooling / heating operation solenoid valve 5 and is throttled by the cooling / heating operation pressure reducing device 6, so that it becomes a low-pressure refrigerant liquid. Next, the low-pressure refrigerant liquid flows to the indoor heat exchanger 7 via the check valve 4d of the refrigerant flow path control mechanism 4 and exchanges heat with the object to be cooled passing through the indoor heat exchanger 7. Due to the heat of the object to be cooled, it evaporates to become a low-temperature low-pressure refrigerant gas, returns to the compressor 1 via the four-way valve 2, and repeats the same operation again. That is, the refrigerant repeats the flow indicated by the solid arrow in FIG.

【0010】次に氷蓄熱運転について説明する。氷蓄熱
運転時においては、制御装置14が外部から入力された
氷蓄熱運転切換信号に基づいて、圧縮機1から室外熱交
換器3へ冷媒が直接流れるように四方弁2を制御すると
共に、冷暖房運転用電磁弁5を閉じ、蓄熱運転用電磁弁
8を開く。従って、圧縮機1で圧縮された高温高圧の冷
媒ガスは四方弁2を介して室外熱交換器3へ流れ、外気
と熱交換され、凝縮液化する。次に、この液化した高圧
の冷媒は、冷媒流路制御機構4の逆止弁4a及び蓄熱運
転用電磁弁8を流れて蓄熱運転用減圧装置9で絞られる
ため、低圧の冷媒液となる。この低圧の液冷媒は、蓄熱
槽13内に設置された蓄熱用熱交換器10へ流れ、蓄熱
用熱交換器10で被冷却である蓄熱材12と熱交換され
るため、蓄熱材12の熱により蒸発気化して低温低圧の
冷媒ガスとなり、逆止弁11を介して圧縮機1に戻り、
再び同じ動作を繰り返す。即ち、冷媒は図10の点線の
矢印の流れを繰り返す。この繰り返しにより、蓄熱槽1
3の蓄熱材12は徐々に冷却され、蓄熱材12に冷熱量
が貯えられることになる。なお、この運転は、制御装置
14が電力料金が安くなる深夜電力時間帯(22時から
8時までの時間帯)に行う。
Next, the ice heat storage operation will be described. At the time of the ice heat storage operation, the control device 14 controls the four-way valve 2 based on the ice heat storage operation switching signal input from the outside so that the refrigerant flows directly from the compressor 1 to the outdoor heat exchanger 3, and performs cooling and heating. The operation solenoid valve 5 is closed, and the heat storage operation solenoid valve 8 is opened. Accordingly, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 flows through the four-way valve 2 to the outdoor heat exchanger 3, where heat exchange is performed with the outside air, and condensed and liquefied. Next, the liquefied high-pressure refrigerant flows through the check valve 4a and the heat storage operation solenoid valve 8 of the refrigerant flow path control mechanism 4 and is throttled by the heat storage operation pressure reducing device 9, so that it becomes a low pressure refrigerant liquid. The low-pressure liquid refrigerant flows to the heat storage heat exchanger 10 installed in the heat storage tank 13 and exchanges heat with the heat storage material 12 to be cooled in the heat storage heat exchanger 10. The refrigerant gas evaporates and becomes low-temperature low-pressure refrigerant gas, and returns to the compressor 1 via the check valve 11,
The same operation is repeated again. That is, the refrigerant repeats the flow indicated by the dotted arrow in FIG. By repeating this, the heat storage tank 1
The heat storage material 12 of No. 3 is gradually cooled, and the amount of cold heat is stored in the heat storage material 12. Note that this operation is performed during the midnight power time zone (time zone from 22:00 to 8:00) when the control device 14 lowers the power rate.

【0011】次に、暖房運転について図12を用いて説
明する。暖房運転時においては、制御装置14が外部か
ら入力された暖房運転切換信号に基づいて、圧縮機1か
ら室内熱交換器7へ冷媒が直接流れるように四方弁2を
制御すると共に、冷暖房運転用電磁弁5を開き、蓄熱運
転用電磁弁8を閉じる。従って、圧縮機1で圧縮された
高温高圧の冷媒ガスは四方弁2を介して室内熱交換器7
へ流れ、被冷却物と熱交換されるため、凝縮液化され
る。次に、この液化された高圧の冷媒は、冷媒流路制御
機構4の逆止弁4c及び冷暖房運転用電磁弁5を流れて
冷暖房運転用減圧装置6で絞られるため、低圧の冷媒液
となり、冷媒流路制御機構4の逆止弁4bを介して室外
熱交換器3へ流れる。この室外熱交換器3へ流れた低圧
の冷媒液は外気と熱交換されるため、蒸発気化して低温
低圧の冷媒ガスとなり、四方弁2を介して圧縮機1に戻
り、再び同じ動作を繰り返す。即ち、冷媒は図12の実
線の矢印の流れを繰り返す。
Next, the heating operation will be described with reference to FIG. At the time of the heating operation, the control device 14 controls the four-way valve 2 based on the heating operation switching signal input from the outside so that the refrigerant flows directly from the compressor 1 to the indoor heat exchanger 7. The electromagnetic valve 5 is opened, and the heat storage operation electromagnetic valve 8 is closed. Accordingly, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2 and passes through the indoor heat exchanger 7.
To be condensed and liquefied. Next, the liquefied high-pressure refrigerant flows through the check valve 4c of the refrigerant flow path control mechanism 4 and the cooling / heating operation solenoid valve 5 and is throttled by the cooling / heating operation decompression device 6, so that it becomes a low-pressure refrigerant liquid. The refrigerant flows to the outdoor heat exchanger 3 via the check valve 4b of the refrigerant flow path control mechanism 4. Since the low-pressure refrigerant liquid flowing to the outdoor heat exchanger 3 exchanges heat with the outside air, it evaporates and becomes low-temperature low-pressure refrigerant gas, returns to the compressor 1 via the four-way valve 2, and repeats the same operation again. . That is, the refrigerant repeats the flow indicated by the solid arrow in FIG.

【0012】なお、冷房運転時の蒸発温度は約5℃で、
氷蓄熱運転時の蒸発温度は約−10℃で一般的に運転さ
れるため、図13に示すように、圧縮機1の冷却能力は
冷房運転に対し、約半分以下になる。ここで、図13を
用いて冷却能力について、冷房運転時と氷蓄熱運転時と
で比較する。なお、この図13のQは冷却能力、ETは
蒸発温度を示し、また、QCOMPは蒸発温度に対する圧縮
機能力を示し、QHEXは被冷却物の温度をほぼ一定とし
た時の蒸発温度に対する蒸発器の冷却能力を示す。
The evaporating temperature during the cooling operation is about 5 ° C.
Since the evaporation temperature during the ice heat storage operation is generally operated at about −10 ° C., as shown in FIG. 13, the cooling capacity of the compressor 1 is about half or less of the cooling operation. Here, the cooling capacity will be compared between the cooling operation and the ice heat storage operation with reference to FIG. In FIG. 13, Q indicates the cooling capacity, ET indicates the evaporation temperature, Q COMP indicates the compression function force with respect to the evaporation temperature, and Q HEX indicates the evaporation temperature when the temperature of the object to be cooled is substantially constant. This shows the cooling capacity of the evaporator.

【0013】この図に示すように、圧縮機回転数が一定
の時は、圧縮機能力QCOMPは蒸発温度ETが高い程冷媒
の密度が大きくなるため、増大する。また、この時(蒸
発温度ETが高い時)、蒸発器能力QHEXは、逆に、被
冷却物との温度差が小さくなるため、低くなる。その結
果、図に示すように、圧縮機能力と蒸発器能力がバラン
スした点で運転されることになる。即ち、蒸発温度ET
が高い時は、圧縮機能力QCOMPと蒸発器能力QHEXが互
いに等しくなったバランス点P1で運転され、蒸発温度
ETが低い時は、冷却能力の低いバランスポイントP2
で運転されることになる。しかし、前述したように、冷
房運転と氷蓄熱運転とでは、蒸発温度(冷却能力)が相
当相違しているにも関らず、冷房運転時も氷蓄熱運転時
も室外熱交換器3を凝縮器として共用し、しかも、その
凝縮器容量(能力)は冷却能力の高い冷房運転能力に対
応させて選定しているので、結果、蒸発温度の低い、即
ち冷却能力の低い氷蓄熱運転時においては、過大な凝縮
容量の室外熱交換器3を凝縮器として利用することにな
る。
As shown in this figure, when the compressor speed is constant, the compression function force Q COMP increases because the density of the refrigerant increases as the evaporation temperature ET increases. At this time (when the evaporating temperature ET is high), the evaporator capacity Q HEX is low because the temperature difference with the object to be cooled is small. As a result, as shown in the figure, the operation is performed at a point where the compression function power and the evaporator capacity are balanced. That is, the evaporation temperature ET
Is high, the compressor is operated at the balance point P 1 where the compression function Q COMP and the evaporator capacity Q HEX are equal to each other. When the evaporation temperature ET is low, the balance point P 2 having a low cooling capacity is used.
Will be driven. However, as described above, the outdoor heat exchanger 3 is condensed during both the cooling operation and the ice heat storage operation, although the evaporation temperature (cooling capacity) is considerably different between the cooling operation and the ice heat storage operation. The capacity (capacity) of the condenser is selected in accordance with the cooling operation capacity having a high cooling capacity. As a result, during the ice heat storage operation having a low evaporation temperature, that is, a low cooling capacity, Therefore, the outdoor heat exchanger 3 having an excessively large condensing capacity is used as a condenser.

【0014】また、冷媒配管のサイズも配管損失による
能力低下を防止するため、冷却能力の高い冷房運転時の
冷却能力QC1で選定しているので、冷却能力の低い氷蓄
熱運転時においては、冷媒速度が遅くなり、油が戻り難
くなっていた。
Further, the size of the refrigerant pipe is selected based on the cooling capacity QC1 in the cooling operation with a high cooling capacity in order to prevent the capacity from being reduced due to the pipe loss. The refrigerant speed became slow, and it was difficult for the oil to return.

【0015】[0015]

【発明が解決しようとする課題】以上説明したように、
従来の氷蓄熱槽付冷暖房装置では、蒸発温度が高い冷房
運転時の冷却能力を基にして室外熱交換器の凝縮器容量
及び冷媒配管のサイズを選定し、かつ、冷房運転時も氷
蓄熱運転時も圧縮機を定格回転数で運転しているため、
氷蓄熱運転時においては、室外熱交換器の凝縮器容量が
必要以上の選定容量となり、室外熱交換器を有効に活用
していないという問題点があった。
As described above,
In the conventional cooling and heating system with an ice storage tank, the condenser capacity and refrigerant pipe size of the outdoor heat exchanger are selected based on the cooling capacity during the cooling operation with a high evaporation temperature, and the ice storage operation is also performed during the cooling operation. Because the compressor is running at the rated speed
At the time of ice heat storage operation, the capacity of the condenser of the outdoor heat exchanger becomes a selection capacity more than necessary, and there is a problem that the outdoor heat exchanger is not effectively utilized.

【0016】また、氷蓄熱運転時の冷媒速度が遅くな
り、油が戻り難くなるという問題点があった。
Further, there is another problem that the speed of the refrigerant during the ice heat storage operation is reduced, and it is difficult for the oil to return.

【0017】この発明は上記のような課題を解決するた
めになされたもので、冷房運転時でも、氷蓄熱運転時で
も、室外熱交換器を有効に活用しながらスピーディに蓄
熱すると共に、油の戻りの良い、経済的で、信頼性の高
い氷蓄熱槽付冷却装置又はを得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. In both the cooling operation and the ice heat storage operation, the heat can be quickly stored while effectively utilizing the outdoor heat exchanger, and the oil can be stored. It is an object of the present invention to obtain a reversible, economical and highly reliable cooling device with an ice storage tank.

【0018】また、暖房運転時でも、室内熱交換器を有
効に活用しながらスピーディに暖房し、油の戻りの良
い、経済的で、信頼性の高い氷蓄熱槽付冷却装置を得る
ことを目的とする。
It is another object of the present invention to provide an economical and reliable cooling device with an ice heat storage tank that heats quickly while effectively using an indoor heat exchanger even during a heating operation, and has a good oil return. And

【0019】[0019]

【課題を解決するための手段】この発明に係わる氷蓄熱
槽付冷却装置、並びに氷蓄熱槽付冷暖房装置において
は、圧縮機、室外熱交換器、減圧装置、及び室内熱交換
器等が順次配管で接続された冷却装置と、この冷却装置
の少なくとも前記室内熱交換器と並列に接続された蓄熱
用熱交換器により冷却される蓄熱材を貯流する蓄熱槽
と、を具備し、冷却運転と氷蓄熱運転とを行う氷蓄熱槽
付冷却装置において、制御手段が、前記冷却運転時の冷
却能力と前記氷蓄熱運転時の冷却能力とがほぼ同じにな
るように前記圧縮機の回転数を制御するものである。
In a cooling device with an ice storage tank and a cooling and heating device with an ice storage tank according to the present invention, a compressor, an outdoor heat exchanger, a decompression device, an indoor heat exchanger, and the like are sequentially piped. And a heat storage tank for storing a heat storage material cooled by a heat storage heat exchanger connected in parallel with at least the indoor heat exchanger of the cooling device, and a cooling operation. In the cooling device with an ice heat storage tank that performs the ice heat storage operation, the control means controls the rotation speed of the compressor so that the cooling capacity during the cooling operation and the cooling capacity during the ice heat storage operation are substantially the same. Is what you do.

【0020】また、圧縮機、四方弁、室外熱交換器、減
圧装置、及び室内熱交換器等が順次配管で接続された冷
暖房装置と、この冷暖房装置の少なくとも前記室内熱交
換器と並列に接続された蓄熱用熱交換器により冷却され
る蓄熱材を貯流する蓄熱槽と、を具備し、冷・暖運転と
氷蓄熱運転とを行う氷蓄熱槽付冷暖房装置において、制
御手段が、前記冷房運転時の冷却能力と前記暖房運転時
の冷却能力とがほぼ同じになるように前記圧縮機の回転
数を制御するものである。
A cooling and heating device in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, an indoor heat exchanger and the like are sequentially connected by piping, and connected in parallel with at least the indoor heat exchanger of the cooling and heating device A heat storage tank for storing a heat storage material cooled by the heat exchanger for heat storage, wherein the cooling means performs an operation of cooling and warming and an operation of storing ice ice. The number of revolutions of the compressor is controlled so that the cooling capacity during operation and the cooling capacity during heating operation are substantially the same.

【0021】また、前記制御手段が、前記冷却運転時の
冷却能力と前記氷蓄熱運転時の冷却能力ととがほぼ同じ
になるように前記圧縮機の回転数を制御するものであ
る。
Further, the control means controls the number of revolutions of the compressor so that the cooling capacity during the cooling operation and the cooling capacity during the ice heat storage operation become substantially the same.

【0022】また、前記制御手段が、前記圧縮機の回転
数を制御する時、当該圧縮機の電動機の極数で制御する
ものである。
Further, when the control means controls the number of revolutions of the compressor, the control means controls the number of poles of a motor of the compressor.

【0023】前記制御手段が、前記氷蓄熱運転を深夜電
力時間に行うものである。
The control means performs the ice heat storage operation at midnight power time.

【0024】[0024]

【発明の実施の形態】実施の形態1.この発明の実施の
形態1における氷蓄熱槽付冷暖房装置の冷媒系統を図
1、4に示す。この図に示すように、17は冷媒を圧縮
する圧縮機であり、この圧縮機17は、そのモータの極
数をさせるための装置を有するポールチェンジモータ1
7bを具備している。なお、この冷媒系統図のその他の
符号は従来技術で説明しているので、説明を割愛する。
また、図2は制御系統図であり、この図の18は、圧縮
機17、四方弁2、冷暖房運転用電磁弁5、及び蓄熱運
転用電磁弁8の動作を制御する制御装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 1 and 4 show a refrigerant system of a cooling and heating device with an ice heat storage tank according to Embodiment 1 of the present invention. As shown in the figure, reference numeral 17 denotes a compressor for compressing a refrigerant. The compressor 17 is a pole change motor 1 having a device for increasing the number of poles of the motor.
7b. Note that other reference numerals in the refrigerant system diagram are described in the related art, and thus description thereof is omitted.
FIG. 2 is a control system diagram. In FIG. 2, reference numeral 18 denotes a control device that controls operations of the compressor 17, the four-way valve 2, the cooling / heating operation solenoid valve 5, and the heat storage operation solenoid valve 8.

【0025】次に、図1、2、及び4を用いて運転動作
について説明する。まず、冷房運転について説明する。
冷房運転時においては、制御装置18が外部から入力さ
れた冷房運転切換信号に基づいて、圧縮機17から室外
熱交換器3へ冷媒が直接流れるように四方弁2を制御す
ると共に、冷暖房運転用電磁弁5を開き、蓄熱運転用電
磁弁8を閉じる。従って、圧縮機17で圧縮された高温
高圧の冷媒ガスは四方弁2を介して室外熱交換器3へ流
れ、外気と熱交換されて凝縮液化する。この凝縮液化し
た高圧の冷媒液は、冷媒流路制御機構4の逆止弁4a及
び冷暖房運転用電磁弁5を流れて冷暖房運転用減圧装置
6で絞られるため、低圧の冷媒液となる。
Next, the driving operation will be described with reference to FIGS. First, the cooling operation will be described.
During the cooling operation, the control device 18 controls the four-way valve 2 based on the cooling operation switching signal input from the outside so that the refrigerant flows directly from the compressor 17 to the outdoor heat exchanger 3, and also controls the cooling and heating operation. The electromagnetic valve 5 is opened, and the heat storage operation electromagnetic valve 8 is closed. Therefore, the high-temperature and high-pressure refrigerant gas compressed by the compressor 17 flows to the outdoor heat exchanger 3 via the four-way valve 2 and exchanges heat with the outside air to condense and liquefy. The condensed and liquefied high-pressure refrigerant liquid flows through the check valve 4a and the cooling / heating operation solenoid valve 5 of the refrigerant flow path control mechanism 4 and is throttled by the cooling / heating operation pressure reducing device 6, so that it becomes a low-pressure refrigerant liquid.

【0026】次に、この低圧の冷媒液は冷媒流路制御機
構4の逆止弁4dを介して室内熱交換器7へ流れ、被冷
却物と熱交換されるため、被冷却物の熱により蒸発気化
して低温低圧の冷媒ガスとなり、四方弁2を介して再び
圧縮機17に戻り、同じ動作を繰り返す。即ち、冷媒は
図1の実線の矢印の流れを繰り返す。この時、制御装置
18は圧縮機17の回転数を室外熱交換器3の選定容量
とほぼマッチングするように制御する。即ち、ポールチ
ェンジモータ17bの極数を室外熱交換器3の選定容量
とほぼマッチングするように予め設定された極数(例え
ば8ポール)で制御する。
Next, the low-pressure refrigerant liquid flows to the indoor heat exchanger 7 via the check valve 4d of the refrigerant flow path control mechanism 4 and exchanges heat with the object to be cooled. The refrigerant gas evaporates and becomes low-temperature and low-pressure refrigerant gas, returns to the compressor 17 again via the four-way valve 2, and repeats the same operation. That is, the refrigerant repeats the flow indicated by the solid arrow in FIG. At this time, the control device 18 controls the rotation speed of the compressor 17 so as to substantially match the selected capacity of the outdoor heat exchanger 3. That is, the number of poles of the pole change motor 17b is controlled by a preset number of poles (for example, 8 poles) so as to substantially match the selected capacity of the outdoor heat exchanger 3.

【0027】なお、圧縮機の回転数を上げれば、上げる
ほど圧縮機の機械損失が大きくなり、消費電力に対する
冷却能力が小さくなる。言い換えれば、仕事量に対する
冷却能力比である成績係数が低下することは自明であ
り、このことにより、冷房運転時において、定格回転数
より下げて運転する(例えば、8ポールで運転する)こ
とは経済的な氷蓄熱槽付冷暖房装置を得る上で重要であ
る。
It should be noted that as the rotational speed of the compressor increases, the mechanical loss of the compressor increases as the compressor speed increases, and the cooling capacity with respect to power consumption decreases. In other words, it is self-evident that the coefficient of performance, which is the ratio of the cooling capacity to the work load, is reduced. Therefore, it is not possible to operate at a lower speed than the rated rotation speed (for example, to operate at 8 poles) during the cooling operation. This is important for obtaining an economical air conditioning system with an ice storage tank.

【0028】次に、氷蓄熱運転について説明する。氷蓄
熱運転においては、制御装置18が外部から入力された
氷蓄熱運転切換信号に基づいて、圧縮機17から室外熱
交換器3へ冷媒が直接流れるように四方弁2を制御する
と共に、冷暖房運転用電磁弁5を閉じ、蓄熱運転用電磁
弁8を開く。従って、圧縮機17で圧縮された高温高圧
の冷媒ガスは四方弁2を介して室外熱交換器3へ流れ、
外気と熱交換されて凝縮液化する。この凝縮液化した高
圧の冷媒液は冷媒流路制御機構4の逆止弁4a及び蓄熱
運転用電磁弁8を流れて蓄熱運転用減圧装置9で絞られ
るため、低圧の冷媒液になる。次に、この低圧の冷媒液
は蓄熱槽13内に設置された蓄熱用熱交換器10へ流
れ、蓄熱用熱交換器10で蓄熱材12と熱交換されるた
め、蓄熱材12の熱により蒸発気化して低温低圧の冷媒
ガスとなり、逆止弁11を介して圧縮機17に戻り、同
じ動作を繰り返す。即ち、冷媒は図1の点線の矢印の流
れを繰り返す。この繰り返しにより、蓄熱槽13の蓄熱
材12は徐々に冷却され、蓄熱材12に冷熱量が貯えら
れることになる。
Next, the ice heat storage operation will be described. In the ice heat storage operation, the control device 18 controls the four-way valve 2 based on the ice heat storage operation switching signal input from the outside so that the refrigerant flows directly from the compressor 17 to the outdoor heat exchanger 3, and performs the cooling / heating operation. The electromagnetic valve 5 for heat storage is closed, and the electromagnetic valve 8 for heat storage operation is opened. Accordingly, the high-temperature and high-pressure refrigerant gas compressed by the compressor 17 flows to the outdoor heat exchanger 3 via the four-way valve 2,
Condensed and liquefied by heat exchange with the outside air. The condensed and liquefied high-pressure refrigerant liquid flows through the check valve 4a and the heat storage operation electromagnetic valve 8 of the refrigerant flow path control mechanism 4 and is throttled by the heat storage operation pressure reducing device 9, so that it becomes a low pressure refrigerant liquid. Next, the low-pressure refrigerant liquid flows to the heat storage heat exchanger 10 installed in the heat storage tank 13 and exchanges heat with the heat storage material 12 in the heat storage heat exchanger 10. The refrigerant gas is vaporized into low-temperature and low-pressure refrigerant gas, returns to the compressor 17 via the check valve 11, and repeats the same operation. That is, the refrigerant repeats the flow indicated by the dotted arrow in FIG. By this repetition, the heat storage material 12 of the heat storage tank 13 is gradually cooled, and the heat storage material 12 stores the amount of cold energy.

【0029】また、この時、制御装置18は、冷房運転
における蒸発温度と蓄熱運転における蒸発温度の差によ
り生じる圧縮機17の能力低下に対応した分だけ、圧縮
機17の回転数を冷房運転時よりも増大させる。即ち、
ポールチェンジモータ17bの極数を下げて(例えば8
ポールから4ポールへ等)、冷却能力が増大するよう
に、即ち、冷房運転時の冷却能力とほぼ同じようになる
ようにして室外熱交換器3の選定容量とほぼマッチング
するようにする。
At this time, the control device 18 increases the rotation speed of the compressor 17 during the cooling operation by an amount corresponding to the decrease in the capacity of the compressor 17 caused by the difference between the evaporation temperature in the cooling operation and the evaporation temperature in the heat storage operation. Than increase. That is,
Lower the number of poles of the pole change motor 17b (for example, 8
(From a pole to a four pole, etc.), the cooling capacity is increased, that is, the cooling capacity during the cooling operation is made substantially the same, and is substantially matched with the selected capacity of the outdoor heat exchanger 3.

【0030】次に、図3のグラフを用いて、冷房運転か
ら氷蓄熱運転に切換わった時に、ポールチェンジをした
時と、しない時について説明する。まず、ポールチェン
ジした時、即ち、圧縮機17の回転数をポールチェンジ
モータ17bの極数変換により冷房運転時よりも上げた
時、冷媒循環量が増加し、圧縮機17の能力はQCOMP1
からQCOMP2へ増強されることとなる。この時の蒸発温
度をET2とすると、蒸発温度ET2における冷却能力は
従来の氷蓄熱運転時(ポールチェンジしない時)の冷却
能力QC2よりも高い冷却能力QC1のP3の点でバランス
することになる。
Next, with reference to the graph of FIG. 3, a description will be given of the case where the pole change is performed and the case where the pole change is not performed when the cooling operation is switched to the ice heat storage operation. First, when the pole is changed, that is, when the rotation speed of the compressor 17 is increased from the cooling operation by the pole number conversion of the pole change motor 17b, the refrigerant circulation amount increases, and the capacity of the compressor 17 becomes Q COMP1.
To Q COMP2 . When the evaporation temperature at this time is ET 2, balance in terms of P 3 in the cooling capacity Q C2 high cooling capacity Q C1 than the cooling capacity conventional ice thermal storage operation in the evaporation temperature ET 2 (when not pole-changing) Will do.

【0031】一方、ポールチェンジしない時は、図3に
示すように、P2の圧縮機1の能力QC2で運転されるこ
ととなり、圧縮機能力QC1に対応して選定された室外熱
交換器3の選容量及び冷媒配管のサイズが大きくなって
しまう。従って、前述したように、ポールチェンジをし
て圧縮機の回転数を上げ、QC2をQC1近くなるようにす
れば、圧縮機能力(冷却能力)を室外熱交換器3の選定
容量及び冷媒配管のサイズにほぼマッチングするように
なるため、回転数(能力)のアップにより、室外熱交換
器を有効に活用しながら、スピーディに蓄熱すると共
に、油の戻りの良い、経済的で、信頼性の高い氷蓄熱槽
付冷暖房装置を得ることができる。
On the other hand, when no pole-changing, as shown in FIG. 3, will be operating at capacity Q C2 of the compressor 1 of P 2, an outdoor heat exchanger which is selected in correspondence with the compression force Q C1 The capacity of the vessel 3 and the size of the refrigerant pipe are increased. Accordingly, as described above, if the rotation speed of the compressor is increased by changing the pole to make Q C2 close to Q C1 , the compression capacity (cooling capacity) can be reduced by the selected capacity of the outdoor heat exchanger 3 and the refrigerant. Since it almost matches the size of the piping, the number of revolutions (capacity) is increased, so that the outdoor heat exchanger is effectively used, heat is stored quickly, and oil is returned efficiently, economically and reliably. The cooling and heating device with an ice heat storage tank having a high temperature can be obtained.

【0032】また、この氷蓄熱運転(圧縮機の回転数を
増大させた運転)を電力料金が安くなる深夜電力時間帯
に行うようにすると、安い電力料金で蓄熱材に大量の蓄
熱ができるようになるため、更に、ランニングコストの
安い経済的な氷蓄熱槽付冷暖房装置を得ることができ
る。
When this ice heat storage operation (operation in which the number of revolutions of the compressor is increased) is performed during the late night power hours when the power rate is low, a large amount of heat can be stored in the heat storage material at a low power rate. Therefore, an economical air-conditioning apparatus with an ice heat storage tank having a low running cost can be obtained.

【0033】次に、図4を用いて暖房運転について説明
する。制御装置18が外部から入力された暖房運転切換
信号に基づいて、圧縮機17から室内熱交換器7へ冷媒
が直接流れるように四方弁2を制御すると共に、冷暖房
運転用電磁弁5を開き、蓄熱運転用電磁弁8を閉じる。
従って、圧縮機1で圧縮された高温高圧の冷媒ガスは四
方弁2を介して室内熱交換器7へ流れ、被冷却物と熱交
換されるため、凝縮液化する。次に、この液化した高圧
の冷媒は、冷媒流路制御機構4の逆止弁4c及び冷暖房
運転用電磁弁5を流れて冷暖房運転用減圧装置6で絞ら
れるため、低圧の冷媒液となり、冷媒流路制御機構4の
逆止弁4bを介して室外熱交換器3へ流れる。この室外
熱交換器3へ流れた低圧の冷媒液は外気と熱交換される
ため、蒸発気化して低温低圧の冷媒ガスとなり、四方弁
2を介して圧縮機17に戻り、再び同じ動作を繰り返
す。即ち、冷媒は図4の実線の矢印の流れを繰り返す。
Next, the heating operation will be described with reference to FIG. The controller 18 controls the four-way valve 2 based on the heating operation switching signal input from the outside so that the refrigerant flows directly from the compressor 17 to the indoor heat exchanger 7, and opens the cooling / heating operation solenoid valve 5, The heat storage operation solenoid valve 8 is closed.
Therefore, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 flows to the indoor heat exchanger 7 via the four-way valve 2 and exchanges heat with the object to be cooled, thereby condensing and liquefying. Next, the liquefied high-pressure refrigerant flows through the check valve 4c of the refrigerant flow path control mechanism 4 and the cooling / heating operation solenoid valve 5 and is throttled by the cooling / heating operation decompression device 6, so that it becomes a low-pressure refrigerant liquid. It flows to the outdoor heat exchanger 3 via the check valve 4b of the flow path control mechanism 4. Since the low-pressure refrigerant liquid flowing to the outdoor heat exchanger 3 exchanges heat with the outside air, it evaporates and becomes low-temperature low-pressure refrigerant gas, returns to the compressor 17 via the four-way valve 2, and repeats the same operation again. . That is, the refrigerant repeats the flow indicated by the solid arrow in FIG.

【0034】なお、この暖房運転時において、外気温度
が予め設定された温度より低くなると、蒸発器として機
能する室外熱交換器3の冷媒温度と外気温度との温度差
が、外気温度が高い場合に比べて小さくなるため、減圧
装置がこれを室外熱交換器3の出口冷媒温度からキャツ
チして絞り、蒸発温度ETを低くし、温度差大きくなる
ようにする。その結果、圧縮機17の能力は、図3に示
すように、低下する。このため、凝縮器として機能する
室内熱交換器7の選定容量が圧縮機17の能力に対して
大きくなるので、室内熱交換器7が充分に活用されなく
なる。
During the heating operation, if the outside air temperature becomes lower than a preset temperature, the temperature difference between the refrigerant temperature of the outdoor heat exchanger 3 functioning as an evaporator and the outside air temperature is determined when the outside air temperature is high. Therefore, the decompression device catches this from the outlet refrigerant temperature of the outdoor heat exchanger 3 and squeezes it to lower the evaporation temperature ET so as to increase the temperature difference. As a result, the capacity of the compressor 17 decreases as shown in FIG. For this reason, the selected capacity of the indoor heat exchanger 7 functioning as a condenser is larger than the capacity of the compressor 17, so that the indoor heat exchanger 7 is not fully utilized.

【0035】即ち、例えば、外気温度7℃に対応する蒸
発温度0℃を想定して選定した室外熱交換器3(蒸発
器)と連動して凝縮器として機能する室内熱交換器7
は、実質外気温度が想定外気温度7℃より約10℃下が
って−3℃となり、その時の外気温度に対応する蒸発温
度が−10℃になって、図3に示すように、P1からP2
になり、圧縮機1の能力がQC1からQC2となって約半分
に低下するため、室内熱交換器7も充分に活用されなく
なる。従って、制御装置18は圧縮機17のモータのポ
ールチェンジを行って、圧縮機17の回転数を室内熱交
換器7の選定容量に対応させて増大させ、冷媒循環量
(冷却能力)を増大させ、室内熱交換器7の選定容量を
充分に活用できるようにし、高暖房能力を得るようにす
る。
That is, for example, the indoor heat exchanger 7 which functions as a condenser in conjunction with the outdoor heat exchanger 3 (evaporator) selected assuming an evaporation temperature of 0 ° C. corresponding to an outdoor temperature of 7 ° C.
Is, -3 ° C. becomes substantially the ambient air temperature is lowered to about 10 ° C. than expected ambient temperature 7 ° C., the evaporation temperature corresponding to the ambient temperature at that time becomes -10 ° C., as shown in FIG. 3, P from P 1 Two
To be the ability of the compressor 1 is to decrease to about half becomes Q C2 from Q C1, also the indoor heat exchanger 7 will not be fully utilized. Accordingly, the control device 18 changes the pole of the motor of the compressor 17 to increase the rotation speed of the compressor 17 in accordance with the selected capacity of the indoor heat exchanger 7, thereby increasing the refrigerant circulation amount (cooling capacity). In addition, the selected capacity of the indoor heat exchanger 7 can be sufficiently utilized, and a high heating capacity can be obtained.

【0036】次に、この動作を図3のグラフを用いて詳
細に説明する。即ち、外気温度が所定温度以下になった
時、圧縮機モータのポールチェンジをした時と、しない
時について説明する。まず、ポールチェンジした時、即
ち、圧縮機17の回転数をポールチェンジモータ17b
の極数変換により上げた時、冷媒循環量が増加し、圧縮
機17の能力がQCOMP1からQCOMP2へ増強されることと
なる。また、この時の蒸発温度をET2とすると蒸発温
度ET2における冷却能力は従来の暖房運転時の冷却能
力QC2よりも高い冷却能力QC1となる。
Next, this operation will be described in detail with reference to the graph of FIG. That is, the case where the outside air temperature falls below the predetermined temperature, the case where the pole change of the compressor motor is performed, and the case where it is not performed will be described. First, when a pole change is performed, that is, the rotation speed of the compressor 17 is changed to a pole change motor 17b.
When raised by the number of polar transformation, an increase in the amount of circulating refrigerant, the ability of the compressor 17 is to be enhanced from the Q COMP1 to Q COMP2. The cooling capacity in the evaporator temperature ET 2 and the evaporation temperature at this time is ET 2 becomes high cooling capacity Q C1 than the cooling capacity Q C2 when conventional heating operation.

【0037】一方、ポールチェンジしない時は、図3に
示すように、P2の圧縮機1の能力QC2で運転されるこ
ととなる。しかし、室内熱交換器7の選定容量及び冷媒
配管のサイズは圧縮機能力QC1に対応して選定されてい
るため、圧縮機1の能力QC2に対して室内熱交換器7の
容量及び冷媒配管のサイズが大きくなる。従って、ポー
ルチェンジをしてQC2をほぼQC1になるようにすれば、
室内熱交換器7の選定容量及び冷媒配管のサイズとほぼ
マッチングするようになるので、回転数(能力)のアッ
プにより、室内熱交換器を有効に活用しながら、外気が
低くてもスピーディに暖房し、油の戻りの良い、経済的
で、信頼性の高い氷蓄熱槽付冷暖房装置を得ることがで
きる。
On the other hand, when no pole-changing, as shown in FIG. 3, and thus operating at capacity Q C2 of the compressor 1 of P 2. However, since the selected capacity and the size of the refrigerant pipe of the indoor heat exchanger 7 is selected to correspond to the compression force Q C1, the capacity of the indoor heat exchanger 7 on the ability Q C2 of the compressor 1 and the refrigerant The size of the piping increases. Therefore, if you change the pole so that Q C2 becomes almost Q C1 ,
Since the selected capacity of the indoor heat exchanger 7 and the size of the refrigerant pipe are almost matched, the number of revolutions (capacity) is increased, so that the indoor heat exchanger can be effectively used and heating can be performed quickly even when the outside air is low. In addition, it is possible to obtain an economical and highly reliable cooling and heating device with an ice heat storage tank with good oil return.

【0038】なお、以上の説明では、圧縮機の電動機の
ポールチェンジを例にあげて説明したが、圧縮機の回転
数を冷房運転時の回転数より上げれるもの、例えば、図
6に示したように、インバータ装置を具備したものでも
良い。即ち、圧縮機の回転数を可変できるものであれ
ば、どのような機構のものでも、ほぼ同じ効果を得るこ
とができる。
In the above description, the pole change of the electric motor of the compressor has been described as an example. However, the one in which the rotational speed of the compressor can be higher than that in the cooling operation, for example, as shown in FIG. As described above, a device provided with an inverter device may be used. That is, as long as the rotational speed of the compressor can be varied, almost the same effect can be obtained with any mechanism.

【0039】また、図5に示すように、本実施の形態の
構成のように蓄熱用熱交換器10を蓄熱槽13の内部に
設置する代わりに、蓄熱用熱交換器10、ブラインポン
プ15及び蓄熱槽13の内部に設置したブラインコイル
16より構成されるブライン回路を介して蓄熱材12を
冷却する装置についても、本実施の形態と同様のポール
チェンジモータ17bの制御を行えば、前述した本実施
の形態と同様の効果を得ることができる。
As shown in FIG. 5, instead of installing the heat storage heat exchanger 10 inside the heat storage tank 13 as in the configuration of the present embodiment, the heat storage heat exchanger 10, the brine pump 15, An apparatus for cooling the heat storage material 12 via a brine circuit formed by a brine coil 16 installed inside the heat storage tank 13 can also be controlled by the same pole change motor 17b as in the present embodiment. The same effect as in the embodiment can be obtained.

【0040】また、図7に示したように、冷媒流路制御
機構4を無くし、かつ、冷暖用減圧装置6と蓄熱用減圧
装置9とを共有化し、室内熱交換7と蓄熱熱交換器10
のそれぞれの冷房・蓄熱運転時の各冷媒入口側に冷暖房
運転用電磁弁5と蓄熱運転用電磁弁8をそれぞれ設け、
制御装置18が冷房また蓄熱運転時に冷暖房運転用電磁
弁5を開き、蓄熱運転用電磁弁8を閉じて、蓄熱運転時
には、冷暖房運転用電磁弁5を閉じ、蓄熱運転用電磁弁
8を開くようにしても良い。但し、このときは、共有化
した減圧装置は電気式膨張弁(LEV等)を用いる。
As shown in FIG. 7, the refrigerant flow control mechanism 4 is eliminated, the cooling / heating decompression device 6 and the heat storage decompression device 9 are shared, and the indoor heat exchange 7 and the heat storage heat exchanger 10 are used.
A cooling / heating operation solenoid valve 5 and a heat storage operation solenoid valve 8 are provided on each refrigerant inlet side during each cooling / heat storage operation, respectively.
The controller 18 opens the cooling / heating operation solenoid valve 5 during the cooling or heat storage operation, closes the heat storage operation solenoid valve 8, and closes the cooling / heating operation solenoid valve 5 and opens the heat storage operation solenoid 8 during the heat storage operation. You may do it. However, in this case, the shared pressure reducing device uses an electric expansion valve (LEV or the like).

【0041】また更に、図8に示したように、冷媒流路
制御機構4、並びに冷暖房運転用電磁弁5と蓄熱運転用
電磁弁8を無くし、冷暖用減圧装置6と蓄熱用減圧装置
9とにそれぞれ電磁弁機能を有する電気式膨張弁(LE
V等)を用いて、制御装置18が冷房また蓄熱運転時に
冷暖用減圧装置6の電気式膨張弁を開き、蓄熱用減圧装
置9の電気式膨張弁を閉じて、蓄熱運転時には、冷暖用
減圧装置6の電気式膨張弁を閉じ、蓄熱用減圧装置9の
電気式膨張弁を開くようにしても良い。なお、これらの
図7、8に示した矢印は、実線は冷房運転時の冷媒流
れ、点線は蓄熱運転時の冷媒流れ、また、一点鎖線は暖
房時の冷媒流れを示す。
Furthermore, as shown in FIG. 8, the refrigerant flow path control mechanism 4, the cooling / heating operation solenoid valve 5 and the heat storage operation solenoid valve 8 are eliminated, and the cooling / heating decompression device 6 and the heat storage decompression device 9 are removed. The electric expansion valve (LE
V), the control device 18 opens the electric expansion valve of the cooling / heating decompression device 6 during the cooling or heat storage operation, closes the electric expansion valve of the heat storage decompression device 9, and performs the cooling / heating decompression during the heat storage operation. The electric expansion valve of the device 6 may be closed, and the electric expansion valve of the heat storage pressure reducing device 9 may be opened. 7 and 8, the solid line indicates the refrigerant flow during the cooling operation, the dotted line indicates the refrigerant flow during the heat storage operation, and the dashed line indicates the refrigerant flow during heating.

【0042】また、以上の説明では、四方弁2で冷媒の
流れを切換えて冷・暖をできるようにしたが、図9に示
すように、四方弁2を無くして暖房運転を行わず、冷房
運転と氷蓄熱運転のみを行う構成にしても、前述した冷
房運転から氷蓄熱運転への切換わるようにしても、室外
熱交換器を有効に活用しながらスピーディに蓄熱すると
共に、油の戻りの良い、経済的で、信頼性の高い氷蓄熱
槽付冷却装置を得ることができることは言うまでもな
い。
In the above description, the flow of the refrigerant is switched by the four-way valve 2 to perform cooling and warming. However, as shown in FIG. 9, the heating operation is not performed without the four-way valve 2 and the cooling operation is performed. Even if the configuration is such that only the operation and the ice heat storage operation are performed, or the above-described switching from the cooling operation to the ice heat storage operation is performed, the heat is quickly stored while effectively utilizing the outdoor heat exchanger, and the oil is returned. It goes without saying that a good, economical and reliable cooling device with an ice storage tank can be obtained.

【0043】また、この時の冷媒の流れは、冷房運転時
においては図の実線の矢印の方向となり、氷蓄熱運転時
においては図の点線の矢印の方向となる。また、制御装
置は、冷房運転時には、冷暖房運転用電磁弁5を開いて
蓄熱運転用電磁弁8を閉じ、氷蓄熱運転時には、冷暖房
運転用電磁弁5を閉じて蓄熱運転用電磁弁8を開くこと
になる。なお、この図の22は、蓄熱槽13の蓄熱材1
2と冷房運転時の冷媒とを熱交換させるための熱交換器
である。
At this time, the flow of the refrigerant is in the direction of the solid line arrow in the cooling operation, and is in the direction of the dotted arrow in the ice storage operation. The control device opens the cooling / heating operation electromagnetic valve 5 and closes the heat storage operation electromagnetic valve 8 during the cooling operation, and closes the cooling / heating operation electromagnetic valve 5 and opens the heat storage operation electromagnetic valve 8 during the ice heat storage operation. Will be. In addition, 22 of this figure is the heat storage material 1 of the heat storage tank 13.
2 is a heat exchanger for exchanging heat with the refrigerant during the cooling operation.

【0044】また、図7、8に示した冷媒回路図から四
方弁2を除去して、冷房運転、蓄熱運転のみをするよう
にしても良い。
Further, the four-way valve 2 may be removed from the refrigerant circuit diagrams shown in FIGS. 7 and 8, so that only the cooling operation and the heat storage operation may be performed.

【0045】[0045]

【発明の効果】この発明は以上説明したように、冷却運
転と氷蓄熱運転とを行う氷蓄熱槽付冷却装置において、
制御手段が、前記冷却運転時の冷却能力と前記氷蓄熱運
転時の冷却能力とがほぼ同じになるように前記圧縮機の
回転数を制御するので、冷却運転から氷蓄熱運転に切換
わって蒸発温度が変化してもほぼ同じ冷媒循環量となる
ため、凝縮器として機能する室外熱交換器を常に有効に
活用しながらスピーディに蓄熱すると共に、油の戻りの
良い、経済的で、信頼性の高い氷蓄熱槽付冷却装置が得
られる。
As described above, the present invention relates to a cooling apparatus with an ice storage tank for performing a cooling operation and an ice storage operation.
The control means controls the number of revolutions of the compressor so that the cooling capacity during the cooling operation is substantially the same as the cooling capacity during the ice heat storage operation. Even if the temperature changes, the amount of circulating refrigerant is almost the same, so that the outdoor heat exchanger functioning as a condenser is always effectively used, heat is stored quickly, and oil is returned efficiently, economically and reliably. A cooling device with a high ice storage tank is obtained.

【0046】また、冷・暖運転と氷蓄熱運転とを行う氷
蓄熱槽付冷暖房装置において、制御手段が、前記冷房運
転時の冷却能力と前記暖房運転時の冷却能力とがほぼ同
じになるように前記圧縮機の回転数を制御するので、冷
却運転から暖房運転に切換わって蒸発温度が変化しても
ほぼ同じ冷媒循環量となるため、凝縮器として機能する
室内熱交換器を常に有効に活用しながらスピーディに暖
房すると共に、油の戻りの良い、経済的で、信頼性の高
い氷蓄熱槽付冷暖房装置が得られる。
Further, in the cooling and heating apparatus with the ice storage tank for performing the cooling / warming operation and the ice heat storage operation, the control means may make the cooling capacity during the cooling operation substantially equal to the cooling capacity during the heating operation. Since the number of rotations of the compressor is controlled, even if the evaporation temperature is changed by switching from the cooling operation to the heating operation, the refrigerant circulation amounts are substantially the same, so that the indoor heat exchanger functioning as a condenser is always effective. It is possible to obtain an economical and highly reliable cooling and heating device with an ice heat storage tank, which heats quickly while utilizing it, and has a good return of oil.

【0047】また、冷・暖運転と氷蓄熱運転とを行う氷
蓄熱槽付冷暖房装置において、前記制御手段が、前記冷
却運転時の冷却能力と前記氷蓄熱運転時の冷却能力とが
ほぼ同じになるように前記圧縮機の回転数を制御するの
で、冷却運転から氷蓄熱運転に切換わって蒸発温度が変
化してもほぼ同じ冷媒循環量となるため、凝縮器として
機能する室外熱交換器を常に有効に活用しながらスピー
ディに蓄熱すると共に、油の戻りの良い、経済的で、信
頼性の高い氷蓄熱槽付冷暖房装置が得られる。
Further, in the cooling and heating apparatus with an ice storage tank for performing the cooling / warm operation and the ice storage operation, the control means may make the cooling capacity during the cooling operation substantially equal to the cooling capacity during the ice storage operation. Since the rotation speed of the compressor is controlled so that the refrigerant circulation amount is substantially the same even when the evaporation temperature is changed by switching from the cooling operation to the ice heat storage operation, the outdoor heat exchanger functioning as a condenser is provided. It is possible to obtain an economical and highly reliable cooling and heating device with an ice heat storage tank that stores heat quickly while always making effective use of it, and that has good oil return.

【0048】また、前記制御手段が、前記圧縮機の回転
数を制御する時、当該圧縮機の電動機の極数で制御する
ので、簡単な構成で、精度の良い制御ができる経済的
で、信頼性の高い氷蓄熱槽付冷却装置又は氷蓄熱槽付冷
暖房装置が得られる。
Further, when the control means controls the number of revolutions of the compressor, the number of poles of the motor of the compressor is controlled, so that the control can be performed with a simple structure and with high accuracy, and economical and reliable. A cooling device with an ice heat storage tank or a cooling and heating device with an ice heat storage tank having high performance can be obtained.

【0049】また、前記制御手段が、前記氷蓄熱運転を
深夜電力時間に行うので、ランニグコストの安い氷蓄熱
槽付冷却装置又は氷蓄熱槽付冷暖房装置が得られる。
Further, since the control means performs the ice heat storage operation at midnight power time, it is possible to obtain a cooling device with an ice heat storage tank or a cooling and heating device with an ice heat storage tank with low running cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1における氷蓄熱槽付冷暖房装置
の冷媒系統図である。
FIG. 1 is a refrigerant system diagram of a cooling and heating device with an ice heat storage tank according to a first embodiment.

【図2】 実施の形態1における氷蓄熱槽付冷暖房装置
の制御系統図である。
FIG. 2 is a control system diagram of the cooling and heating device with an ice heat storage tank in the first embodiment.

【図3】 実施の形態1における圧縮機能力との蒸発器
能力との能力バランス線図である。
FIG. 3 is a capacity balance diagram of a compression function power and an evaporator capacity in the first embodiment.

【図4】 実施の形態1における氷蓄熱槽付冷暖房装置
の暖房時の冷媒の流れを示す説明図である。
FIG. 4 is an explanatory diagram showing a flow of a refrigerant during heating of the cooling and heating device with an ice heat storage tank according to the first embodiment.

【図5】 実施の形態1におけるその他の氷蓄熱槽付冷
暖房装置の冷媒系統図である。
FIG. 5 is a refrigerant system diagram of another cooling / heating device with an ice heat storage tank according to the first embodiment.

【図6】 実施の形態1におけるその他の氷蓄熱槽付冷
暖房装置の制御系統図である。
FIG. 6 is a control system diagram of another cooling / heating device with an ice heat storage tank according to the first embodiment.

【図7】 実施の形態1におけるその他の氷蓄熱槽付冷
暖房装置の冷媒系統図である。
FIG. 7 is a refrigerant system diagram of another cooling / heating device with an ice heat storage tank in the first embodiment.

【図8】 実施の形態1におけるその他の氷蓄熱槽付冷
暖房装置の冷媒系統図である。
FIG. 8 is a refrigerant system diagram of another cooling / heating device with an ice heat storage tank in the first embodiment.

【図9】 実施の形態1における暖房運転機構を有しな
い氷蓄熱槽付冷却装置の冷媒系統図である。
FIG. 9 is a refrigerant system diagram of the cooling device with an ice heat storage tank having no heating operation mechanism in the first embodiment.

【図10】 従来の氷蓄熱槽付冷暖房装置の冷媒系統図
である。
FIG. 10 is a refrigerant system diagram of a conventional cooling / heating device with an ice heat storage tank.

【図11】 従来の氷蓄熱槽付冷暖房装置の制御系統図
である。
FIG. 11 is a control system diagram of a conventional cooling / heating device with an ice heat storage tank.

【図12】 従来の氷蓄熱槽付冷暖房装置の暖房時の冷
媒の流れを示す説明図である。
FIG. 12 is an explanatory diagram showing a flow of a refrigerant at the time of heating of the conventional cooling and heating device with an ice heat storage tank.

【図13】 従来の圧縮機能力との蒸発器能力との能力
バランス線図である。
FIG. 13 is a capacity balance diagram of a conventional compression function and an evaporator capacity.

【符号の説明】[Explanation of symbols]

1 圧縮機、 1a 冷媒圧縮部、 1b 圧縮機用電
動機、 2 四方弁、3 室外熱交換器、 4 冷媒流
路制御機構、 4a〜4d 逆止弁、 5冷暖房運転用
電磁弁、 6 冷暖房運転用減圧装置、 7 室内熱交
換器、 8蓄熱運転用電磁弁、 9 蓄熱運転用減圧装
置、 10 蓄熱用熱交換器、11 逆止弁、 12
蓄熱材、 13 蓄熱槽、 14 制御装置、 15ブ
ラインポンプ、16 ブラインコイル、 17 圧縮
機、 17a 冷媒圧縮部、 17b ポールチェンジ
モータ、 18 制御装置。
DESCRIPTION OF SYMBOLS 1 Compressor, 1a Refrigerant compression part, 1b Motor for compressor, 2 Four-way valve, 3 outdoor heat exchanger, 4 Refrigerant flow path control mechanism, 4a-4d check valve, 5 Solenoid valve for cooling / heating operation, 6 For cooling / heating operation Decompression device, 7 indoor heat exchanger, 8 heat storage operation solenoid valve, 9 heat storage operation pressure reduction device, 10 heat storage heat exchanger, 11 check valve, 12
Heat storage material, 13 heat storage tank, 14 control device, 15 brine pump, 16 brine coil, 17 compressor, 17a refrigerant compression section, 17b pole change motor, 18 control device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小柳 良文 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 大塚 修 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L060 AA01 AA03 CC08 CC19 DD02 EE02 EE41 3L092 TA02 TA15 UA02 UA34 VA07 YA01 YA20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshifumi Koyanagi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Osamu Otsuka 2-3-2 Marunouchi 3-chome, Chiyoda-ku, Tokyo F term in Ryo Electric Co., Ltd. (reference) 3L060 AA01 AA03 CC08 CC19 DD02 EE02 EE41 3L092 TA02 TA15 UA02 UA34 VA07 YA01 YA20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、室外熱交換器、減圧装置、及び
室内熱交換器等が順次配管で接続された冷却装置と、こ
の冷却装置の少なくとも前記室内熱交換器と並列に接続
された蓄熱用熱交換器により冷却される蓄熱材を貯流す
る蓄熱槽と、を具備し、冷却運転と氷蓄熱運転とを行う
氷蓄熱槽付冷却装置において、制御手段が、前記冷却運
転時の冷却能力と前記氷蓄熱運転時の冷却能力とがほぼ
同じになるように前記圧縮機の回転数を制御することを
特徴とする氷蓄熱槽付冷却装置。
1. A cooling device in which a compressor, an outdoor heat exchanger, a decompression device, an indoor heat exchanger, and the like are sequentially connected by piping, and a heat storage device connected to at least the indoor heat exchanger of the cooling device in parallel. A heat storage tank for storing a heat storage material cooled by the heat exchanger for cooling, and a cooling device with an ice heat storage tank performing a cooling operation and an ice heat storage operation, wherein the control means has a cooling capacity during the cooling operation. And controlling the number of revolutions of the compressor so that the cooling capacity during the ice heat storage operation is substantially the same as that of the ice heat storage operation.
【請求項2】 圧縮機、四方弁、室外熱交換器、減圧装
置、及び室内熱交換器等が順次配管で接続された冷暖房
装置と、この冷暖房装置の少なくとも前記室内熱交換器
と並列に接続された蓄熱用熱交換器により冷却される蓄
熱材を貯流する蓄熱槽と、を具備し、冷・暖運転と氷蓄
熱運転とを行う氷蓄熱槽付冷暖房装置において、制御手
段が、前記冷房運転時の冷却能力と前記暖房運転時の冷
却能力とがほぼ同じになるように前記圧縮機の回転数を
制御することを特徴とする氷蓄熱槽付冷暖房装置。
2. A cooling and heating device in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, an indoor heat exchanger and the like are sequentially connected by piping, and connected in parallel with at least the indoor heat exchanger of the cooling and heating device. A heat storage tank for storing a heat storage material cooled by the heat exchanger for heat storage, wherein the cooling means performs an operation of cooling and warming and an operation of storing ice ice. A cooling and heating device with an ice storage tank, wherein the number of revolutions of the compressor is controlled so that the cooling capacity during operation and the cooling capacity during heating operation are substantially the same.
【請求項3】 前記制御手段が、前記冷却運転時の冷却
能力と前記氷蓄熱運転時の冷却能力とがほぼ同じになる
ように前記圧縮機の回転数を制御することを特徴とする
請求項2に記載の氷蓄熱槽付冷暖房装置。
3. The compressor according to claim 2, wherein the control means controls the number of revolutions of the compressor such that the cooling capacity during the cooling operation is substantially the same as the cooling capacity during the ice heat storage operation. 3. The cooling and heating device with an ice heat storage tank according to 2.
【請求項4】 前記制御手段が、前記圧縮機の回転数を
制御する時、当該圧縮機の電動機の極数で制御すること
を特徴とする請求項1または請求項2のいずれかに記載
の氷蓄熱槽付冷却装置または氷蓄熱槽付冷暖房装置。
4. The method according to claim 1, wherein the control means controls the number of poles of a motor of the compressor when controlling the number of revolutions of the compressor. A cooling device with an ice storage tank or a cooling and heating device with an ice storage tank.
【請求項5】 前記制御手段が、前記氷蓄熱運転を深夜
電力時間帯に行うことを特徴とする請求項1または請求
項3のいずれかに記載の氷蓄熱槽付冷却装置または氷蓄
熱槽付冷暖房装置。
5. The cooling device with an ice heat storage tank or the ice heat storage tank according to claim 1, wherein the control unit performs the ice heat storage operation during a midnight power time zone. Air conditioning unit.
JP10345515A 1998-12-04 1998-12-04 Cooler with ice heat storage tank and cooler/heater with ice heat storage tank Pending JP2000171078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10345515A JP2000171078A (en) 1998-12-04 1998-12-04 Cooler with ice heat storage tank and cooler/heater with ice heat storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10345515A JP2000171078A (en) 1998-12-04 1998-12-04 Cooler with ice heat storage tank and cooler/heater with ice heat storage tank

Publications (1)

Publication Number Publication Date
JP2000171078A true JP2000171078A (en) 2000-06-23

Family

ID=18377112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10345515A Pending JP2000171078A (en) 1998-12-04 1998-12-04 Cooler with ice heat storage tank and cooler/heater with ice heat storage tank

Country Status (1)

Country Link
JP (1) JP2000171078A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042273A1 (en) * 2011-09-21 2013-03-28 ナサコア株式会社 Air-conditioning device
CN103499158A (en) * 2013-09-23 2014-01-08 广东美的制冷设备有限公司 Air conditioner and control method thereof
CN112594985A (en) * 2020-12-31 2021-04-02 广东积微科技有限公司 Oil return control method of multifunctional multi-split system with double four-way valves

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042273A1 (en) * 2011-09-21 2013-03-28 ナサコア株式会社 Air-conditioning device
CN103499158A (en) * 2013-09-23 2014-01-08 广东美的制冷设备有限公司 Air conditioner and control method thereof
CN103499158B (en) * 2013-09-23 2016-03-30 广东美的制冷设备有限公司 A kind of air-conditioner and control method thereof
CN112594985A (en) * 2020-12-31 2021-04-02 广东积微科技有限公司 Oil return control method of multifunctional multi-split system with double four-way valves

Similar Documents

Publication Publication Date Title
JP4321095B2 (en) Refrigeration cycle equipment
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
AU4886102A (en) Multiform gas heat pump type air conditioning system
KR101170274B1 (en) A load active heat pump combined two parallel single stage compressor
JP2002081767A (en) Air conditioner
JP3352469B2 (en) Air conditioner
JP4317793B2 (en) Cooling system
JP4608790B2 (en) refrigerator
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JP4650086B2 (en) Thermal storage heat recovery device
JP2001296068A (en) Regenerative refrigerating device
JPH11248273A (en) Refrigerating air conditioner and facility selecting method therefor
JP2000171078A (en) Cooler with ice heat storage tank and cooler/heater with ice heat storage tank
JP2760500B2 (en) Multi-room air conditioner
AU2020360865B2 (en) A heat pump
JP4104519B2 (en) Refrigeration system
JP4108003B2 (en) Refrigeration system
JP2698179B2 (en) Air conditioning
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP6650062B2 (en) Environmental test equipment
JP2005147582A (en) Air conditioner
JP2000074515A (en) Air conditioner
CN109959180B (en) Air conditioning system and defrosting method thereof
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
KR100727124B1 (en) Thermal storage airconditioner

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219