JP3653348B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3653348B2
JP3653348B2 JP22240696A JP22240696A JP3653348B2 JP 3653348 B2 JP3653348 B2 JP 3653348B2 JP 22240696 A JP22240696 A JP 22240696A JP 22240696 A JP22240696 A JP 22240696A JP 3653348 B2 JP3653348 B2 JP 3653348B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
compressors
heating
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22240696A
Other languages
Japanese (ja)
Other versions
JPH1062028A (en
Inventor
隆治 宮
順一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22240696A priority Critical patent/JP3653348B2/en
Publication of JPH1062028A publication Critical patent/JPH1062028A/en
Application granted granted Critical
Publication of JP3653348B2 publication Critical patent/JP3653348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の圧縮機と冷媒加熱手段とを備えた空気調和機に係り、詳しくは冷媒加熱運転中における停止側圧縮機やその吸込配管での冷媒の寝込みを解消する技術に関する。
【0002】
【従来の技術】
近年、旧来の冷房専用機に代わり、空気を熱源として暖房を行うヒートポンプ型の空気調和機が増加している。ところが、ヒートポンプ型の空気調和機では、外気温が著しく低い場合、室外熱交換器での冷媒の蒸発温度と外気温との差がごく小さく無くなり、暖房が殆ど行えなくなる不具合があった。そこで、通常の室外熱交換器(空気熱交換器)の他に冷媒加熱器を室外ユニット内に設け、温水等と冷媒との間での熱交換(すなわち、冷媒加熱)を行わせることにより、比較的高温の冷媒を圧縮機に供給するものが出現している。この種の空気調和機では、外気温と無関係に室内熱交換器での凝縮潜熱を確保できるため、厳冬時においても十分な暖房が可能となる。
【0003】
一方、大型の空気調和機では、室外ユニット内に複数の圧縮機を設置し、空調負荷の増減に応じて圧縮機の能力や運転台数を変えるものが知られている。例えば、二台の圧縮機を備えるものでは、定速型圧縮機と最大能力が定速圧縮機と等しい可変型圧縮機とを組合せ、能力制御を広範囲に行うものがある。この空気調和機では、50%以下の能力が要求される場合には可変型圧縮機のみを駆動し、50%以上の能力が要求される場合には両圧縮機を共に駆動する。これにより、可変型圧縮機で5段階に能力切換が行えれば、全体では10段階の能力切換が可能となる。
【0004】
【発明が解決しようとする課題】
複数の圧縮機と冷媒加熱器とを備えたヒートポンプ型の空気調和機では、冷媒加熱を行いながら運転している際に、能力制御のために一部の圧縮機を停止させると、停止中の圧縮機やその圧縮機への吸込配管の内部に液冷媒が溜まる(冷媒が寝込む)ことがあった。これは、加熱されることにより冷媒の飽和温度が上昇し、冷媒の流れがなく外気に曝されて低温となった圧縮機や吸込配管に接触して冷媒が凝縮するもので、冷媒の寝込みは運転を続ける間に徐々に進行してゆく。
【0005】
圧縮機や吸込配管内で冷媒が寝込んだ場合、再起動時に大量の液冷媒が圧縮機構に流入し、液圧縮により圧縮機が故障することがあった。また、停止中の圧縮機やその吸込配管内に大量の冷媒が寝込むと、運転中の圧縮機や冷媒回路に流通する冷媒が不足し、空調が円滑に行えなくなることもあった。更に、圧縮機内での冷媒の寝込み量が多くなると、液冷媒に浸されることにより、電動モータの巻線に絶縁破壊が生じることもあった。尚、圧縮機の下部にはクランクケースヒータが付設されているが、これは圧縮機の停止時に封入された潤滑油に冷媒が溶け込むことを防止するものであり、圧縮機内に寝込んだ大量の液冷媒を気化させる能力はなく、また、吸込配管に寝込んだ液冷媒に対しては殆ど効果がなかった。
【0006】
本発明は上記状況に鑑みなされたもので、冷媒加熱運転中における停止側の圧縮機やその吸込配管における冷媒の寝込みを解消した空気調和機を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1の発明では、暖房能力の調整のために並列に接続され単独もしくは同時運転される複数の圧縮機と、暖房運転時の熱源として利用する冷媒加熱手段とを有する空気調和機において、当該複数の圧縮機のうち、冷媒加熱運転時に停止しうる圧縮機にはメインクランクケースヒータとサブクランクケースヒータとからなる圧縮機加熱手段と、この圧縮機加熱手段を作動させる制御手段とを備え、前記冷媒加熱運転時に停止しうる圧縮機のみの運転停止の時は、この制御手段によってメインクランクケースヒータとサブクランクケースヒータとに通電し、いずれの圧縮機も運転を停止している時はメインクランクケースヒータのみに通電することを提案する。
【0008】
この発明によれば、例えば、二台の圧縮機のうち冷媒加熱運転時に停止される可能性があるものには十分な加熱能力を有する電気ヒータを付設し、冷媒加熱運転時における停止側圧縮機の電気ヒータに通電を行う。これにより、停止側圧縮機の内部で冷媒が凝縮しなくなり、冷媒の寝込みに起因する圧縮機の故障等が防止される。
【0011】
又、請求項2の発明では、圧縮機に吸入される冷媒を加熱して冷媒加熱運転を行わせる冷媒加熱手段と、同一の冷媒回路に並列に接続された複数の圧縮機とを有する空気調和機において、当該複数の圧縮機にそれぞれ対応する複数の吸込配管と、当該複数の吸込配管を連通させる連通路とを備えたものを提案する。
【0012】
この発明によれば、運転時に一部の圧縮機を停止させても、その吸込配管が運転側圧縮機の吸込配管に連通路を介して連通しているため、停止側圧縮機の吸込配管の冷媒が運転側圧縮機内に吸引されて冷媒の寝込みが防止される。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づき詳細に説明する。
【0014】
図1には、室内ユニット1と室外ユニット3とからなる空気調和機の冷媒回路(実線で示す)および電気回路(一点鎖線で示す)を表している。室内ユニット1内には、室内熱交換器5、電動ファン7、電動式の膨張弁9等と、電動ファン7および電動膨張弁9等を駆動制御する室内側ECU11とが収納されている。また、室外ユニット3内には、並列に配置された一対の圧縮機21,23、電磁式の四方弁25、並列に配置された室外熱交換器27および冷媒加熱器29、アキュムレータ31、電動ファン33等と、両圧縮機21,23、四方弁25、電動ファン33等を駆動制御する室外側ECU35とが収納されている。尚、室外熱交換器27は通常の空気熱交換器であるが、冷媒加熱器29は所定温度(本実施形態では、50℃)の温水と冷媒との間で熱交換を行わせる水熱交換器である。
【0015】
室内ユニット1および室外ユニット3内の機器類は冷媒配管51〜64により接続されており、暖房時(冷媒加熱運転時)には実線の矢印で示した方向に冷媒が循環し、冷房運転時には破線の矢印で示した方向に冷媒が循環する。また、冷媒配管63と冷媒配管64とは連通配管65により連通されており、冷媒が両冷媒配管63,64の間で移動可能となっている。図中、37,39は室外側ECU35により開閉駆動される電磁式の遮断弁であり、冷房あるいは暖房時において室外熱交換器27あるいは冷媒加熱器29への冷媒配管58,56を遮断する。また、41,43,45は冷媒を一方向へのみ流通させる逆止弁であり、冷媒配管51,52,60に介装されている。
【0016】
図2には、圧縮機21,23およびアキュムレータ31周辺のレイアウトを示している。図2中で左方の圧縮機(以下、第1圧縮機と記す)21は可変型であり、空調運転時には優先的に駆動される。また、右方の圧縮機(以下、第2圧縮機と記す)23は定速型であり、50%以上の能力が要求された場合にのみ駆動される。両圧縮機21,23の下部には、メインクランクケースヒータ71が付設されており、第2圧縮機23の上部には更に圧縮機加熱手段である2本のサブクランクケースヒータ73,75が付設されている。メインクランクケースヒータ71とサブクランクケースヒータ73,75とは、同一容量(本実施形態では、32W)であり、図3に示したように、室外側ECU35により通電制御される。
【0017】
一方、アキュムレータ31の直上部に接続した冷媒配管62は、2本の冷媒配管(以下、吸込配管と記す)63,64に分岐した後、下降してベースプレート(図示せず)の上面に沿って配管された後、上昇して両圧縮機21,23に接続している。そして、両吸込配管63,64は、圧縮機21,23への立上り部位で、連通配管65を介して連通されている。
【0018】
以下、本実施形態の作用を説明する。
【0019】
外気温が所定値以下に低下し、空気を熱源とした暖房ができなくなると、室外側ECU35は、通常の暖房運転から冷媒加熱運転への切換を行う。すなわち、遮断弁37を閉鎖する一方で遮断弁39を開放し、冷媒の供給先を室外熱交換器27から冷媒加熱器29に変更する。そして、電動ファン33を停止させると共に、図示しない温水源からの温水を冷媒加熱器29に供給させる。
【0020】
これにより、室内熱交換器5からの液冷媒は、冷媒配管55,56を介して冷媒加熱器29に流入し、その内部で温水との熱交換により比較的高温(例えば、20〜40℃)のガス冷媒となる。ガス冷媒は、冷媒配管57,61を介してアキュムレータ31に流入し、冷媒配管62〜64を介して第1および第2圧縮機21,23に吸入される。この際、冷媒配管60に逆止弁45が設けられているため、室外熱交換器27側へのガス冷媒の流入が防止される。第1および第2圧縮機21,23に吸入されたガス冷媒は、その内部で圧縮されて高温高圧となり、冷媒配管51〜54を介して室内熱交換器5に流入する。そして、高温のガス冷媒は、電動ファン7に送風された室内空気に熱エネルギーを放出して暖房を行う一方、室内熱交換器5内で徐々に凝縮して再び液冷媒となる。
【0021】
さて、室外側ECU35は、室外ユニットへの能力要求が小さくなった場合、第1圧縮機21の能力制御を行うと共に、第2圧縮機23を停止させる。すると、アキュムレータ31からのガス冷媒は、冷媒配管62,63を介して第1圧縮機21のみに吸入され、その内部で圧縮された後、冷媒配管51,53〜54を介して室内熱交換器5に流入することになる。この際、冷媒配管52に逆止弁43が設けられているため、第1圧縮機21から吐出されたガス冷媒が第2圧縮機23側に流入することが防止される。
【0022】
次に、第2圧縮機23および吸込配管64における冷媒の寝込みを防止する手順について述べる。
【0023】
冷媒加熱運転中に第2圧縮機23を停止させた場合、冷媒が吸込配管64や第2圧縮機23の内部で寝込む虞がある。すなわち、冷媒の流れがなく外気に曝されて低温となった吸込配管64や第2圧縮機23に触れた場合、加熱されて飽和温度の高くなったガス冷媒は容易に凝縮し、液冷媒としてこれらの内部に溜まることがある。本実施形態では、このような冷媒の寝込みを防止するため、以下に述べる二つの手段を採っている。
【0024】
室外側ECU35は、空気調和機の運転が開始されると、所定の制御インターバルで、図4に示したクランクケースヒータ通電制御サブルーチンを繰り返し実行する。室外側ECU35は、このサブルーチンを開始すると、先ずステップS1で平行処理されている各種サブルーチンからの運転情報を読み込んだ後、ステップS3で第2圧縮機23が停止中であるか否かを判定する。
【0025】
そして、この判定がNo 、すなわち、第2圧縮機23が運転中であれば、室外側ECU35は、ステップS5でメインクランクケースヒータ71およびサブクランクケースヒータ73,75への通電を中止させる。これは、運転中であれば冷媒回路の温度が十分に高くなっているため、第2圧縮機23および吸込配管64内での冷媒の凝縮は起こり得ず、逆に不要な加熱を行うことにより第2圧縮機23の温度が過度に上昇するためである。
【0026】
ステップS3の判定がYesであった場合、室外側ECU35は、ステップS7で第1圧縮機21が運転中であり且つ冷媒加熱運転が行われているか否かを判定する。そして、この判定がNo であれば、室外側ECU35は、ステップS9でメインクランクケースヒータ71へのみ通電を開始する。すなわち、冷房運転時や通常の暖房運転時には、封入された潤滑油への冷媒の溶け混みを防止するため、第2圧縮機23の温度をある程度高く維持する。また、冷媒加熱運転時であっても、第1圧縮機21も停止していれば、冷媒が寝込む虞がないため、上述した理由で第2圧縮機23の温度をある程度高く維持する。
【0027】
ステップS7の判定がYes、すなわち、冷媒加熱運転時に第1圧縮機21のみが運転されている場合、室外側ECU35は、ステップS11でメインクランクケースヒータ71およびサブクランクケースヒータ73,75への通電を開始する。これにより、第2圧縮機23は全体的に加熱され、その内部温度がガス冷媒の飽和温度より高くなり、冷媒が寝込む原因となる液冷媒の凝縮が防止される。
【0028】
一方、アキュムレータ31からのガス冷媒は、冷媒配管62を介して吸込配管64に流入した後、低温となった管壁に触れることにより徐々に凝縮する。そして、凝縮により生成された液冷媒は、ガス冷媒より比重が大きいため、吸込配管64の下部に溜まる。ことろが、本実施形態では、吸込配管64が連通配管65を介して吸込配管63に連通され、且つその連通部位が吸込配管64の最下部かつ第2圧縮機23への立上り部に設けられているため、吸込配管64内ではガス冷媒の流れが生じ、液冷媒が殆ど生成されない。また、液冷媒が生成された場合にも、吸込配管64内に溜まることなく、速やかに第1圧縮機21に吸引される。その結果、吸込配管64内における液冷媒の寝込みも完全に防止され、第2圧縮機23の再起動時においても、液冷媒が第2圧縮機23に流入することが防止される。
【0029】
このように、本実施形態では、第2圧縮機23にサブクランクケースヒータ73,75を付設して適宜通電制御を行うと共に、両圧縮機21,23の吸込配管63,64を連通させるようにしたため、第2圧縮機23やその吸込配管64における冷媒の寝込みを防止することができた。その結果、従来装置で問題となっていた、液圧縮による圧縮機の故障や、冷媒の不足による空調不良、電動モータの巻線の絶縁破壊等の不具合が完全に解消された。
【0030】
以上で具体的実施形態の説明を終えるが、本発明は上述した実施形態に限定されるものではない。例えば、上記実施形態では、圧縮機加熱手段と連通路とを共に用いるようにしたが、いずれか一方のみでも所定の効果を得ることができる。また、上記実施形態は、可変型圧縮機と定速型圧縮機とを一台ずつ備えた空気調和機に本発明を適用したものであるが、一台の可変型圧縮機と二台以上の定速型圧縮機を備えた空気調和機に適用してもよい。また、本発明を定速圧縮機のみを複数台備えてこれらを交互に運転させる空気調和機に適用してもよいし、その場合にはサブクランクケースヒータを全ての圧縮機に備えることが望ましい。また、上記実施形態は電動圧縮機を備えた空気調和機に適用したものであるが、ガスヒートポンプ型の空気調和機等に適用してもよいし、室内ユニットや室外ユニットを複数備えたものに適用してもよい。更に、装置の具体的構成や制御の手順等についても、本発明の趣旨を逸脱しない範囲で、適宜変更可能である。
【0031】
【発明の効果】
以上述べたように、本発明の冷凍機によれば、冷媒加熱運転時に停止中の圧縮機を圧縮機加熱手段により加熱したり、複数の圧縮機の吸込配管を連通させるようにしたため、圧縮機や吸込配管における冷媒の寝込みを防止することができ、液圧縮による圧縮機の故障や、冷媒の不足による空調不良、電動モータの巻線の絶縁破壊等の不具合を解消できる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る空気調和機の概略構成図である。
【図2】圧縮機およびアキュムレータ周辺のレイアウトを示す斜視図である。
【図3】圧縮機の側面図である。
【図4】クランクケースヒータ通電制御サブルーチンの手順を示したフローチャートである。
【符号の説明】
1 室内ユニット
3 室外ユニット
21 第1圧縮機
23 第2圧縮機
27 室外熱交換器
29 冷媒加熱器
31 アキュムレータ
35 室外側ECU
37,39 遮断弁
63,64 吸込配管
65 連通配管
71 メインクランクケースヒータ
73,75 サブクランクケースヒータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner including a plurality of compressors and refrigerant heating means, and more particularly to a technique for eliminating refrigerant stagnation in a stop-side compressor and its suction pipe during refrigerant heating operation.
[0002]
[Prior art]
In recent years, heat pump type air conditioners that perform heating using air as a heat source are increasing in place of conventional cooling only machines. However, in the heat pump type air conditioner, when the outside air temperature is extremely low, the difference between the evaporation temperature of the refrigerant in the outdoor heat exchanger and the outside air temperature becomes very small, and heating is hardly performed. Therefore, in addition to a normal outdoor heat exchanger (air heat exchanger), a refrigerant heater is provided in the outdoor unit, and heat exchange between hot water or the like and the refrigerant (that is, refrigerant heating) is performed. Some have supplied relatively high-temperature refrigerant to the compressor. In this type of air conditioner, the latent heat of condensation in the indoor heat exchanger can be ensured regardless of the outside air temperature, so that sufficient heating is possible even in severe winter.
[0003]
On the other hand, a large air conditioner is known in which a plurality of compressors are installed in an outdoor unit, and the capacity and the number of operating units of the compressors are changed in accordance with an increase or decrease in the air conditioning load. For example, some compressors having two compressors combine a constant speed compressor and a variable compressor having a maximum capacity equal to that of the constant speed compressor, and perform capacity control over a wide range. In this air conditioner, when a capacity of 50% or less is required, only the variable compressor is driven, and when a capacity of 50% or more is required, both compressors are driven together. Accordingly, if the variable compressor can switch the capacity in five stages, the capacity can be switched in ten stages as a whole.
[0004]
[Problems to be solved by the invention]
In a heat pump type air conditioner equipped with a plurality of compressors and refrigerant heaters, if some compressors are stopped for capacity control when operating while performing refrigerant heating, Liquid refrigerant sometimes accumulated in the compressor and the suction pipe to the compressor (refrigerant stagnation). This is because the saturation temperature of the refrigerant rises when heated, and the refrigerant condenses in contact with the compressor and the suction pipe that are exposed to the outside air without any flow of the refrigerant and becomes low temperature. Progress gradually while continuing driving.
[0005]
When the refrigerant stagnates in the compressor or the suction pipe, a large amount of liquid refrigerant flows into the compression mechanism at the time of restart, and the compressor may break down due to liquid compression. In addition, if a large amount of refrigerant stagnates in the stopped compressor or its suction pipe, there is a shortage of refrigerant circulating in the operating compressor or refrigerant circuit, and air conditioning may not be performed smoothly. Furthermore, when the amount of refrigerant stagnation in the compressor increases, the winding of the electric motor may break down due to being immersed in the liquid refrigerant. A crankcase heater is attached to the lower part of the compressor. This prevents the refrigerant from being dissolved in the lubricating oil enclosed when the compressor is stopped. There was no ability to vaporize the refrigerant, and there was little effect on the liquid refrigerant that had fallen into the suction pipe.
[0006]
This invention is made | formed in view of the said situation, and it aims at providing the air conditioner which eliminated the stagnation of the refrigerant | coolant in the compressor of the stop side in the refrigerant | coolant heating operation, and its suction piping.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the invention of claim 1, a plurality of compressors connected in parallel for independent adjustment of heating capacity and operated alone or simultaneously, and refrigerant heating means utilized as a heat source during heating operation, Among the plurality of compressors, the compressor that can be stopped during the refrigerant heating operation includes a compressor heating means including a main crankcase heater and a sub crankcase heater, and the compressor heating means. Control means for operating the compressor, and when the operation of only the compressor that can be stopped during the refrigerant heating operation is stopped, the main crankcase heater and the sub crankcase heater are energized by this control means, and both compressors are operated. It is proposed that only the main crankcase heater is energized when the engine is stopped.
[0008]
According to the present invention, for example, an electric heater having sufficient heating capacity is attached to one of the two compressors that may be stopped during the refrigerant heating operation, and the stop side compressor during the refrigerant heating operation is provided. Energize the electric heater. As a result, the refrigerant no longer condenses inside the stop-side compressor, and a compressor failure or the like due to the stagnation of the refrigerant is prevented.
[0011]
According to a second aspect of the present invention, there is provided an air conditioner comprising: refrigerant heating means for performing refrigerant heating operation by heating refrigerant sucked into the compressor; and a plurality of compressors connected in parallel to the same refrigerant circuit. In this machine, a compressor having a plurality of suction pipes respectively corresponding to the plurality of compressors and a communication passage for communicating the plurality of suction pipes is proposed.
[0012]
According to the present invention, even if a part of the compressors are stopped during operation, the suction pipe communicates with the suction pipe of the operation side compressor via the communication path. The refrigerant is sucked into the operation side compressor, and the refrigerant is prevented from stagnation.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0014]
FIG. 1 shows a refrigerant circuit (shown by a solid line) and an electric circuit (shown by an alternate long and short dash line) of an air conditioner including an indoor unit 1 and an outdoor unit 3. Housed in the indoor unit 1 are an indoor heat exchanger 5, an electric fan 7, an electric expansion valve 9, and the like, and an indoor ECU 11 that drives and controls the electric fan 7, the electric expansion valve 9, and the like. Further, in the outdoor unit 3, a pair of compressors 21, 23 arranged in parallel, an electromagnetic four-way valve 25, an outdoor heat exchanger 27 and a refrigerant heater 29 arranged in parallel, an accumulator 31, an electric fan 33 and the outdoor ECU 35 that controls the drive of the compressors 21 and 23, the four-way valve 25, the electric fan 33, and the like are housed. The outdoor heat exchanger 27 is a normal air heat exchanger, but the refrigerant heater 29 is a water heat exchanger that exchanges heat between hot water at a predetermined temperature (50 ° C. in this embodiment) and the refrigerant. It is a vessel.
[0015]
The devices in the indoor unit 1 and the outdoor unit 3 are connected by refrigerant pipes 51 to 64, and the refrigerant circulates in the direction indicated by the solid arrow during heating (during refrigerant heating operation), and the broken line during cooling operation. The refrigerant circulates in the direction indicated by the arrow. Further, the refrigerant pipe 63 and the refrigerant pipe 64 are communicated with each other through a communication pipe 65, and the refrigerant can move between the refrigerant pipes 63 and 64. In the figure, 37 and 39 are electromagnetic shut-off valves that are opened and closed by the outdoor ECU 35, and shut off the refrigerant pipes 58 and 56 to the outdoor heat exchanger 27 or the refrigerant heater 29 during cooling or heating. Reference numerals 41, 43, and 45 are check valves that allow the refrigerant to flow only in one direction, and are interposed in the refrigerant pipes 51, 52, and 60.
[0016]
FIG. 2 shows a layout around the compressors 21 and 23 and the accumulator 31. A left compressor (hereinafter referred to as a first compressor) 21 in FIG. 2 is a variable type and is preferentially driven during an air conditioning operation. The right compressor (hereinafter referred to as a second compressor) 23 is a constant speed type and is driven only when a capacity of 50% or more is required. A main crankcase heater 71 is attached to the lower part of the compressors 21 and 23, and two sub crankcase heaters 73 and 75, which are compressor heating means, are attached to the upper part of the second compressor 23. Has been. The main crankcase heater 71 and the sub crankcase heaters 73 and 75 have the same capacity (in this embodiment, 32 W), and are energized and controlled by the outdoor ECU 35 as shown in FIG.
[0017]
On the other hand, the refrigerant pipe 62 connected to the upper part of the accumulator 31 branches into two refrigerant pipes (hereinafter referred to as suction pipes) 63 and 64 and then descends along the upper surface of a base plate (not shown). After being piped, it rises and is connected to both compressors 21 and 23. The suction pipes 63 and 64 are communicated via the communication pipe 65 at the rising portions to the compressors 21 and 23.
[0018]
Hereinafter, the operation of the present embodiment will be described.
[0019]
When the outside air temperature drops below a predetermined value and heating using air as a heat source becomes impossible, the outdoor ECU 35 switches from the normal heating operation to the refrigerant heating operation. That is, the shutoff valve 37 is closed while the shutoff valve 39 is opened, and the refrigerant supply destination is changed from the outdoor heat exchanger 27 to the refrigerant heater 29. Then, the electric fan 33 is stopped and hot water from a hot water source (not shown) is supplied to the refrigerant heater 29.
[0020]
Thereby, the liquid refrigerant from the indoor heat exchanger 5 flows into the refrigerant heater 29 via the refrigerant pipes 55 and 56, and is relatively hot (for example, 20 to 40 ° C.) due to heat exchange with warm water therein. Gas refrigerant. The gas refrigerant flows into the accumulator 31 through the refrigerant pipes 57 and 61 and is sucked into the first and second compressors 21 and 23 through the refrigerant pipes 62 to 64. At this time, since the check valve 45 is provided in the refrigerant pipe 60, the inflow of gas refrigerant to the outdoor heat exchanger 27 side is prevented. The gas refrigerant sucked into the first and second compressors 21 and 23 is compressed therein to become high temperature and pressure and flows into the indoor heat exchanger 5 through the refrigerant pipes 51 to 54. The high-temperature gas refrigerant releases heat energy to the room air blown to the electric fan 7 to perform heating, while gradually condensing in the indoor heat exchanger 5 to become liquid refrigerant again.
[0021]
Now, when the capacity | capacitance request | requirement to an outdoor unit becomes small, outdoor ECU35 performs the capacity | capacitance control of the 1st compressor 21, and stops the 2nd compressor 23. FIG. Then, the gas refrigerant from the accumulator 31 is sucked only into the first compressor 21 through the refrigerant pipes 62 and 63 and compressed inside thereof, and then the indoor heat exchanger through the refrigerant pipes 51 and 53 to 54. 5 will flow into. At this time, since the check valve 43 is provided in the refrigerant pipe 52, the gas refrigerant discharged from the first compressor 21 is prevented from flowing into the second compressor 23 side.
[0022]
Next, a procedure for preventing the stagnation of the refrigerant in the second compressor 23 and the suction pipe 64 will be described.
[0023]
When the second compressor 23 is stopped during the refrigerant heating operation, the refrigerant may stagnate inside the suction pipe 64 or the second compressor 23. That is, when the suction pipe 64 or the second compressor 23 that has been exposed to the outside air and has a low temperature due to no refrigerant flow is touched, the gas refrigerant that has been heated and has a high saturation temperature easily condenses as a liquid refrigerant. May accumulate inside these. In the present embodiment, in order to prevent such a stagnation of the refrigerant, the following two means are employed.
[0024]
When the operation of the air conditioner is started, the outdoor ECU 35 repeatedly executes the crankcase heater energization control subroutine shown in FIG. 4 at a predetermined control interval. When this subroutine is started, the outdoor ECU 35 first reads operation information from various subroutines processed in parallel in step S1, and then determines whether or not the second compressor 23 is stopped in step S3. .
[0025]
If this determination is No, that is, if the second compressor 23 is operating, the outdoor ECU 35 stops energization of the main crankcase heater 71 and the sub crankcase heaters 73 and 75 in step S5. This is because the refrigerant circuit temperature is sufficiently high during operation, so that condensation of the refrigerant in the second compressor 23 and the suction pipe 64 cannot occur, and conversely, unnecessary heating is performed. This is because the temperature of the second compressor 23 rises excessively.
[0026]
When the determination in step S3 is Yes, the outdoor ECU 35 determines whether or not the first compressor 21 is operating and the refrigerant heating operation is performed in step S7. If this determination is No, the outdoor ECU 35 starts energizing only the main crankcase heater 71 in step S9. That is, during the cooling operation or the normal heating operation, the temperature of the second compressor 23 is kept high to some extent in order to prevent the refrigerant from being mixed in the enclosed lubricating oil. Further, even during the refrigerant heating operation, if the first compressor 21 is also stopped, there is no possibility that the refrigerant will stagnate, so the temperature of the second compressor 23 is kept high to some extent for the reasons described above.
[0027]
If the determination in step S7 is Yes, that is, if only the first compressor 21 is operating during the refrigerant heating operation, the outdoor ECU 35 energizes the main crankcase heater 71 and the sub crankcase heaters 73 and 75 in step S11. To start. Thereby, the 2nd compressor 23 is heated entirely, The internal temperature becomes higher than the saturation temperature of a gas refrigerant | coolant, and condensation of the liquid refrigerant | coolant which causes a refrigerant | coolant to sleep is prevented.
[0028]
On the other hand, the gas refrigerant from the accumulator 31 flows into the suction pipe 64 through the refrigerant pipe 62 and then gradually condenses by touching the tube wall that has become low temperature. And since the liquid refrigerant produced | generated by condensation has larger specific gravity than a gas refrigerant, it accumulates in the lower part of the suction piping 64. FIG. In this embodiment, however, the suction pipe 64 is communicated with the suction pipe 63 via the communication pipe 65, and the communication part is provided at the lowermost part of the suction pipe 64 and at the rising portion to the second compressor 23. Therefore, a gas refrigerant flows in the suction pipe 64, and almost no liquid refrigerant is generated. Further, even when the liquid refrigerant is generated, it is quickly sucked into the first compressor 21 without accumulating in the suction pipe 64. As a result, the stagnation of the liquid refrigerant in the suction pipe 64 is completely prevented, and the liquid refrigerant is prevented from flowing into the second compressor 23 even when the second compressor 23 is restarted.
[0029]
As described above, in the present embodiment, the sub-crankcase heaters 73 and 75 are attached to the second compressor 23 to appropriately control energization, and the suction pipes 63 and 64 of both the compressors 21 and 23 are communicated. Therefore, it was possible to prevent the stagnation of the refrigerant in the second compressor 23 and the suction pipe 64 thereof. As a result, problems such as compressor failure due to liquid compression, air conditioning failure due to lack of refrigerant, and insulation breakdown of the windings of the electric motor, which have been problems with conventional devices, have been completely solved.
[0030]
The description of the specific embodiment is finished above, but the present invention is not limited to the above-described embodiment. For example, in the above embodiment, the compressor heating means and the communication path are used together, but a predetermined effect can be obtained with only one of them. In the above embodiment, the present invention is applied to an air conditioner having one variable compressor and one constant speed compressor. However, one variable compressor and two or more compressors are used. You may apply to the air conditioner provided with the constant speed type compressor. In addition, the present invention may be applied to an air conditioner that includes a plurality of constant speed compressors and operates them alternately, and in that case, it is desirable to include a sub crankcase heater in all the compressors. . Moreover, although the said embodiment is applied to the air conditioner provided with the electric compressor, it may be applied to a gas heat pump type air conditioner or the like, and is provided with a plurality of indoor units and outdoor units. You may apply. Furthermore, the specific configuration of the apparatus, the control procedure, and the like can be changed as appropriate without departing from the spirit of the present invention.
[0031]
【The invention's effect】
As described above, according to the refrigerator of the present invention, the compressor stopped during the refrigerant heating operation is heated by the compressor heating means, or the suction pipes of the plurality of compressors are communicated. It is possible to prevent the stagnation of the refrigerant in the suction pipe and the troubles such as the compressor failure due to the liquid compression, the air conditioning failure due to the lack of the refrigerant, and the insulation breakdown of the winding of the electric motor.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a layout around a compressor and an accumulator.
FIG. 3 is a side view of the compressor.
FIG. 4 is a flowchart showing a procedure of a crankcase heater energization control subroutine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Indoor unit 3 Outdoor unit 21 1st compressor 23 2nd compressor 27 Outdoor heat exchanger 29 Refrigerant heater 31 Accumulator 35 Outdoor ECU
37, 39 Shut-off valve 63, 64 Suction pipe 65 Communication pipe 71 Main crankcase heater 73, 75 Sub crankcase heater

Claims (2)

暖房能力の調整のために並列に接続され単独もしくは同時運転される複数の圧縮機と、暖房運転時の熱源として利用する冷媒加熱手段とを有する空気調和機において、当該複数の圧縮機のうち、冷媒加熱運転時に停止しうる圧縮機にはメインクランクケースヒータとサブクランクケースヒータとからなる圧縮機加熱手段と、この圧縮機加熱手段を作動させる制御手段とを備え、前記冷媒加熱運転時に停止しうる圧縮機のみの運転停止の時は、この制御手段によってメインクランクケースヒータとサブクランクケースヒータとに通電し、いずれの圧縮機も運転を停止している時はメインクランクケースヒータのみに通電し、これにより暖房能力の低下のために圧縮機の単独運転時における運転停止中の圧縮機を加熱してこの停止中の圧縮機への冷媒寝込みをしにくくしたことを特徴とする空気調和機。 In an air conditioner having a plurality of compressors connected in parallel for adjustment of heating capacity and operated alone or simultaneously and a refrigerant heating means used as a heat source during heating operation, among the plurality of compressors, The compressor that can be stopped during the refrigerant heating operation includes compressor heating means including a main crankcase heater and a sub crankcase heater, and control means for operating the compressor heating means, and is stopped during the refrigerant heating operation. When the operation of only the compressor is stopped, the main crankcase heater and sub-crankcase heater are energized by this control means when only the compressor is stopped. When both compressors are stopped, only the main crankcase heater is energized. Because of this, due to a decrease in heating capacity, the compressor that has been shut down when the compressor is operating alone is heated to An air conditioner characterized by being difficult to the medium stagnation. 請求項1記載の空気調和機において、当該複数の圧縮機にそれぞれ対応する複数の吸込配管と、当該複数の吸込配管を連通させる連通路とを備えたことを特徴とする空気調和機。 2. The air conditioner according to claim 1 , further comprising a plurality of suction pipes respectively corresponding to the plurality of compressors and a communication passage communicating the plurality of suction pipes.
JP22240696A 1996-08-23 1996-08-23 Air conditioner Expired - Fee Related JP3653348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22240696A JP3653348B2 (en) 1996-08-23 1996-08-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22240696A JP3653348B2 (en) 1996-08-23 1996-08-23 Air conditioner

Publications (2)

Publication Number Publication Date
JPH1062028A JPH1062028A (en) 1998-03-06
JP3653348B2 true JP3653348B2 (en) 2005-05-25

Family

ID=16781887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22240696A Expired - Fee Related JP3653348B2 (en) 1996-08-23 1996-08-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP3653348B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6880914B2 (en) 1997-07-15 2005-04-19 Silverbrook Research Pty Ltd Inkjet pagewidth printer for high volume pagewidth printing
US7144098B2 (en) 1997-07-15 2006-12-05 Silverbrook Research Pty Ltd Printer having a printhead with an inkjet printhead chip for use with a pulsating pressure ink supply
US7147302B2 (en) 1997-07-15 2006-12-12 Silverbrook Researh Pty Ltd Nozzle assembly
US7152949B2 (en) 1997-07-15 2006-12-26 Silverbrook Research Pty Ltd Wide-format print engine with a pagewidth ink reservoir assembly
US7156495B2 (en) 1998-06-09 2007-01-02 Silverbrook Research Pty Ltd Ink jet printhead having nozzle arrangement with flexible wall actuator
US7156494B2 (en) 1998-06-09 2007-01-02 Silverbrook Research Pty Ltd Inkjet printhead chip with volume-reduction actuation
US7159965B2 (en) 1997-07-15 2007-01-09 Silverbrook Research Pty Ltd Wide format printer with a plurality of printhead integrated circuits
US7182435B2 (en) 1997-07-15 2007-02-27 Silverbrook Research Pty Ltd Printhead chip incorporating laterally displaceable ink flow control mechanisms
US7217048B2 (en) 1997-07-15 2007-05-15 Silverbrook Research Pty Ltd Pagewidth printer and computer keyboard combination
US7226145B2 (en) 1997-07-15 2007-06-05 Silverbrook Research Pty Ltd Micro-electromechanical valve shutter assembly
US7240992B2 (en) 1997-07-15 2007-07-10 Silverbrook Research Pty Ltd Ink jet printhead incorporating a plurality of nozzle arrangement having backflow prevention mechanisms
US7246883B2 (en) 1997-07-15 2007-07-24 Silverbrook Research Pty Ltd Motion transmitting structure for a nozzle arrangement of a printhead chip for an inkjet printhead
US7261392B2 (en) 1997-07-15 2007-08-28 Silverbrook Research Pty Ltd Printhead chip that incorporates pivotal micro-mechanical ink ejecting mechanisms
US7270492B2 (en) 1997-07-15 2007-09-18 Silverbrook Research Pty Ltd Computer system having integrated printer and keyboard
US7287836B2 (en) 1997-07-15 2007-10-30 Sil;Verbrook Research Pty Ltd Ink jet printhead with circular cross section chamber
US7303254B2 (en) 1997-07-15 2007-12-04 Silverbrook Research Pty Ltd Print assembly for a wide format pagewidth printer
US7303262B2 (en) 2002-06-28 2007-12-04 Silverbrook Research Pty Ltd Ink jet printhead chip with predetermined micro-electromechanical systems height
US7334873B2 (en) 2002-04-12 2008-02-26 Silverbrook Research Pty Ltd Discrete air and nozzle chambers in a printhead chip for an inkjet printhead
US7337532B2 (en) 1997-07-15 2008-03-04 Silverbrook Research Pty Ltd Method of manufacturing micro-electromechanical device having motion-transmitting structure
US7360872B2 (en) 1997-07-15 2008-04-22 Silverbrook Research Pty Ltd Inkjet printhead chip with nozzle assemblies incorporating fluidic seals
US7401901B2 (en) 1997-07-15 2008-07-22 Silverbrook Research Pty Ltd Inkjet printhead having nozzle plate supported by encapsulated photoresist
US7407269B2 (en) 2002-06-28 2008-08-05 Silverbrook Research Pty Ltd Ink jet nozzle assembly including displaceable ink pusher
US7431446B2 (en) 1997-07-15 2008-10-07 Silverbrook Research Pty Ltd Web printing system having media cartridge carousel
US7468139B2 (en) 1997-07-15 2008-12-23 Silverbrook Research Pty Ltd Method of depositing heater material over a photoresist scaffold
US7753463B2 (en) 1997-07-15 2010-07-13 Silverbrook Research Pty Ltd Processing of images for high volume pagewidth printing
US7758142B2 (en) 2002-04-12 2010-07-20 Silverbrook Research Pty Ltd High volume pagewidth printing
US7802871B2 (en) 1997-07-15 2010-09-28 Silverbrook Research Pty Ltd Ink jet printhead with amorphous ceramic chamber

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383753B1 (en) * 2000-12-30 2003-05-14 삼성전자주식회사 Apparatus for starting compressor of air conditioner
JP4736970B2 (en) * 2006-06-21 2011-07-27 パナソニック株式会社 Air conditioner
US9903627B2 (en) 2012-11-06 2018-02-27 Carrier Corporation Method of operating an air conditioning system including reducing the energy consumed by the compressor crank case heaters
JP2017180894A (en) * 2016-03-29 2017-10-05 株式会社富士通ゼネラル Air conditioner

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7337532B2 (en) 1997-07-15 2008-03-04 Silverbrook Research Pty Ltd Method of manufacturing micro-electromechanical device having motion-transmitting structure
US7347952B2 (en) 1997-07-15 2008-03-25 Balmain, New South Wales, Australia Method of fabricating an ink jet printhead
US7144098B2 (en) 1997-07-15 2006-12-05 Silverbrook Research Pty Ltd Printer having a printhead with an inkjet printhead chip for use with a pulsating pressure ink supply
US7147302B2 (en) 1997-07-15 2006-12-12 Silverbrook Researh Pty Ltd Nozzle assembly
US7147791B2 (en) 1997-07-15 2006-12-12 Silverbrook Research Pty Ltd Method of fabricating an injket printhead chip for use with a pulsating pressure ink supply
US7152949B2 (en) 1997-07-15 2006-12-26 Silverbrook Research Pty Ltd Wide-format print engine with a pagewidth ink reservoir assembly
US7802871B2 (en) 1997-07-15 2010-09-28 Silverbrook Research Pty Ltd Ink jet printhead with amorphous ceramic chamber
US7261392B2 (en) 1997-07-15 2007-08-28 Silverbrook Research Pty Ltd Printhead chip that incorporates pivotal micro-mechanical ink ejecting mechanisms
US7159965B2 (en) 1997-07-15 2007-01-09 Silverbrook Research Pty Ltd Wide format printer with a plurality of printhead integrated circuits
US7753463B2 (en) 1997-07-15 2010-07-13 Silverbrook Research Pty Ltd Processing of images for high volume pagewidth printing
US7172265B2 (en) 1997-07-15 2007-02-06 Silverbrook Research Pty Ltd Print assembly for a wide format printer
US7468139B2 (en) 1997-07-15 2008-12-23 Silverbrook Research Pty Ltd Method of depositing heater material over a photoresist scaffold
US7270492B2 (en) 1997-07-15 2007-09-18 Silverbrook Research Pty Ltd Computer system having integrated printer and keyboard
US7182435B2 (en) 1997-07-15 2007-02-27 Silverbrook Research Pty Ltd Printhead chip incorporating laterally displaceable ink flow control mechanisms
US7431429B2 (en) 1997-07-15 2008-10-07 Silverbrook Research Pty Ltd Printhead integrated circuit with planar actuators
US7407261B2 (en) 1997-07-15 2008-08-05 Silverbrook Research Pty Ltd Image processing apparatus for a printing mechanism of a wide format pagewidth inkjet printer
US7207657B2 (en) 1997-07-15 2007-04-24 Silverbrook Research Pty Ltd Ink jet printhead nozzle arrangement with actuated nozzle chamber closure
US7217048B2 (en) 1997-07-15 2007-05-15 Silverbrook Research Pty Ltd Pagewidth printer and computer keyboard combination
US7226145B2 (en) 1997-07-15 2007-06-05 Silverbrook Research Pty Ltd Micro-electromechanical valve shutter assembly
US7240992B2 (en) 1997-07-15 2007-07-10 Silverbrook Research Pty Ltd Ink jet printhead incorporating a plurality of nozzle arrangement having backflow prevention mechanisms
US7246881B2 (en) 1997-07-15 2007-07-24 Silverbrook Research Pty Ltd Printhead assembly arrangement for a wide format pagewidth inkjet printer
US7246883B2 (en) 1997-07-15 2007-07-24 Silverbrook Research Pty Ltd Motion transmitting structure for a nozzle arrangement of a printhead chip for an inkjet printhead
US7401901B2 (en) 1997-07-15 2008-07-22 Silverbrook Research Pty Ltd Inkjet printhead having nozzle plate supported by encapsulated photoresist
US7431446B2 (en) 1997-07-15 2008-10-07 Silverbrook Research Pty Ltd Web printing system having media cartridge carousel
US7290856B2 (en) 1997-07-15 2007-11-06 Silverbrook Research Pty Ltd Inkjet print assembly for high volume pagewidth printing
US7284834B2 (en) 1997-07-15 2007-10-23 Silverbrook Research Pty Ltd Closure member for an ink passage in an ink jet printhead
US7287836B2 (en) 1997-07-15 2007-10-30 Sil;Verbrook Research Pty Ltd Ink jet printhead with circular cross section chamber
US7278796B2 (en) 1997-07-15 2007-10-09 Silverbrook Research Pty Ltd Keyboard for a computer system
US7303254B2 (en) 1997-07-15 2007-12-04 Silverbrook Research Pty Ltd Print assembly for a wide format pagewidth printer
US7367729B2 (en) 1997-07-15 2008-05-06 Silverbrook Research Pty Ltd Printer within a computer keyboard
US7325918B2 (en) 1997-07-15 2008-02-05 Silverbrook Research Pty Ltd Print media transport assembly
US7360872B2 (en) 1997-07-15 2008-04-22 Silverbrook Research Pty Ltd Inkjet printhead chip with nozzle assemblies incorporating fluidic seals
US7086709B2 (en) 1997-07-15 2006-08-08 Silverbrook Research Pty Ltd Print engine controller for high volume pagewidth printing
US6880914B2 (en) 1997-07-15 2005-04-19 Silverbrook Research Pty Ltd Inkjet pagewidth printer for high volume pagewidth printing
US7179395B2 (en) 1998-06-09 2007-02-20 Silverbrook Research Pty Ltd Method of fabricating an ink jet printhead chip having actuator mechanisms located about ejection ports
US7156495B2 (en) 1998-06-09 2007-01-02 Silverbrook Research Pty Ltd Ink jet printhead having nozzle arrangement with flexible wall actuator
US7156494B2 (en) 1998-06-09 2007-01-02 Silverbrook Research Pty Ltd Inkjet printhead chip with volume-reduction actuation
US7192120B2 (en) 1998-06-09 2007-03-20 Silverbrook Research Pty Ltd Ink printhead nozzle arrangement with thermal bend actuator
US7204582B2 (en) 1998-06-09 2007-04-17 Silverbrook Research Pty Ltd. Ink jet nozzle with multiple actuators for reducing chamber volume
US7334877B2 (en) 1998-06-09 2008-02-26 Silverbrook Research Pty Ltd. Nozzle for ejecting ink
US7168789B2 (en) 1998-06-09 2007-01-30 Silverbrook Research Pty Ltd Printer with ink printhead nozzle arrangement having thermal bend actuator
US7182436B2 (en) 1998-06-09 2007-02-27 Silverbrook Research Pty Ltd Ink jet printhead chip with volumetric ink ejection mechanisms
US7758142B2 (en) 2002-04-12 2010-07-20 Silverbrook Research Pty Ltd High volume pagewidth printing
US7631957B2 (en) 2002-04-12 2009-12-15 Silverbrook Research Pty Ltd Pusher actuation in a printhead chip for an inkjet printhead
US7334873B2 (en) 2002-04-12 2008-02-26 Silverbrook Research Pty Ltd Discrete air and nozzle chambers in a printhead chip for an inkjet printhead
US7407269B2 (en) 2002-06-28 2008-08-05 Silverbrook Research Pty Ltd Ink jet nozzle assembly including displaceable ink pusher
US7303262B2 (en) 2002-06-28 2007-12-04 Silverbrook Research Pty Ltd Ink jet printhead chip with predetermined micro-electromechanical systems height

Also Published As

Publication number Publication date
JPH1062028A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
JP3653348B2 (en) Air conditioner
JPH0341747B2 (en)
JP5458717B2 (en) Refrigeration equipment
US2135285A (en) Heat pump
JP3675977B2 (en) Air conditioner
JP3679517B2 (en) Air conditioner
JP4086719B2 (en) Air conditioner and control method of air conditioner
JP4303864B2 (en) Engine-driven heat pump air conditioner with water heater
JP2538202B2 (en) Engine driven air conditioner
JP2006029637A (en) Heat storage type air conditioner and its operation method
JPS5930364Y2 (en) air conditioner
JPH11101495A (en) Fan controller and controlling method for multiroom air conditioner
JP2002168534A (en) Heat pump system of air conditioner
JPH048704B2 (en)
JPH0914778A (en) Air conditioner
JPH1062029A (en) Air conditioner
JP2009281645A (en) Air conditioner and control method for air conditioner
JPS5852946A (en) Air conditioner
JP3842843B2 (en) Internal combustion engine and gas heat pump device using the internal combustion engine
JPH045970Y2 (en)
JPH1062030A (en) Air conditioner
JPH10325640A (en) Driven by engine
JP4152008B2 (en) Refrigerant circulation type heat transfer device
KR100640907B1 (en) airconditioner system and method for controlling the system
JP3778646B2 (en) Air conditioner outdoor unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees