JP3652993B2 - Spherical titanium hydride powder for sintered alloy, method for producing the powder, and method for producing sintered alloy - Google Patents

Spherical titanium hydride powder for sintered alloy, method for producing the powder, and method for producing sintered alloy Download PDF

Info

Publication number
JP3652993B2
JP3652993B2 JP2001054079A JP2001054079A JP3652993B2 JP 3652993 B2 JP3652993 B2 JP 3652993B2 JP 2001054079 A JP2001054079 A JP 2001054079A JP 2001054079 A JP2001054079 A JP 2001054079A JP 3652993 B2 JP3652993 B2 JP 3652993B2
Authority
JP
Japan
Prior art keywords
powder
titanium
spherical
spherical titanium
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001054079A
Other languages
Japanese (ja)
Other versions
JP2002256302A (en
Inventor
伸弘 有本
忠司 小笠原
考二 山崎
Original Assignee
住友チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友チタニウム株式会社 filed Critical 住友チタニウム株式会社
Priority to JP2001054079A priority Critical patent/JP3652993B2/en
Publication of JP2002256302A publication Critical patent/JP2002256302A/en
Application granted granted Critical
Publication of JP3652993B2 publication Critical patent/JP3652993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、粉末冶金や添加材、水素吸蔵用等に用いられる球状水素化チタン粉末とその製造方法に関し、粉末の流動性及び充填性に優れた球状水素化チタン粉末及びその球状水素化チタン粉末を母材とするモリブデンまたはタングステンとの焼結合金の製造方法に関する。
【0002】
【従来の技術】
粉末冶金や添加材、水素吸蔵用等に用いられる水素化チタン粉末は、従来からスポンジチタンやチタン溶製材を水素雰囲気中で加熱し、水素化チタンとして水素脆化させたのち、ボールミルなどにより機械的に粉砕して製造していた。このように機械的粉砕により製造された水素化チタン粉末は、形状が不定形で粉体の流動性が悪く、見かけ密度が小さいため型への充填性が劣り、また粉末の表面積が大きいため酸素の吸収が多くなり酸素濃度が高く、粉砕時に金属不純物が混入するなどの問題があった。
【0003】
上記従来の水素化チタン粉末に見られる問題点を改善するものとして、水素化・脱水素法によりチタン系粉末を製造する際、脱水素後のチタン粉焼結塊を、衝撃・打撃を加える粉砕機構による機械的手段により粉砕して角の取れた粒子とすることにより、見かけ密度が大きく流動性に優れたチタン系粉末に転化させる製造方法が提案されている(特開平5−163508号公報を参照)。
【0004】
【発明が解決しようとする課題】
従来の水素化チタン粉末には多くの問題点があり、また上記改善されたチタン系粉末の製造方法では、脱水素後のチタン粉焼結塊を機械的に粉砕処理するため、粉砕時の金属汚染を避けることができない欠点があった。
【0005】
本発明は、上記従来技術に見られる欠点を排除するため、機械的に衝撃・打撃を加える粉砕処理を行うことなく、高い粉末流動性があり、見かけ密度が大きく型への充填性の良い焼結合金用球状水素化チタン粉末及びその球状水素化チタン粉末による焼結合金の製造方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者らは、チタン系水素化粉末の特性について検討した結果、チタン系水素化粉末を粉末冶金などで使用する場合に、金型やゴム型に充填するには高い粉末流動性と見かけ密度が大きく填性の良いことが必要であり、殊に、冷間あるいは熱間で固化成型するものには充填性が重要であり、高い粉末流動性と充填性を得るには球状水素化チタン粉末の使用が有効であること、また合金成分材料として微細金属粉末と混合して焼結合金を作る際にはチタン水素化粉末の粉末粒度の大きさを制限する必要のあることを知った。本発明は、これらの知見に基づいて、次のように完成したのである。
【0007】
本発明の焼結合金用球状水素化チタン粉末は、ガスアトマイズ法で得られた粉末粒度が150μm以下の球状チタン粉末で、水素化処理後にさらに解砕処理され、粉末流動性及び充填性に優れていることを特徴とする。
【0008】
また、本発明の焼結合金用球状水素化チタン粉末の製造方法は、ガスアトマイズ法で得られた粉末粒度が 150 μ m 以下の球状チタン粉末に、加熱真空雰囲気で水素を作用させる水素化処理を施した後、さらに水素化処理で結合した粉末を解砕処理して、粉末粒度が150μm以下粉末流動性及び充填性に優れた球状水素化チタン粉末を得ることを特徴とする。
【0009】
本発明のチタン-モリブデンまたはチタン-タングステン焼結合金の製造方法は、ガスアトマイズ法で得られた粉末粒度が 150 μ m 以下の球状チタン粉末を水素化処理しさらに解砕処理して得た粉末粒度150μm以下の球状水素化チタン粉末と、モリブデンまたはタングステンの粉末と混合したチタン - モリブデンまたはチタン - タングステン焼結合金粉末を焼結することを特徴とする
【0010】
【発明の実施の形態】
本発明による合金粉末製造用の球状水素化チタン粉末の製造を、図1の装置例に基づいて説明する。原料の球状チタン粉末を水素化するための水素化炉1は、内部に原料を入れるための収容皿3があり、下部の狭窄部は外周にヒーター2を設けて加熱部7とする。収容皿3に粉末粒度が150μm以下の球状チタン粉末8を入れ、その周囲は加熱部7を含めてスポンジチタン4を充填し、炉頂に設けた排気管6から炉内の空気を抜いて、安全性を確保するために必要な真空度まで真空引きし、ヒーター2に通電して加熱部7のスポンジチタンを加熱する。加熱したのち、炉底に設けた送入管5から水素ガスを炉内に送入すると、水素化反応によりスポンジチタン及び球状チタン粉末は水素化され、その球状チタン粉末は球状のまま粉末粒度が150μm以下の水素化チタンとなる。
【0011】
図2は他の水素化炉1を使って球状純チタン粉末を水素化する場合である。この水素化炉1は原料の粉末粒度が150μm以下の球状チタン粉末8を入れた複数の収容皿3を積み重ねて置くように構成されている。炉頂に設けた排気管6から炉内の空気を抜いて、安全性を確保するために必要な真空度まで真空引きし、炉の外周に設けたヒーター2により加熱する。加熱したのち、炉頂に設けた送入管5から水素ガスを炉内に送入すると、水素化反応により球状チタン粉末は球状のまま粉末粒度が150μm以下の水素化チタンとなる。
【0012】
上記チタンと水素の水素化反応は発熱反応のため、その反応熱により隣設するチタン粉末の水素化反応が連続的に進行するため、チタン粉末全体を加熱昇温することなく、始め一部のチタン粉末を加熱昇温して水素化反応をさせ、その反応熱を利用して隣設するチタン粉末を順次水素化反応させることもできる。
【0013】
上記のごとく水素化反応により生成した水素化チタン粉末は、粉末同士が軽く焼結するため、ボールミルなどで軽く粉末化させる。この場合、粉末同士の軽度の焼結を解きほぐす程度、例えばボールミルでは約10分程度の処理を行い、必要以上の処理により球状を破壊してはならない。なお、できた球状水素化チタンは、必要があれば粉末粒度を調整するため分級化を行うこともできる。
【0014】
本発明において、原料に粉末粒度が150μm以下の球状チタンを使用するのは、例えば粉末粒度が10μm程度以下の微粉として製造されるモリブデン粉末やタングステン粉末と混合して合金粉末を製造する場合、チタン粉末粒度が150μmを超えて大きなチタン粉末を使用すると均一に混合することができず、また大きなチタン粉末と微細なモリブデン粉末やタングステン粉末を均質に合金化させることができないため、均質な焼結合金粉末が製造できないためである。
【0015】
また、粉末粒度が150μm以下の原料チタンとしては、スポンジチタンや水素化・脱水素化法により製造された粉体を分級すれば、一部に微細な粉体を得ることができる。しかし、これらの粉体は、形状が不定形で流動性が悪く、そのため酸素濃度が高く、かつ金属不純物が含まれるため、品質の高いチタン合金粉末を製造するのには不向きである。従って、本発明においては粉末粒度が150μm以下で粉末流動性及び充填性に優れた球状チタン粉末を原料として使用することにより、均質な焼結合金粉末を製造できるのである。そのためには、非接触誘導溶解によるガスアトマイズ法により作られた、不純物汚染の極めて少ない高純度で粉末粒度が150μm以下の球状チタン粉末を使用することが望ましい。
【0016】
【実施例】
実施例1
ガスアトマイズ法により製造された、粉末粒度150μm以下の純チタン球状粉末を幅400mm、奥行き500mm、深さ80mmのステンレス製の蓋付きの収容皿3に40kg入れて、図1の水素化炉1にセットした。上記蓋付きの収容皿3には、ガスが流通するのに十分な隙間もしくは複数の小孔が設けられている。そのため、収容皿3に入れられた純チタン球状粉末の水素化反応に必要な水素が隙間または小孔から十分に供給される。
【0017】
上記のごとく原料を充填した炉内を6.6661Paまで真空引きしたのち、ヒーター2に通電して炉内を650℃に加熱・昇温して純度99.99%以上の水素を送入した。このとき、水素化反応は、収容皿3の周囲を覆ったスポンジチタンの加熱部7から起こり、発生する反応熱が順次スポンジチタン4の上部に伝わり、更に反応熱が収容皿3に伝わり、皿内の球状チタン粉末8の水素化が進行した。そして、炉内の圧力計により水素吸収が終了したことを確認した後、炉内をアルゴンガスで置換して常温まで冷却した。
【0018】
冷却した炉から水素化チタン粉末を取出し、容量が30リットルのチタン製ボールミルに、その水素化チタン粉末30kgと解砕用の直径10〜40mmのチタン製ボール10kgを入れ、回転数80rpmで10分間運転した。得られた水素化チタン粉末は、外観がほとんど球状をしており、その粉末特性を表1に示す。図1は、水素化スポンジチタン粉末製造用の水素化炉であるが、収容皿3を用いることにより水素化炉を何ら改造することなく、通常行われるスポンジチタンの水素化と同時に球状水素化チタン粉末を得ることができた。
【0019】
実施例2
ガスアトマイズ法により製造された、粉末粒度150μm以下の球状チタン粉末を幅500mm、奥行き600mm、深さ100mmのステンレス製の収容皿3の5枚に、それぞれ各75kg(合計375kg)を入れて、図2の水素化炉1に上下に重ね合わせてセットした。炉内を2×10-3Torrまで真空引きしたのち、ヒーター2に通電して炉内を700℃に加熱・昇温して純度99.99%以上の水素を送入した。そして、炉内の圧力計により水素吸収が終了したことを確認した後、炉内をアルゴンガスで置換して常温まで冷却した。
【0020】
冷却した炉から水素化チタン粉末を取出し、容量が30リットルのチタン製ボールミルに、その水素化チタン粉末30kgと解砕用の直径10〜40mmのチタン製ボール12kgを入れ、回転数80rpmで10分間運転した。得られた水素化チタン粉末は、実施例1と同様に、外観がほとんど球状をしており、その粉末特性を表1に示す。
【0021】
実施例3
実施例2により製造した球状水素化チタン粉末104gとタングステン粉末900gをV型混合機で混合し、該混合粉末を直径30mmのホットプレス用ダイスに充填し、3×10-4torrまで真空排気した。そして、650℃で10時間加熱して水素発生がなくなったことを確認した後、1250℃×250kg/mm2×1Hrの条件でホットプレスを行った。得られたチタン−タングステン合金焼結体の特性を表2に示す。
【0022】
比較例1
粒径が12.7mm以下のスポンジチタンを、図1に示す水素化炉1にセットした。炉内を4×10-3Torrまで真空引きしたのち、ヒーター2に通電して加熱部7を650℃に加熱・昇温して純度99.99%以上の水素を送入した。このとき、水素化反応は、炉底側のスポンジチタンから起こり、発生する反応熱が順次スポンジチタンの上部に伝わり、炉内の全スポンジチタンが水素化された。そして、炉内の圧力計により水素吸収が終了したことを確認した後、炉内をアルゴンガスで置換して常温まで冷却した。
【0023】
冷却後に炉から水素化スポンジチタンを取出し、容量が30リットルのチタン製ボールミルに、その水素化スポンジチタン20kgと解砕用の直径10〜40mmのチタン製ボール12kgを入れ、回転数80rpmで90分間運転した。得られた水素化チタン粉末の外観は、粉砕により全て不定形をしていた。この粉末を150μm以下に分級したものの粉末特性を表1に示す。
【0024】
比較例2
比較例1により製造した不定形水素化チタン粉末104gとタングステン粉末900gをV型混合機で混合し、該混合粉末を直径30mmのホットプレス用ダイスに充填し、3×10-4torrまで真空排気した。そして、実施例3と同様に、650℃で10時間加熱して水素発生がなくなったことを確認した後、1250℃×250kg/mm2×1Hrの条件でホットプレスを行った。得られたチタン−タングステン合金焼結体の特性を表2に示す。
【0025】
【表1】

Figure 0003652993
【0026】
【表2】
Figure 0003652993
【0027】
上記結果より、本発明の実施による水素化チタン粉末は、いずれもほとんど球状をしており、比較例の不定形のものに比べて、流動度が良く充填密度が高く充填性に優れていることがわかる。また、表1から両者の水素含有量には差異が認められないが、鉄含有量は本発明の実施による球状水素化チタンの含有量が著しく微量であることがわかる。また、表2から本発明の実施による球状水素化チタン粉末を使用したチタン−タングステン焼結合金は、不定形水素化チタン粉末を原料として作った比較例2のチタン−タングステン焼結合金に比べ、焼結密度が高く、不純物が少なく、優れた焼結合金が得られることがわかる。
【0028】
【発明の効果】
本発明の実施による球状チタン粉末を原料として、機械的に粉砕することなく直接水素化することにより、従来の水素化後に機械的に粉砕した水素化チタン粉末に比べて優れた流動性と充填性を備えた球状水素化チタン粉末を製造することができ、粉末冶金法による焼結合金製造用に最適な原料として提供できる。また、原料の粉末粒度を小さい範囲に限定することにより、粉末粒度が極めて小さい微粉末として製造される微細金属粉末と焼結する場合にも均質な焼結合金粉末が得られる。
【図面の簡単な説明】
【図1】本発明の球状水素化チタン粉末を製造するための水素化炉の一例を示す説明図である。
【図2】本発明の球状水素化チタン粉末を製造するための水素化炉の他の例を示す説明図である。
【符号の説明】
1 水素化炉
2 ヒーター
3 収容皿
4 スポンジチタン
5 送入管
6 排気管
7 加熱部
8 球状チタン粉末[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a spherical titanium hydride powder used for powder metallurgy, additives, hydrogen storage, and the like, and a method for producing the same , and a spherical titanium hydride powder excellent in fluidity and filling property of the powder and the spherical titanium hydride powder. Relates to a method for producing a sintered alloy with molybdenum or tungsten.
[0002]
[Prior art]
Titanium hydride powder used for powder metallurgy, additives, hydrogen storage, etc. has been conventionally used to heat sponge titanium or titanium melted material in a hydrogen atmosphere to hydrogen embrittle it as titanium hydride, and then use a machine such as a ball mill. It was crushed and manufactured. The titanium hydride powder produced by mechanical pulverization in this way has an irregular shape, poor fluidity of the powder, low apparent density, poor moldability, and large surface area of the powder. As a result, the oxygen concentration is high and the metal impurities are mixed during pulverization.
[0003]
In order to improve the problems found in the above-mentioned conventional titanium hydride powder, when producing titanium powder by the hydrogenation / dehydrogenation method, the titanium powder sintered mass after dehydrogenation is crushed by impact and impact. A production method has been proposed in which particles are crushed by mechanical means according to a mechanism to be converted into titanium-based powder having a large apparent density and excellent fluidity (Japanese Patent Laid-Open No. 5-163508). reference).
[0004]
[Problems to be solved by the invention]
The conventional titanium hydride powder has many problems, and the improved titanium-based powder manufacturing method mechanically pulverizes the sintered titanium powder after dehydrogenation. There was a disadvantage that contamination could not be avoided.
[0005]
The present invention eliminates the disadvantages found in the above-mentioned prior art, and has high powder flowability, high apparent density, and good mold filling ability without mechanically pulverizing and impacting. A spherical titanium hydride powder for bonding gold and a method for producing a sintered alloy using the spherical titanium hydride powder are provided.
[0006]
[Means for Solving the Problems]
As a result of examining the characteristics of the titanium-based hydrogenated powder, the present inventors have found that when using the titanium-based hydrogenated powder in powder metallurgy, etc., high powder flowability and apparent density are required to fill a mold or rubber mold. In particular, filling properties are important for those that are solidified and molded in cold or hot conditions, and spherical titanium hydride powder is required to obtain high powder flowability and filling properties. It has been found that it is necessary to limit the particle size of titanium hydride powder when it is mixed with fine metal powder as an alloy component material to make a sintered alloy. Based on these findings, the present invention has been completed as follows.
[0007]
The spherical titanium hydride powder for sintered alloy of the present invention is a spherical titanium powder having a particle size of 150 μm or less obtained by gas atomization method, and is further pulverized after the hydrogenation treatment , and is excellent in powder flowability and filling property. It is characterized by being.
[0008]
A method of manufacturing a sintered alloy for spherical titanium hydride powder of the present invention, the powder size is 0.99 mu m or less spherical titanium powder obtained by the gas atomizing method, the hydrotreating the action of hydrogen in a heated vacuum atmosphere after applying, further subjected to a pulverization treatment powder bound in hydrotreating, powder particle size; and obtaining an excellent spherical titanium hydride powder with the following powder flowability and filling property 150 [mu] m.
[0009]
Molybdenum or titanium - - titanium present invention method for producing a tungsten sintered alloy, powder particle size powder particle size obtained by the gas atomizing method is obtained by the following spherical titanium powder 0.99 mu m and processed further disintegrated hydrotreated Titanium - molybdenum or titanium - tungsten sintered alloy powder obtained by mixing spherical titanium hydride powder of 150 μm or less and molybdenum or tungsten powder is characterized .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The production of spherical titanium hydride powder for producing alloy powder according to the present invention will be described based on the apparatus shown in FIG. A hydrogenation furnace 1 for hydrogenating a raw material spherical titanium powder has an accommodating tray 3 for containing a raw material therein, and a lower narrow portion is provided with a heater 2 on the outer periphery to serve as a heating unit 7. A spherical titanium powder 8 having a powder particle size of 150 μm or less is put in the container 3, the periphery thereof is filled with sponge titanium 4 including the heating unit 7, and the air in the furnace is extracted from the exhaust pipe 6 provided at the top of the furnace, A vacuum is pulled to a degree necessary for ensuring safety, and the heater 2 is energized to heat the sponge titanium in the heating unit 7. After heating, when hydrogen gas is fed into the furnace from the feed pipe 5 provided at the bottom of the furnace, the sponge titanium and the spherical titanium powder are hydrogenated by the hydrogenation reaction, and the spherical titanium powder remains in a spherical shape and has a powder particle size. The titanium hydride is 150 μm or less.
[0011]
FIG. 2 shows a case where spherical pure titanium powder is hydrogenated using another hydrogenation furnace 1. The hydrogenation furnace 1 is configured to stack a plurality of receiving trays 3 containing spherical titanium powders 8 having a raw material powder particle size of 150 μm or less. The air in the furnace is extracted from the exhaust pipe 6 provided at the top of the furnace, the vacuum is evacuated to a degree necessary for ensuring safety, and the heater 2 provided on the outer periphery of the furnace is heated. After heating, when hydrogen gas is fed into the furnace from the feed pipe 5 provided at the top of the furnace, the spherical titanium powder remains in the form of titanium hydride having a powder particle size of 150 μm or less due to the hydrogenation reaction.
[0012]
Since the hydrogenation reaction of titanium and hydrogen is an exothermic reaction, the hydrogenation reaction of the adjacent titanium powder proceeds continuously due to the reaction heat. The titanium powder can be heated and heated to cause a hydrogenation reaction, and the adjacent titanium powder can be sequentially hydrogenated using the heat of reaction.
[0013]
The titanium hydride powder produced by the hydrogenation reaction as described above is lightly powdered with a ball mill or the like because the powders are lightly sintered. In this case, the processing should be performed for about 10 minutes in the ball mill to loosen the light sintering between the powders, and the sphere should not be destroyed by excessive processing. The produced spherical titanium hydride can be classified in order to adjust the powder particle size if necessary.
[0014]
In the present invention, spherical titanium having a powder particle size of 150 μm or less is used as a raw material when, for example, an alloy powder is manufactured by mixing with molybdenum powder or tungsten powder manufactured as fine powder having a powder particle size of about 10 μm or less. If a large titanium powder with a powder particle size exceeding 150 μm is used, it cannot be uniformly mixed, and the large titanium powder and fine molybdenum powder or tungsten powder cannot be homogeneously alloyed. This is because powder cannot be produced.
[0015]
Further, as the raw material titanium having a powder particle size of 150 μm or less, fine powder can be partially obtained by classifying sponge titanium or powder produced by hydrogenation / dehydrogenation method. However, these powders are irregular in shape and poor in fluidity, and therefore have a high oxygen concentration and contain metal impurities, so that they are unsuitable for producing high-quality titanium alloy powders. Therefore, in the present invention, a homogeneous sintered alloy powder can be produced by using, as a raw material, a spherical titanium powder having a powder particle size of 150 μm or less and excellent powder flowability and filling properties. For this purpose, it is desirable to use a spherical titanium powder made by a gas atomization method by non-contact induction melting and having a high purity with very little impurity contamination and a powder particle size of 150 μm or less.
[0016]
【Example】
Example 1
40 kg of pure titanium spherical powder with a particle size of 150 μm or less, manufactured by the gas atomization method, is placed in a stainless steel lid 3 having a width of 400 mm, a depth of 500 mm, and a depth of 80 mm, and set in the hydrogenation furnace 1 of FIG. did. The storage tray 3 with a lid is provided with a gap or a plurality of small holes sufficient for gas to flow. Therefore, hydrogen necessary for the hydrogenation reaction of the pure titanium spherical powder placed in the container 3 is sufficiently supplied from the gaps or small holes.
[0017]
After the inside of the furnace filled with the raw material was evacuated to 6.6661 Pa as described above, the heater 2 was energized to heat and raise the temperature in the furnace to 650 ° C., and hydrogen with a purity of 99.99% or more was fed. At this time, the hydrogenation reaction takes place from the sponge titanium heating section 7 covering the periphery of the container tray 3, the generated reaction heat is sequentially transmitted to the upper part of the sponge titanium 4, and the reaction heat is further transmitted to the container dish 3. Hydrogenation of the inner spherical titanium powder 8 proceeded. And after confirming that hydrogen absorption was completed with the pressure gauge in the furnace, the inside of the furnace was replaced with argon gas and cooled to room temperature.
[0018]
Take out the titanium hydride powder from the cooled furnace, put 30 kg of the titanium hydride powder and 10 kg of titanium balls with a diameter of 10 to 40 mm for crushing into a 30 liter titanium ball mill, and rotate at 80 rpm for 10 minutes. Drove. The obtained titanium hydride powder is almost spherical in appearance, and the powder characteristics are shown in Table 1. FIG. 1 shows a hydrogenation furnace for producing hydrogenated sponge titanium powder. By using the container 3, spherical hydrogenation of titanium titanium is performed simultaneously with the usual hydrogenation of sponge titanium without any modification of the hydrogenation furnace. A powder could be obtained.
[0019]
Example 2
The spherical titanium powder produced by the gas atomization method, each containing 75 kg (total 375 kg) of 5 pieces of stainless steel container 3 having a width of 500 mm, a depth of 600 mm, and a depth of 100 mm is placed in a spherical particle size of 150 μm or less. Were set up one above the other in the hydrogenation furnace 1. After evacuating the inside of the furnace to 2 × 10 −3 Torr, the heater 2 was energized to heat and heat the inside of the furnace to 700 ° C., and hydrogen with a purity of 99.99% or more was fed. And after confirming that hydrogen absorption was completed with the pressure gauge in the furnace, the inside of the furnace was replaced with argon gas and cooled to room temperature.
[0020]
Titanium hydride powder is taken out from the cooled furnace, and 30 kg of the titanium hydride powder and 12 kg of titanium balls having a diameter of 10 to 40 mm for crushing are put into a titanium ball mill having a capacity of 30 liters and rotated at 80 rpm for 10 minutes. Drove. The obtained titanium hydride powder was almost spherical in appearance as in Example 1, and the powder characteristics are shown in Table 1.
[0021]
Example 3
104 g of spherical titanium hydride powder produced in Example 2 and 900 g of tungsten powder were mixed with a V-type mixer, and the mixed powder was filled in a hot press die having a diameter of 30 mm and evacuated to 3 × 10 −4 torr. . And after confirming that hydrogen generation was lost by heating at 650 ° C. for 10 hours, hot pressing was performed under the conditions of 1250 ° C. × 250 kg / mm 2 × 1 Hr. Table 2 shows the characteristics of the obtained titanium-tungsten alloy sintered body.
[0022]
Comparative Example 1
Sponge titanium having a particle size of 12.7 mm or less was set in the hydrogenation furnace 1 shown in FIG. After the inside of the furnace was evacuated to 4 × 10 −3 Torr, the heater 2 was energized to heat and raise the temperature of the heating unit 7 to 650 ° C., and hydrogen having a purity of 99.99% or more was fed. At this time, the hydrogenation reaction occurred from the sponge titanium on the bottom side of the furnace, and the generated reaction heat was sequentially transmitted to the upper part of the sponge titanium, and all the sponge titanium in the furnace was hydrogenated. And after confirming that hydrogen absorption was completed with the pressure gauge in the furnace, the inside of the furnace was replaced with argon gas and cooled to room temperature.
[0023]
After cooling, the titanium hydrogenated sponge is taken out of the furnace, and 20 kg of the titanium hydrogenated sponge and 12 kg of titanium balls having a diameter of 10 to 40 mm for crushing are placed in a titanium ball mill having a capacity of 30 liters and rotated at 80 rpm for 90 minutes. Drove. The appearance of the obtained titanium hydride powder was all indefinite by grinding. Table 1 shows the powder characteristics of this powder classified to 150 μm or less.
[0024]
Comparative Example 2
104 g of amorphous titanium hydride powder produced in Comparative Example 1 and 900 g of tungsten powder were mixed with a V-type mixer, and the mixed powder was filled in a hot press die having a diameter of 30 mm and evacuated to 3 × 10 −4 torr. did. And like Example 3, after heating at 650 degreeC for 10 hours and confirming that generation | occurrence | production of hydrogen disappeared, the hot press was performed on the conditions of 1250 degreeC x 250 kg / mm < 2 > * 1Hr. Table 2 shows the characteristics of the obtained titanium-tungsten alloy sintered body.
[0025]
[Table 1]
Figure 0003652993
[0026]
[Table 2]
Figure 0003652993
[0027]
From the above results, the titanium hydride powders according to the practice of the present invention are almost spherical, and have a higher fluidity and higher packing density and better filling properties than the amorphous ones of the comparative examples. I understand. In addition, Table 1 shows that there is no difference in the hydrogen content between the two, but it can be seen that the iron content is extremely small in the content of spherical titanium hydride according to the practice of the present invention. Further, from Table 2, the titanium-tungsten sintered alloy using the spherical titanium hydride powder according to the implementation of the present invention is compared with the titanium-tungsten sintered alloy of Comparative Example 2 made from amorphous titanium hydride powder as a raw material. It can be seen that an excellent sintered alloy can be obtained with a high sintered density and less impurities.
[0028]
【The invention's effect】
By using the spherical titanium powder according to the practice of the present invention as a raw material and directly hydrogenating it without mechanical pulverization, it has superior fluidity and filling properties compared to titanium hydride powder mechanically pulverized after conventional hydrogenation. Can be produced, and can be provided as an optimal raw material for producing a sintered alloy by a powder metallurgy method. In addition, by limiting the powder particle size of the raw material to a small range, a homogeneous sintered alloy powder can be obtained even when sintering with a fine metal powder produced as a fine powder with a very small powder particle size.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of a hydrogenation furnace for producing a spherical titanium hydride powder of the present invention.
FIG. 2 is an explanatory view showing another example of a hydrogenation furnace for producing the spherical titanium hydride powder of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hydrogenation furnace 2 Heater 3 Storage tray 4 Sponge titanium 5 Inlet pipe 6 Exhaust pipe 7 Heating part 8 Spherical titanium powder

Claims (3)

ガスアトマイズ法で得られた粉末粒度が150μm以下の球状チタン粉末で、水素化処理後にさらに解砕処理された、粉末流動性及び充填性に優れた焼結合金用球状水素化チタン粉末。 A spherical titanium hydride powder for sintered alloys , which is a spherical titanium powder having a particle size of 150 μm or less obtained by a gas atomization method and is further pulverized after the hydrogenation treatment , and has excellent powder flowability and filling properties. ガスアトマイズ法で得られた粉末粒度がThe powder particle size obtained by the gas atomization method is 150150 μμ mm 以下の球状チタン粉末に、加熱真空雰囲気で水素を作用させる水素化処理を施した後、さらに水素化処理で結合した粉末を解砕処理して、粉末粒度がThe following spherical titanium powder is subjected to hydrogenation treatment in which hydrogen is allowed to act in a heated vacuum atmosphere. 150150 μμ mm 以下の粉末流動性及び充填性に優れた球状水素化チタン粉末を得る焼結合金用球状水素化チタン粉末の製造方法。The manufacturing method of the spherical titanium hydride powder for sintered alloys which obtains the spherical titanium hydride powder excellent in the following powder fluidity | liquidity and filling property. ガスアトマイズ法で得られた粉末粒度が 150 μ m 以下の球状チタン粉末を水素化処理しさらに解砕処理して得た粉末粒度150μm以下の球状水素化チタン粉末と、モリブデンまたはタングステンの粉末と混合しチタン-モリブデンまたはチタン-タングステン焼結合金用粉末を焼結する焼結合金の製造方法。 Powder particle size 150μm or less spherical titanium hydride powder powder size obtained by the gas atomizing method was obtained by treating further disintegrated hydrotreated following spherical titanium powder 0.99 mu m, and a powder of molybdenum or tungsten mixed titanium - molybdenum or titanium - production method of the sintered alloy sintering powder tungsten sintered alloy.
JP2001054079A 2001-02-28 2001-02-28 Spherical titanium hydride powder for sintered alloy, method for producing the powder, and method for producing sintered alloy Expired - Fee Related JP3652993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001054079A JP3652993B2 (en) 2001-02-28 2001-02-28 Spherical titanium hydride powder for sintered alloy, method for producing the powder, and method for producing sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001054079A JP3652993B2 (en) 2001-02-28 2001-02-28 Spherical titanium hydride powder for sintered alloy, method for producing the powder, and method for producing sintered alloy

Publications (2)

Publication Number Publication Date
JP2002256302A JP2002256302A (en) 2002-09-11
JP3652993B2 true JP3652993B2 (en) 2005-05-25

Family

ID=18914462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001054079A Expired - Fee Related JP3652993B2 (en) 2001-02-28 2001-02-28 Spherical titanium hydride powder for sintered alloy, method for producing the powder, and method for producing sintered alloy

Country Status (1)

Country Link
JP (1) JP3652993B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106623952A (en) * 2016-12-19 2017-05-10 南京理工大学 Preparation method of titanium or titanium alloy powder with micro-hydrogenated surface

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076785B1 (en) * 2008-07-24 2011-10-25 박영석 Injection molding method using powder
CN103422004A (en) * 2013-05-15 2013-12-04 锡山区羊尖泓之盛五金厂 Titanium tungsten alloy
CN110744059A (en) * 2019-11-01 2020-02-04 淮阴工学院 Medical porous low-modulus titanium-magnesium alloy and forming method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954711B2 (en) * 1990-12-28 1999-09-27 株式会社 ジャパンエナジー W-Ti alloy target and manufacturing method
JPH0593213A (en) * 1991-06-04 1993-04-16 Sumitomo Shichitsukusu Kk Production of titanium and titanium alloy powder
JP3459342B2 (en) * 1996-07-30 2003-10-20 東邦チタニウム株式会社 Method for producing titanium-based powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106623952A (en) * 2016-12-19 2017-05-10 南京理工大学 Preparation method of titanium or titanium alloy powder with micro-hydrogenated surface

Also Published As

Publication number Publication date
JP2002256302A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
CN102905822B (en) Coordinate the titanium alloy composite powder of copper powder, chromium powder or iron powder, with its titanium alloy material being raw material and manufacture method thereof
JP5855565B2 (en) Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
JP4894008B2 (en) Method for producing MoNb-based sintered sputtering target material
US20090107294A1 (en) Process for producing spherical titanium alloy powder
JP3652993B2 (en) Spherical titanium hydride powder for sintered alloy, method for producing the powder, and method for producing sintered alloy
CN101125368A (en) Method for preparing globular high-nitrogen stainless steel powder using with high-energy ball mill
JPH03122205A (en) Manufacture of ti powder
JPH0475295B2 (en)
CN110860686A (en) Small-particle-size cobalt-chromium-tungsten-molybdenum alloy spherical powder and preparation method thereof
CN116555653A (en) K-bubble and nano-oxide composite reinforced W-based material and preparation method thereof
JP2606946B2 (en) Ti-W target material and method of manufacturing the same
JPH07278601A (en) Titanium-base powder and production thereof
JP3037772B2 (en) Ti-W target material and method of manufacturing the same
JP2542566B2 (en) Method for manufacturing target for sputtering device
CN109843797A (en) Tungsten-carbide powder
JPH04116161A (en) Titanium target material and production thereof
JP5628767B2 (en) Hydrogenation method of titanium alloy
JP3625928B2 (en) Method for producing Ta / Si based sintered alloy
JPH0688153A (en) Production of sintered titanium alloy
JPH04362105A (en) Production of fine intermetallic compound powder
JP3417217B2 (en) Method for producing titanium carbide particle-dispersed metal matrix composite material
JP2002047501A (en) Titanium base powder
JP6976415B2 (en) Titanium powder and its manufacturing method
JPH02247379A (en) Production of silicide target
JP3459342B2 (en) Method for producing titanium-based powder

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060726

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20061114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees