JP3652737B2 - Assembling method of multistage optical fiber alignment body - Google Patents

Assembling method of multistage optical fiber alignment body Download PDF

Info

Publication number
JP3652737B2
JP3652737B2 JP16954995A JP16954995A JP3652737B2 JP 3652737 B2 JP3652737 B2 JP 3652737B2 JP 16954995 A JP16954995 A JP 16954995A JP 16954995 A JP16954995 A JP 16954995A JP 3652737 B2 JP3652737 B2 JP 3652737B2
Authority
JP
Japan
Prior art keywords
optical fiber
cylindrical pipe
alignment
substrate
guide groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16954995A
Other languages
Japanese (ja)
Other versions
JPH0921925A (en
Inventor
昭 柏崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16954995A priority Critical patent/JP3652737B2/en
Publication of JPH0921925A publication Critical patent/JPH0921925A/en
Application granted granted Critical
Publication of JP3652737B2 publication Critical patent/JP3652737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、複数本の光ファイバを配列して、保持基板により挟持固定した、光ファイバ整列部品の構造に関する。
【0002】
【従来技術及びその課題】
複数本の光ファイバを、光軸を平行に保った状態で二次元に整列固定する場合の構造としては、光ファイバを保持する保持基板に所望の位置に多数穴を形成して、その穴の中に光ファイバの端部を挿入する構造がある。光ファイバ保持用の基板は、シリコン異方性エッチングを利用して作成する場合や、感光性ガラスをフォトエッチングして穴を形成させる手法が提案されている。この方法の場合、光ファイバ端面の位置は保持基板に形成された穴の位置によって一義的に決定される。しかしながら、穴を形成するプロセス上の制約から、保持基板の厚みを大きく取る事が出来ない。そのため、多数の光ファイバをその光軸方向を一致させて平行に保持固定する事が難しいという問題点がある。
【0003】
また、図4に示す従来例のようにV溝等の光ファイバガイド溝4が光ファイバのピッチ毎に設けられている基板1を用いて、光ファイバ3をガイド溝4内に設置して多段に積層していく方式もある。この方式の場合、光ファイバはガイド溝によって固定されているため、光ファイバ光軸方向のファイバ間の平行度は精度よく確保する事が出来る。しかしこの方式によった場合、溝を形成した基板の厚さの精度が不十分で、光ファイバを積層していくと、高さ方向に光ファイバの配列誤差が累積する問題点がある。
【0004】
本発明は、上述した従来の構造における問題点を解決するためのものであり、特に溝つきの基板を積層して2次元の光ファイバの整列をおこなう方式において容易でかつ現実的な手段で、光ファイバ整列体の高さ方向の整列を精度良く作製できる構造を提供する事を目的としている。
【0005】
【課題を解決するための手段】
上記従来技術の課題を解決するために、本発明は光ファイバを挿入するための円筒パイプを用意し、光ファイバを挿入した円筒パイプを設置するためのガイド溝を有する整列基板に光ファイバを挿入した円筒パイプを設置した後、上段の整列基板の底面によって、該円筒パイプを保持及び固定する構成とした。そして、整列基板の厚みが目標値からずれているために、光ファイバ端面の中心位置の間隔が高さ方向に誤差を生じてしまう場合、組み合わせる円筒パイプの外径を調節して、誤差を小さくするようにした。
【0006】
【作用】
上記手段によれば多段の二次元光ファイバ整列体を作成するのに必要な整列基板及び固定基板の加工の工程を大幅に低減出来、より低コストな光ファイバ整列体の作成が可能となる。
【0007】
【実施例】
以下、本発明の実施例を図面に基づいて詳細に説明する。
図1は本発明による光ファイバ整列体の一実施例で(a)は全体の断面図を、(b)は全体の斜視図を示す。本実施例においては、光ファイバの整列は横方向に4本、高さ方向に4本の4行4列に整列させた場合の構成例を示す。光ファイバ3は、同心の内径及び外径を持つ円筒パイプ2の中に挿入されている。円筒パイプ2の長さは、整列基板1と同等もしくはそれ以上の長さを有している方が組立作業が行い易く好ましい。円筒パイプ2の材料は金属またはセラミクスあるいはガラスを用いる。使用環境や作成条件に合わせて選定すれば良い。本実施例では光ファイバの円筒パイプ2への固定を容易に行うためにガラス製の円筒パイプを用い、パイプ内に光ファイバ3を挿入した後の固定は、固定剤として紫外線硬化型接着剤を用い、パイプの外側から紫外線を照射して接着剤の硬化を行っている。
【0008】
整列基板1の材料としては、紫外線透光性のセラミクス材料を用いている。整列基板1としてガラス材料を用いた場合紫外線は透過させる事が出来るため同様の固定作業を行う事は可能であるが実際には以下のような問題点が出てくる。つまり光ファイバコア間隔が数百μmと小さくなった場合、高さ方向のファイバコア間隔を決定するためには整列基板の厚みも同等の厚さにする必要がある。しかしガラス製V溝基板は数百μmと薄い場合強度的に不十分で、ガラス基板上にV溝を機械加工する場合V溝に沿って基板の割れが生じ易くなってしまう。また、組立時の荷重圧によっても割れが生じ易く、更に基板のそりが生じるため、ピッチ精度にも誤差が発生する。強度的に組立時に加わる荷重圧に耐え得る材料としてはセラミクスが好ましく、その中でも特に透光性のセラミクスは紫外線を用いた接着剤硬化が利用できる点で優れている。
【0009】
光ファイバを挿入した円筒パイプ2は整列基板1の上面13に形成されたV溝4の中に整列され、溝斜面と上層の整列基板の底面14によって保持される。整列基板1内に保持された光ファイバ付き円筒パイプ2の固定には、紫外線硬化型の接着剤を用いて行った。整列基板1が紫外線を透過するため、紫外線は組立を終了してから整列体全体に外側から照射しても接着剤が硬化するため容易に固定作業が可能となる。整列基板の材料として紫外線を透過しないアルミナ等のセラミクス部材を用いた場合円筒パイプの整列基板への固定は、熱硬化型の樹脂もしくは半田等の固定材を用いればよい。
【0010】
図2は本発明によって整列体と光ファイバ付き円筒パイプを多層に組み上げ光ファイバ整列体を構成する場合の、高さ方向の位置精度の調整例を示す。V溝の角度は60°とする。基板厚みTの整列基板と外径Dの円筒パイプを用いて光ファイバ中心間距離Hに構成した時に、基板厚みTの目標値に対して、4段の整列基板のうち、下から3段目の整列基板63の厚みが、T−dTになっていた場合、光ファイバ42と43の中心間距離はH−dTと目標値より小さくなってしまう。また、それより上段の光ファイバの位置も全てdTだけ下の位置にずれてしまう。そこで、整列基板63のV溝内に整列させる円筒パイプは外径がD+dTになっている円筒パイプ23を用いる。この時、光ファイバの中心42と43の中心間距離はHと最初の設計値に等しくなり、基板の厚みのばらつき分を円筒パイプの外径調整で吸収する事が可能となる。この時、光ファイバ43と44との中心間距離は、そのままではH+1/2dTとなり累積のズレは半分になる。目標とする位置精度に対して1/2dTの値が大きい場合、円筒パイプ24の外径がDより小さい値の物を用いれば改善を図る事が可能となる。本実施例ではV溝の角度が60°の場合で説明したが、60°以外の角度の場合や、V字形状以外の場合に置いても基板厚みの誤差を円筒パイプの外径を変える事で補正する事が可能となる。
【0011】
図3は本発明によって整列体と光ファイバ付き円筒パイプを多層に組み上げ光ファイバ整列体を構成する場合の、高さ方向の位置精度の別の調整例を示す。この場合、図2の例との相違点は、外径と共に内径の大きさも大きな円筒パイプ25を用意し、円筒パイプ25に光ファイバ33を偏芯させて挿入固定させた点で、円筒パイプの外径が異なった場合の高さ方向への誤差の累積がでないように構成した例である。
【0012】
【発明の効果】
以上、実施例を挙げて詳細に説明したように本発明によれば、充分な精度を有する光ファイバ整列体を容易に作製することが可能となる。
【図面の簡単な説明】
【図1】本発明にかかる光ファイバ整列体の一実施例を示す(a)は全体の断面図、(b)は全体の斜視図。
【図2】本発明にかかる光ファイバ整列体の構成例を示す断面図。
【図3】本発明の別の構成例を示す断面図。
【図4】従来例の光ファイバ整列体を示す断面図。
【符号の説明】
1,61,62,63,64 光ファイバ整列基板
1’ 固定基板
2,21,22,23,24,25 円筒パイプ
3,31,32,33,34 光ファイバ
4 ガイド溝
41,42,43,44 光ファイバコア中心
[0001]
[Industrial application fields]
The present invention relates to a structure of an optical fiber alignment component in which a plurality of optical fibers are arranged and sandwiched and fixed by a holding substrate.
[0002]
[Prior art and its problems]
A structure in which a plurality of optical fibers are aligned and fixed two-dimensionally while maintaining the optical axis in parallel is that a plurality of holes are formed at desired positions on a holding substrate that holds the optical fibers. There is a structure in which the end of an optical fiber is inserted. There have been proposed a method for forming a substrate for holding an optical fiber by utilizing anisotropic etching of silicon, or forming a hole by photoetching photosensitive glass. In the case of this method, the position of the end face of the optical fiber is uniquely determined by the position of the hole formed in the holding substrate. However, the thickness of the holding substrate cannot be increased due to the process restrictions for forming the holes. Therefore, there is a problem that it is difficult to hold and fix a large number of optical fibers in parallel with their optical axis directions aligned.
[0003]
Further, as in the conventional example shown in FIG. 4, the optical fiber 3 is installed in the guide groove 4 by using the substrate 1 in which the optical fiber guide grooves 4 such as V-grooves are provided for every pitch of the optical fiber. There is also a method of laminating. In this method, since the optical fiber is fixed by the guide groove, the parallelism between the fibers in the optical fiber optical axis direction can be ensured with high accuracy. However, according to this method, the accuracy of the thickness of the substrate on which the grooves are formed is insufficient, and there is a problem in that optical fiber alignment errors accumulate in the height direction when optical fibers are stacked.
[0004]
The present invention is intended to solve the above-described problems in the conventional structure, and in particular, an easy and practical means for aligning two-dimensional optical fibers by laminating grooved substrates. An object of the present invention is to provide a structure that can accurately fabricate the alignment of the fiber alignment body in the height direction.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems of the prior art, the present invention provides a cylindrical pipe for inserting an optical fiber, and inserts the optical fiber into an alignment substrate having a guide groove for installing the cylindrical pipe into which the optical fiber is inserted. After the cylindrical pipe was installed, the cylindrical pipe was held and fixed by the bottom surface of the upper alignment substrate. If the distance between the center positions of the optical fiber end faces causes an error in the height direction because the thickness of the alignment substrate deviates from the target value, the outer diameter of the combined cylindrical pipe is adjusted to reduce the error. I tried to do it.
[0006]
[Action]
According to the above means, it is possible to greatly reduce the processing steps of the alignment substrate and the fixed substrate necessary for forming a multi-stage two-dimensional optical fiber alignment body, and it is possible to create a lower cost optical fiber alignment body.
[0007]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1A and 1B show an embodiment of an optical fiber alignment body according to the present invention. FIG. 1A is an overall cross-sectional view, and FIG. 1B is an overall perspective view. In this embodiment, an example of a configuration in which the optical fibers are aligned in four rows and four columns in the horizontal direction and four in the height direction is shown. The optical fiber 3 is inserted into a cylindrical pipe 2 having concentric inner and outer diameters. The length of the cylindrical pipe 2 is preferably equal to or longer than that of the alignment substrate 1 because the assembly work is easier. The material of the cylindrical pipe 2 is metal, ceramics or glass. Select according to the usage environment and creation conditions. In this embodiment, in order to easily fix the optical fiber to the cylindrical pipe 2, a glass cylindrical pipe is used. After the optical fiber 3 is inserted into the pipe, the UV curable adhesive is used as the fixing agent. Used, the adhesive is cured by irradiating ultraviolet rays from the outside of the pipe.
[0008]
As the material of the alignment substrate 1, an ultraviolet light-transmitting ceramic material is used. When a glass material is used as the alignment substrate 1, ultraviolet rays can be transmitted and the same fixing operation can be performed, but the following problems actually occur. That is, when the optical fiber core interval is as small as several hundred μm, the thickness of the alignment substrate needs to be equal in order to determine the fiber core interval in the height direction. However, when the glass V-groove substrate is as thin as several hundred μm, the strength is insufficient, and when the V-groove is machined on the glass substrate, the substrate is likely to break along the V-groove. In addition, cracks are likely to occur due to the load pressure during assembly, and further warping of the substrate will occur, causing errors in pitch accuracy. Ceramics are preferable as a material that can withstand the load pressure applied during assembly in strength, and translucent ceramics are particularly excellent in that adhesive curing using ultraviolet rays can be used.
[0009]
The cylindrical pipe 2 into which the optical fiber is inserted is aligned in the V groove 4 formed on the upper surface 13 of the alignment substrate 1 and is held by the groove slope and the bottom surface 14 of the upper alignment substrate. The cylindrical pipe 2 with an optical fiber held in the alignment substrate 1 was fixed using an ultraviolet curable adhesive. Since the alignment substrate 1 transmits ultraviolet rays, even if the ultraviolet rays are irradiated to the entire alignment body from the outside after the assembly is completed, the adhesive is cured, so that the fixing operation can be easily performed. When a ceramic member such as alumina that does not transmit ultraviolet rays is used as the material of the alignment substrate, the cylindrical pipe may be fixed to the alignment substrate using a thermosetting resin or a fixing material such as solder.
[0010]
FIG. 2 shows an example of adjusting the positional accuracy in the height direction when an optical fiber alignment body is constructed by assembling an alignment body and a cylindrical pipe with an optical fiber in multiple layers according to the present invention. The angle of the V groove is 60 °. When the optical fiber center distance H is configured using an alignment substrate having a substrate thickness T and a cylindrical pipe having an outer diameter D, the third step from the bottom of the four alignment substrates with respect to the target value of the substrate thickness T. When the thickness of the alignment substrate 63 is T-dT, the distance between the centers of the optical fibers 42 and 43 is H-dT, which is smaller than the target value. In addition, the positions of the optical fibers in the upper stage are all shifted to a position below by dT. Therefore, the cylindrical pipe 23 having an outer diameter of D + dT is used as the cylindrical pipe aligned in the V groove of the alignment substrate 63. At this time, the center-to-center distance between the optical fiber centers 42 and 43 is equal to H and the initial design value, and the variation in substrate thickness can be absorbed by adjusting the outer diameter of the cylindrical pipe. At this time, the center-to-center distance between the optical fibers 43 and 44 is H + 1 / 2dT as it is, and the cumulative deviation is halved. When the value of ½ dT is larger than the target position accuracy, improvement can be achieved by using an object whose outer diameter of the cylindrical pipe 24 is smaller than D. In this embodiment, the V-groove has an angle of 60 °. However, the outer diameter of the cylindrical pipe can be changed by changing the substrate diameter error even when the angle is other than 60 ° or when the angle is not V-shaped. It is possible to correct with.
[0011]
FIG. 3 shows another example of adjusting the positional accuracy in the height direction when an optical fiber alignment body is constructed by assembling an alignment body and a cylindrical pipe with an optical fiber in multiple layers according to the present invention. In this case, the difference from the example of FIG. 2 is that a cylindrical pipe 25 having a large inner diameter as well as an outer diameter is prepared, and the optical fiber 33 is eccentrically inserted into the cylindrical pipe 25 and fixed. In this example, errors are not accumulated in the height direction when the outer diameters are different.
[0012]
【The invention's effect】
As described above in detail with reference to the embodiments, according to the present invention, an optical fiber alignment body having sufficient accuracy can be easily manufactured.
[Brief description of the drawings]
FIG. 1A is an overall cross-sectional view showing an embodiment of an optical fiber alignment body according to the present invention, and FIG.
FIG. 2 is a cross-sectional view showing a configuration example of an optical fiber alignment body according to the present invention.
FIG. 3 is a cross-sectional view showing another configuration example of the present invention.
FIG. 4 is a cross-sectional view showing a conventional optical fiber alignment body.
[Explanation of symbols]
1, 61, 62, 63, 64 Optical fiber alignment substrate 1 'Fixed substrate 2, 21, 22, 23, 24, 25 Cylindrical pipe 3, 31, 32, 33, 34 Optical fiber 4 Guide grooves 41, 42, 43, 44 Optical fiber core center

Claims (3)

光ファイバ端面の位置を二次元的に整列させるための光ファイバ整列体であって、光ファイバを挿入するための円筒パイプと、光ファイバを挿入した円筒パイプを設置するためのガイド溝を有する複数の整列基板と、最上層に設置された円筒パイプを保持及び固定するために設置する固定基板とから構成され、光ファイバを挿入した円筒パイプを各整列基板のガイド溝に設置してガイド溝斜面と上層の整列基板の底面によって保持し、整列基板の厚みの誤差を、該誤差のある整列基板に設置する円筒パイプの外径を変えて調整することにより、各光ファイバの高さ方向の位置精度を調整することを特徴とする多段光ファイバ整列体の組み立て方法 An optical fiber alignment member for aligning the position of the optical fiber end surface two-dimensionally, the plurality having a cylindrical pipe for inserting the optical fiber, the guide groove for installing a cylindrical pipe in which to insert the optical fiber And a fixed substrate installed to hold and fix the cylindrical pipe installed on the uppermost layer, and the cylindrical pipe into which the optical fiber is inserted is installed in the guide groove of each aligned substrate, and the guide groove slope The position of each optical fiber in the height direction is adjusted by changing the outer diameter of the cylindrical pipe installed on the alignment substrate having the error. A method for assembling a multistage optical fiber alignment body , wherein the accuracy is adjusted. 光ファイバ端面の位置を二次元的に整列させるための光ファイバ整列体であって、光ファイバを挿入するための円筒パイプと、該光ファイバを挿入した円筒パイプを設置するためのガイド溝を有する複数の整列基板と、最上層に設置された円筒パイプを保持及び固定するために設置する固定基板とから構成され、光ファイバを挿入した円筒パイプを各整列基板のガイド溝に設置してガイド溝斜面と上層の整列基板の底面によって保持し、整列基板の厚みの誤差を、該誤差のある整列基板に設置する円筒パイプの外径を変えるとともに、内径を他の整列基板に設置する円筒パイプより大きくして光ファイバを偏芯させて挿入固定することで調整することにより、各光ファイバの高さ方向の位置精度を調整することを特徴とする多段光ファイバ整列体の組み立て方法 An optical fiber alignment member for causing the position of the optical fiber end surface two-dimensionally aligned, comprises a cylindrical pipe for inserting the optical fiber, the guide groove for installing a cylindrical pipe inserting the optical fiber It is composed of a plurality of alignment substrates and a fixed substrate that is installed to hold and fix the cylindrical pipe installed in the uppermost layer, and the cylindrical pipe into which the optical fiber is inserted is installed in the guide groove of each alignment substrate. It is held by the slope and the bottom surface of the upper alignment substrate, and the thickness error of the alignment substrate is changed from the outer diameter of the cylindrical pipe installed on the alignment substrate having the error, and the inner diameter is changed from the cylindrical pipe installed on the other alignment substrate. Adjusting the position accuracy of each optical fiber in the height direction by adjusting it by increasing the size and decentering the optical fiber and fixing it. Method of assembling a body. 光ファイバを挿入するための円筒パイプの長さが、該光ファイバを挿入した円筒パイプを設置するための整列基板のガイド溝の長さと同等もしくはガイド溝よりも長く、光ファイバコア中心の整列ピッチが1mm以下の場合、光ファイバを挿入した円筒パイプを設置するためのガイド溝を有する整列基板の材料として、セラミクスを用いたことを特徴とする請求項1に記載の多段光ファイバ整列体の組み立て方法The length of the cylindrical pipe for inserting the optical fiber is equal to or longer than the guide groove of the alignment substrate for installing the cylindrical pipe into which the optical fiber is inserted, and the alignment pitch at the center of the optical fiber core 2. The assembly of a multistage optical fiber alignment body according to claim 1, wherein ceramics is used as a material for an alignment substrate having a guide groove for installing a cylindrical pipe into which an optical fiber is inserted. Way .
JP16954995A 1995-07-05 1995-07-05 Assembling method of multistage optical fiber alignment body Expired - Fee Related JP3652737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16954995A JP3652737B2 (en) 1995-07-05 1995-07-05 Assembling method of multistage optical fiber alignment body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16954995A JP3652737B2 (en) 1995-07-05 1995-07-05 Assembling method of multistage optical fiber alignment body

Publications (2)

Publication Number Publication Date
JPH0921925A JPH0921925A (en) 1997-01-21
JP3652737B2 true JP3652737B2 (en) 2005-05-25

Family

ID=15888542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16954995A Expired - Fee Related JP3652737B2 (en) 1995-07-05 1995-07-05 Assembling method of multistage optical fiber alignment body

Country Status (1)

Country Link
JP (1) JP3652737B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687145B2 (en) * 1988-09-01 1997-12-08 日本電気硝子株式会社 Method for manufacturing optical fiber connector
JP2722566B2 (en) * 1988-11-28 1998-03-04 住友電気工業株式会社 Optical fiber positioning member
JP3108241B2 (en) * 1993-03-10 2000-11-13 日本碍子株式会社 Fiber optic array
JP3333843B2 (en) * 1993-03-11 2002-10-15 日本碍子株式会社 Optical axis alignment method of optical collimator array
JPH0727942A (en) * 1993-07-12 1995-01-31 Nippon Telegr & Teleph Corp <Ntt> Fiber-connect module

Also Published As

Publication number Publication date
JPH0921925A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
CN1043540C (en) Method of splicing optical fibre and optical waveguide
US20030123835A1 (en) Optical fiber array and method of formation
US20040190851A1 (en) Two-dimensional optical element arrays
KR20000029187A (en) Method for manufacturing optical fiber array
US6728450B2 (en) Alignment of optical fibers with an optical device
CN1393717A (en) Precise 2-D optical fibre array
US20030142920A1 (en) Method and apparatus for optical fiber array assembly
JP3652737B2 (en) Assembling method of multistage optical fiber alignment body
US9383522B2 (en) Fiber bundle
US20220120976A1 (en) System, Device and Method for Aligning and Attaching Optical Fibers
US20040042732A1 (en) Apparatus and method for aligning fiber arrays
JP2003043305A (en) Optical fiber array
US6827499B2 (en) Method of manufacturing two-dimensional optical connector component
JP2022067142A (en) Optical fiber array
JP6612336B2 (en) Optical fiber array and optical switch
JP2004045686A (en) Optical fiber array and optical fiber collimator array using the same, and optical module
JP3681946B2 (en) Multi-core bundle manufacturing method
JPH10268145A (en) Two-dimensional optical fiber array device
JP3800018B2 (en) Optical fiber positioning method and two-dimensional optical fiber array
JP2008040086A (en) Optical fiber array
JP3139743B2 (en) Optical connector and manufacturing method thereof
JP2565124B2 (en) Array optical fiber alignment structure
JP4171372B2 (en) Optical fiber array
KR101093668B1 (en) Optical connection device and fabrication method thereof
JPH08220382A (en) Two-dimensional optical fiber array and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees