JP3652331B2 - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP3652331B2
JP3652331B2 JP2002205503A JP2002205503A JP3652331B2 JP 3652331 B2 JP3652331 B2 JP 3652331B2 JP 2002205503 A JP2002205503 A JP 2002205503A JP 2002205503 A JP2002205503 A JP 2002205503A JP 3652331 B2 JP3652331 B2 JP 3652331B2
Authority
JP
Japan
Prior art keywords
charging
forming apparatus
image forming
toner
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002205503A
Other languages
Japanese (ja)
Other versions
JP2003057922A (en
Inventor
康則 児野
晴美 石山
純 平林
幸雄 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002205503A priority Critical patent/JP3652331B2/en
Publication of JP2003057922A publication Critical patent/JP2003057922A/en
Application granted granted Critical
Publication of JP3652331B2 publication Critical patent/JP3652331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Combination Of More Than One Step In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は画像形成方法、及び複写機やプリンタ等の画像形成装置に関する。
【0002】
より詳しくは、接触帯電方式、転写方式、トナーリサイクルプロセスの画像形成装置に関する。
【0003】
【従来の技術】
従来、例えば、電子写真装置や静電記録装置等の画像形成装置において、電子写真感光体・静電記録誘電体等の像担持体を所要の極性・電位に一様に帯電処理(除電処理も含む)する帯電装置としてはコロナ帯電器(コロナ放電器)がよく使用されていた。
【0004】
コロナ帯電器は非接触型の帯電装置であり、ワイヤ電極等の放電電極と該放電電極を囲むシールド電極を備え、放電開口部を被帯電体である像担持体に対向させて非接触に配設し、放電電極とシールド電極に高圧を印加することにより生じる放電電流(コロナシャワー)に像担持体面をさらすことで像担持体面を所定に帯電させるものである。
【0005】
近時は、中低速機種の画像形成装置にあっては、像担持体等の被帯電体の帯電装置として、コロナ帯電器に比べて低オゾン・低電力等の利点があることから接触帯電装置が多く提案され、また実用化されている。
【0006】
接触帯電装置は、像担持体等の被帯電体に、ローラ型(帯電ローラ)、ファーブラシ型、磁気ブラシ型、ブレード型等の導電性の帯電部材(接触帯電部材・接触帯電器)を接触させ、この接触帯電部材に所定の帯電バイアスを印加して被帯電体面を所定の極性・電位に帯電させるものである。
【0007】
接触帯電の帯電機構(帯電のメカニズム、帯電原理)には、▲1▼放電帯電機構と▲2▼直接注入帯電機構の2種類の帯電機構が混在しており、どちらが支配的であるかにより各々の特性が現れる。
【0008】
▲1▼.放電帯電機構
接触帯電部材と被帯電体との微小間隙に生じる放電現象により被帯電体表面が帯電する機構である。
【0009】
放電帯電機構は接触帯電部材と被帯電体に一定の放電しきい値を有するため、帯電電位より大きな電圧を接触帯電部材に印加する必要がある。また、コロナ帯電器に比べれば発生量は格段に少ないけれども放電生成物を生じることが原理的に避けられないため、オゾンなど活性イオンによる弊害は避けられない。
【0010】
▲2▼.直接注入帯電機構
接触帯電部材から被帯電体に直接に電荷が注入されることで被帯電体表面が帯電する系である。直接帯電、あるいは注入帯電、あるいは電荷注入帯電とも称される。より詳しくは、中抵抗の接触帯電部材が被帯電体表面に接触して、放電現象を介さずに、つまり放電を基本的に用いないで被帯電体表面に直接電荷注入を行うものである。よって、接触帯電部材への印加電圧が放電閾値以下の印加電圧であっても、被帯電体を印加電圧相当の電位に帯電することができる。
【0011】
この帯電系はイオンの発生を伴わないため放電生成物による弊害は生じない。しかし、直接注入帯電であるため、接触帯電部材の被帯電体への接触性が帯電性に大きく効いてくる。そこで接触帯電部材はより密に構成し、また被帯電体との速度差を多く持ち、より高い頻度で被帯電体に接触する構成をとる必要がある。
【0012】
A)ローラ帯電
接触帯電装置は、接触帯電部材として導電ローラ(帯電ローラ)を用いたローラ帯電方式が帯電の安定性という点で好ましく、広く用いられている。
【0013】
このローラ帯電はその帯電機構は前記▲1▼の放電帯電機構が支配的である。
【0014】
帯電ローラは、導電あるいは中抵抗のゴム材あるいは発泡体を用いて作成される。さらにこれらを積層して所望の特性を得たものもある。
【0015】
帯電ローラは被帯電体(以下、感光体と記す)との一定の接触状態を得るために弾性を持たせているが、そのため摩擦抵抗が大きく、多くの場合、感光体に従動あるいは若干の速度差をもって駆動される。従って、直接注入帯電しようとしても、絶対的帯電能力の低下や接触性の不足やローラ状のムラや感光体の付着物による帯電ムラは避けられないため、従来のローラ帯電ではその帯電機構は放電帯電機構が支配的である。
【0016】
図3は接触帯電における帯電効率例を表わしたグラフである。横軸に接触帯電部材に印加したバイアス、縦軸にはその時得られた感光体帯電電位を表わすものである。ローラ帯電の場合の帯電特性はAで表わされる。即ち凡そ−500Vの放電閾値を過ぎてから帯電が始まる。従って、−500Vに帯電する場合は−1000Vの直流電圧を印加するか、あるいは、−500V直流の帯電電圧に加えて、放電閾値以上の電位差を常に持つようにピーク間電圧1200Vの交流電圧を印加して感光体電位を帯電電位に収束させる方法が一般的である。
【0017】
より具体的に説明すると、厚さ25μmのOPC感光体に対して帯電ローラを加圧当接させた場合には、約640V以上の電圧を印加すれば感光体の表面電位が上昇し始め、それ以降は印加電圧に対して傾き1で線形に感光体表面電位が増加する。この閾値電圧を帯電開始電圧Vthと定義する。
【0018】
つまり、電子写真に必要とされる感光体表面電位Vdを得るためには帯電ローラにはVd+Vthという必要とされる以上のDC電圧が必要となる。このようにしてDC電圧のみを接触帯電部材に印加して帯電を行なう方法を「DC帯電方式」と称する。
【0019】
しかし、DC帯電においては環境変動等によって接触帯電部材の抵抗値が変動するため、また、感光体が削れることによって膜厚が変化するとVthが変動するため、感光体の電位を所望の値にすることが難しかった。
【0020】
このため、更なる帯電の均一化を図るために特開昭63−149669号公報に開示されるように、所望のVdに相当するDC電圧に2×Vth以上のピーク間電圧を持つAC成分を重畳した電圧を接触帯電部材に印加する「AC帯電方式」が用いられる。これは、ACによる電位のならし効果を目的としたものであり、被帯電体の電位はAC電圧のピークの中央であるVdに収束し、環境等の外乱には影響されることはない。
【0021】
ところが、このような接触帯電装置においても、その本質的な帯電機構は、接触帯電部材から感光体への放電現象を用いているため、先に述べたように接触帯電部材に印加する電圧は感光体表面電位以上の値が必要とされ、微量のオゾンは発生する。
【0022】
また、帯電均一化のためにAC帯電を行なった場合にはさらなるオゾンの発生、AC電圧の電界による接触帯電部材と感光体の振動騒音(AC帯電音)の発生、また、放電による感光体表面の劣化等が顕著になり、新たな問題点となっていた。
【0023】
B)ファーブラシ帯電
ファーブラシ帯電は、接触帯電部材として導電性繊維のブラシ部を有する部材(ファーブラシ帯電器)を用い、その導電性繊維ブラシ部を被帯電体としての感光体に接触させ、所定の帯電バイアスを印加して感光体面を所定の極性・電位に帯電させるものである。
【0024】
このファーブラシ帯電もその帯電機構は前記▲1▼の放電帯電機構が支配的である。
【0025】
ファーブラシ帯電器は固定タイプとロールタイプが実用化されている。中抵抗の繊維を基布に折り込みパイル状に形成したものを電極に接着したものが固定タイプで、ロールタイプはパイルを芯金に巻き付けて形成する。繊維密度としては100本/mm 程度のものが比較的容易に得られるが、直接注入帯電により十分均一な帯電を行うにはそれでも接触性は不十分であり、直接注入帯電により十分均一な帯電を行うには感光体に対し機械構成としては困難なほどに速度差を持たせる必要があり、現実的ではない。
【0026】
このファーブラシ帯電の直流電圧印加時の帯電特性は図3のBに示される特性をとる。従って、ファーブラシ帯電の場合も、固定タイプ、ロールタイプどちらも多くは、高い帯電バイアスを印加し放電現象を用いて帯電を行っている。
【0027】
C)磁気ブラシ帯電
磁気ブラシ帯電は、接触帯電部材として導電性磁性粒子をマグネットロール等で磁気拘束してブラシ状に形成した磁気ブラシ部を有する部材(磁気ブラシ帯電器)を用い、その磁気ブラシ部を被帯電体としての感光体に接触させ、所定の帯電バイアスを印加して感光体面を所定の極性・電位に帯電させるものである。
【0028】
この磁気ブラシ帯電の場合はその帯電機構は前記▲2▼の直接注入帯電機構が支配的である。
【0029】
磁気ブラシ部を構成させる導電性磁性粒子として粒径5〜50μmのものを用い、感光体と十分速度差を設けることで、均一に直接注入帯電を可能にする。
【0030】
図3の帯電特性グラフのCにあるように、印加バイアスとほぼ比例した帯電電位を得ることが可能になる。
【0031】
しかしながら、機器構成が複雑であること、磁気ブラシ部を構成している導電性磁性粒子が脱落して感光体に付着する等他の弊害もある。
【0032】
特開平6−3921号公報等には感光体表面にあるトラップ準位または電荷注入層の導電粒子等の電荷保持部材に電荷を注入して接触注入帯電を行なう方法が提案されている。放電現象を用いないため、帯電に必要とされる電圧は所望する感光体表面電位分のみであり、オゾンの発生もない。さらに、AC電圧を印加しないので、帯電音の発生もなく、ローラ帯電方式と比べると、オゾンレス、低電力の優れた帯電方式である。
【0033】
D)トナーリサイクルプロセス(クリーナーレスシステム)
転写方式の画像形成装置においては、転写後の感光体(像担持体)に残存する転写残トナーはクリーナー(クリーニング装置)によって感光体面から除去されて廃トナーとなるが、この廃トナーは環境保護の面からも出ないことが望ましい。そこでクリーナーをなくし、転写後の感光体上の転写残トナーは現像装置によって「現像同時クリーニング」で感光体上から除去し現像装置に回収・再用する装置構成にしたトナーリサイクルプロセスの画像形成装置も出現している。
【0034】
現像同時クリーニングとは、転写後に感光体上に残留したトナーを次工程以降の現像時、即ち引き続き感光体を帯電し、露光して潜像を形成し、該潜像の現像時にかぶり取りバイアス(現像装置に印加する直流電圧と感光体の表面電位間の電位差であるかぶり取り電位差Vback)によって回収する方法である。この方法によれば、転写残トナーは現像装置に回収されて次工程以後に再用されるため、廃トナーをなくし、メンテナンスに手を煩わせることも少なくすることができる。またクリーナーレスであることでスペース面での利点も大きく、画像形成装置を大幅に小型化できるようになる。
【0035】
E)接触帯電部材に対する粉末塗布
接触帯電装置について、帯電ムラを防止し安定した均一帯電を行なうために、接触帯電部材に被帯電体面との接触面に粉末を塗布する構成が特公平7−99442号公報に開示されているが、接触帯電部材(帯電ローラ)が被帯電体(感光体)に従動回転(速度差駆動なし)であり、スコロトロン等のコロナ帯電器と比べるとオゾン生成物の発生は格段に少なくなっているものの、帯電原理は前述のローラ帯電の場合と同様に依然として放電帯電機構を主としている。特に、より安定した帯電均一性を得るためにはDC電圧にAC電圧を重畳した電圧を印加するために、放電によるオゾン生成物の発生はより多くなってしまう。よって、長期に装置を使用した場合や、クリーナーレスの画像形成装置を長期に使用した場合において、オゾン生成物による画像流れ等の弊害が現れやすい。
【0036】
また、特開平5−150539号公報には、接触帯電を用いた画像形成方法において、長時間画像形成を繰り返すうちにトナー粒子やシリカ微粒子が帯電手段の表面に付着することによる帯電阻害を防止するために、現像剤中に、少なくとも顕画粒子と、顕画粒子より小さい平均粒径を有する導電性粒子を含有することが開示されている。しかし、この接触帯電は放電帯電機構によるもので、直接注入帯電機構ではなく、放電帯電による前述の問題がある。
【0037】
【発明が解決しようとする課題】
1)上記の従来の技術の項に記載したように、接触帯電において、接触帯電部材として帯電ローラあるいはファーブラシを用いた簡易な構成では直接注入帯電を行なうには該接触帯電部材の表面が粗くて被帯電体としての像担持体との密な接触が確保されず、直接注入帯電は不可能であった。
【0038】
そのため接触帯電においては、接触帯電部材として帯電ローラやファーブラシ等の簡易な部材を用いた場合でも、より帯電均一性に優れ且つ長期に渡り安定した直接注入帯電を実現する、即ち、低印加電圧でオゾンレスの直接注入帯電を簡易な構成で実現することが期待されている。
【0039】
2)またトナーリサイクルプロセスの画像形成装置において、像担持体の帯電手段として接触帯電装置を採用した場合においては、転写後の像担持体面に残存の転写残トナーを除去するクリーナーを用いないため、転写後の像担持体面に残存の転写残トナーが像担持体と接触帯電部材の接触部である帯電部に像担持体面の移動でそのまま持ち運ばれて接触帯電部材がトナーで汚染されるために接触帯電部材から像担持体への電荷の直接注入が阻害されることも直接注入帯電を不可能にしている。また帯電不良が生じると更に接触帯電器へのトナー混入が増加し帯電不良を激化させる。
【0040】
そこで本発明は、接触帯電方式、転写方式、トナーリサイクルプロセス(クリーナーレスシステム)の画像形成装置において、接触帯電部材として帯電ローラやファーブラシ等の簡易な部材を用いて、しかも該接触帯電部材の転写残トナーによる汚染にかかわらず、低印加電圧でオゾンレスの直接注入帯電を長期に渡り安定に維持させて実現する、即ち帯電ローラやファーブラシ等の接触帯電部材を用いた簡易な構成で、直接注入帯電と、トナーリサイクルプロセスを実現することを目的とする。
【0041】
【課題を解決するための手段】
本発明は下記の構成を特徴とする画像形成装置である。
【0042】
(1)感光体と、前記感光体を帯電する帯電手段と、前記感光体に静電潜像を形成するために前記感光体を露光する露光手段と、前記感光体に形成された前記静電潜像をトナーによりトナー画像として可視化する現像手段と、そのトナー画像を記録媒体に転写する転写手段を有し、前記現像手段がトナー画像を記録媒体に転写した後に感光体上に残留したトナーを回収することが可能である画像形成装置において、
前記帯電手段は、電圧が印加された帯電部材であって、前記感光体とニップ部を形成する可撓性の帯電部材を備え、前記帯電部材の表面に予め非磁性導電粒子を担持して前記ニップ部に非磁性導電粒子を介在させ、
前記現像手段の現像剤はトナー及び非磁性導電粒子を含み、非磁性導電粒子は前記現像手段から前記感光体へ付与されて前記ニップ部へ補給されることを特徴とする画像形成装置。
【0043】
(2) 前記帯電部材表面は、前記非磁性導電粒子で感光体面を摺擦するように感光体面に対して速度差を持って移動することを特徴とする(1)に記載の画像形成装置。
【0044】
(3)前記非磁性導電粒子は、その抵抗が1012Ω・cm以下であり、粒径が50μm以下であることを特徴とする(1)又は(2)に記載の画像形成装置。
【0045】
(4)前記非磁性導電粒子は、その抵抗が1010Ω・cm以下であり、粒径が50μm以下であることを特徴とする請求項1又は2に記載の画像形成装置。
【0046】
(5)前記帯電部材と前記感光体は、前記ニップ部において互いに逆方向に移動することを特徴とする(1)から(4)の何れか1つに記載の画像形成装置。
【0047】
(6)前記帯電部材は、弾性導電ローラであることを特徴とする(1)から(5)の何れか1つに記載の画像形成装置。
【0048】
(7)前記帯電部材は、表面に発泡体を備えることを特徴とする(1)から(6)の何れか1つに記載の画像形成装置。
【0049】
(8)前記帯電部材は、前記ニップ部に前記非磁性導電粒子を担持搬送することを特徴とする(1)から(7)の何れか1つに記載の画像形成装置。
【0050】
(9)前記感光体の最表面層の体積抵抗が1×10(Ω・cm)以上1×1014(Ω・cm)以下であることを特徴とする(1)から(8)の何れか1つに記載の画像形成装置。
【0053】
(10)前記現像手段は、感光体の静電潜像をトナーで現像すると同時に感光体に残留するトナーを回収することが可能であることを特徴とする請求項1から(9)の何れか1つに記載の画像形成装置。
【0054】
〈作 用〉
a)現像手段の現像剤に含有させた導電性を有する帯電促進粒子(非磁性導電性粒子)は、現像手段による像担持体(感光体)側の静電潜像のトナー現像時にトナーとともに適当量が像担持体側に移行する。
【0055】
像担持体上のトナー画像は転写手段部において転写バイアスの影響で記録媒体側に引かれて積極的に転移するが、像担持体上の帯電促進粒子は導電性であることで記録媒体側には積極的には転移せず、像担持体上に実質的に付着保持されて残留する。
【0056】
そしてトナーリサイクルプロセスの画像形成装置はクリーナーを用いないため、転写後の像担持体面に残存の転写残トナーおよび上記の残存帯電促進粒子は像担持体と接触帯電部材のニップ部に像担持体面の移動でそのまま持ち運ばれて接触帯電部材に付着・混入する。
【0057】
したがって、像担持体と接触帯電部材とのニップ部にこの帯電促進粒子が存在した状態で像担持体の接触帯電が行なわれる。
【0058】
この帯電促進粒子の存在により、接触帯電部材にトナーが付着・混入した場合でも、接触帯電部材の像担持体への緻密な接触性と接触抵抗を維持できるため、接触帯電部材が帯電ローラやファーブラシ等の簡易な部材であり、しかも接触帯電部材の転写残トナーによる汚染にかかわらず、該接触帯電部材による像担持体の直接注入帯電を行なわせることができる。
【0059】
つまり、接触帯電部材が帯電促進粒子を介して密に像担持体に接触して、接触帯電部材と像担持体のニップ部に存在する帯電促進粒子が像担持体表面を隙間なく摺擦することで、接触帯電部材による像担持体の帯電は帯電促進粒子の存在により放電現象を用いない安定かつ安全な直接注入帯電が支配的となり、従来のローラ帯電等では得られなかった高い帯電効率が得られ、接触帯電部材に印加した電圧とほぼ同等の電位を像担持体に与えることができる。
【0060】
また接触帯電部材に付着・混入した転写残トナーは接触帯電部材から徐々に像担持体上に吐き出されて像担持体面の移動とともに現像部に至り、現像手段において現像同時クリーニング(回収)される(トナーリサイクルプロセス)。
【0061】
また接触帯電部材から帯電促進粒子が脱落しても、画像形成装置が稼働されることで、現像手段の現像剤に含有させてある帯電促進粒子が現像部で像担持体面に移行し該像担持面の移動により転写部を経て帯電部に持ち運ばれて接触帯電部材に逐次に供給され続けるため、帯電促進粒子の存在による良好な帯電性が安定して維持される。
【0062】
かくして、接触帯電方式、転写方式、トナーリサイクルプロセスの画像形成装置において、接触帯電部材として帯電ローラやファーブラシ等の簡易な部材を用いて、しかも該接触帯電部材の転写残トナーによる汚染にかかわらず、低印加電圧でオゾンレスの直接注入帯電を長期に渡り安定に維持させることができ、均一な帯電性を与えることが出来、オゾン生成物による障害、帯電不良による障害等のない、簡易な構成、低コストな画像形成装置を得ることができる。
【0063】
b)接触帯電部材と像担持体とのニップ部に帯電促進粒子を介在させることにより、該帯電促進粒子の潤滑効果(摩擦低減効果)により接触帯電部材と像担持体との間に容易に効果的に速度差を設けることが可能となる。
【0064】
接触帯電部材と像担持体との間に速度差を設けることにより、接触帯電部材と像担持体のニップ部において帯電促進粒子が像担持体に接触する機会を格段に増加させ、高い接触性を得ることができ、容易に直接注入帯電を可能にする。
【0065】
速度差を設ける構成としては、接触帯電部材を回転駆動して像担持体と該接触帯電部材に速度差を設けることになる。好ましくは帯電部に持ち運ばれる像担持体上の転写残トナーを接触帯電部材に一時的に回収し均すために、接触帯電部材を回転駆動し、さらに、その回転方向は像担持体表面の移動方向とは逆方向に回転するように構成することが望ましい。即ち、逆方向回転で像担持体上の転写残トナーを一旦引離し帯電を行なうことにより優位に直接注入帯電を行なうことが可能である。
【0066】
帯電部材を像担持体表面の移動方向と同じ方向に移動させて速度差をもたせることも可能であるが、直接注入帯電の帯電性は像担持体の周速と帯電部材の周速の比に依存するため、逆方向と同じ周速比を得るには順方向では帯電部材の回転数が逆方向の時に比べて大きくなるので、帯電部材を逆方向に移動させる方が回転数の点で有利である。ここで記述した周速比は
周速比(%)=(帯電部材周速−像担持体周速)/像担持体周速×100
である(帯電部材周速はニップ部において帯電部材表面が像担持体表面と同じ方向に移動するとき正の値である)。
【0067】
c)接触帯電部材として弾性導電ローラあるいは導電性繊維から構成されるブラシをもちいることにより、像担持体上の転写残トナーを一時的に回収するとともに帯電促進粒子を担持し直接注入帯電を優位に実行する。
【0068】
d)像担持体の最表面層の体積抵抗を1×10(Ω・cm)以上1×1014(Ω・cm)以下とすることで、静電潜像を維持するとともに、プロセススピードの速い装置においても、十分な帯電性を与え、直接注入帯電を優位に実現することができる。
【0069】
【発明の実施の形態】
〈実施形態例1〉(図1)
図1は本発明に従う画像形成装置の一例の概略構成模型図である。
【0070】
本例の画像形成装置は、転写式電子写真プロセス利用、直接注入帯電方式、トナーリサイクルプロセス(クリーナーレスシステム)のレーザープリンタ(記録装置)である。
【0071】
(1)本例プリンタの全体的な概略構成
1は像担持体としての、φ30mmの回転ドラム型のOPC感光体(ネガ感光体)であり、矢印の時計方向に50mm/secの周速度(プロセススピード)をもって回転駆動される。
【0072】
2は接触帯電部材としての導電性弾性ローラ(以下、帯電ローラと記す)である。
【0073】
この帯電ローラ2は芯金2a上に可撓性部材としてのゴムあるいは発泡体の中抵抗層2bを形成することにより作成される。中抵抗層2bは樹脂(例えばウレタン)、導電性粒子(例えばカーボンブラック)、硫化剤、発泡剤等により処方され、芯金2aの上にローラ状に形成した。その後必要に応じて表面を研磨して直径12mm、長手長さ250mmの導電性弾性ローラである帯電ローラ2を作成した。
【0074】
本例の帯電ローラ2のローラ抵抗を測定したところ100kΩであった。ローラ抵抗は、帯電ローラ2の芯金2aに総圧1kgの加重がかかるようφ30mmのアルミドラムに帯電ローラ2を圧着した状態で、芯金2aとアルミドラムとの間に100Vを印加し、計測した。
【0075】
ここで、導電性弾性ローラである帯電ローラ2は電極として機能することが重要である。つまり、弾性を持たせて被帯電体との十分な接触状態を得ると同時に、移動する被帯電体を充電するに十分低い抵抗を有する必要がある。一方では被帯電体にピンホールなどの欠陥部位が存在した場合に電圧のリークを防止する必要がある。被帯電体として電子写真用感光体を用いた場合、十分な帯電性と耐リークを得るには10〜10Ωの抵抗が望ましい。
【0076】
帯電ローラ2の硬度は、硬度が低すぎると形状が安定しないために被帯電体との接触性が悪くなり、高すぎると被帯電体との間に帯電ニップ部を確保できないだけでなく、被帯電体表面へのミクロな接触性が悪くなるので、アスカーC硬度で25度から50度が好ましい範囲である。
【0077】
帯電ローラ2の材質としては、弾性発泡体に限定するものでは無く、弾性体の材料として、EPDM、ウレタン、NBR、シリコーンゴムや、IR等に抵抗調整のためにカーボンブラックや金属酸化物等の導電性物質を分散したゴム材や、またこれらを発泡させたものがあげられる。また、特に導電性物質を分散せずに、イオン導電性の材料を用いて抵抗調整をすることも可能である。
【0078】
帯電ローラ2は被帯電体としての感光体1に対して弾性に抗して所定の押圧力で圧接させて配設してある。nは感光体1と帯電ローラ2のニップ部である帯電ニップ部である。この帯電ニップ部幅は3mmである。本例では、この帯電ローラ2を帯電ニップ部nにおいて帯電ローラ表面と感光体表面と互いに逆方向に等速で移動するよう凡そ80rpmで矢印の時計方向に回転駆動させた。即ち接触帯電部材としての帯電ローラ2の表面は被帯電体としての感光体1の面に対して速度差を持たせるようにした。
【0079】
また帯電ローラ2の芯金2aには帯電バイアス印加電源S1から−700Vの直流電圧を帯電バイアスとして印加するようにした。本例では感光体1の表面は帯電ローラ2に対する印加電圧とほぼ等しい電位(−680V)に直接注入帯電方式にて一様に帯電処理される。これについては後述する。
【0080】
3はレーザーダイオード・ポリゴンミラー等を含むレーザービームスキャナ(露光器)である。このレーザービームスキャナは目的の画像情報の時系列電気ディジタル画素信号に対応して強度変調されたレーザー光を出力し、該レーザー光で上記回転感光体1の一様帯電面を走査露光Lする。この走査露光Lにより回転感光体1の面に目的の画像情報に対応した静電潜像が形成される。
【0081】
4は現像装置である。回転感光体1面の静電潜像はこの現像装置によりトナー画像として現像される。本例の現像装置は磁性一成分絶縁トナー(ネガトナー)を用いた反転現像装置である。4aはマグネットロール4bを内包させた、現像剤担持搬送部材として非磁性回転現像スリーブであり、この回転現像スリーブ4aに規制ブレード4cで現像剤4dが薄層にコートされる。現像剤4dのトナーは規制ブレード4cで回転現像スリーブ4aに対する層厚が規制され、また電荷が付与される。回転現像スリーブ4aにコートされた現像剤はスリーブ4aの回転により、感光体1とスリーブ4aの対向部である現像部(現像領域部)aに搬送される。またスリーブ4aには現像バイアス印加電源S2より現像バイアス電圧が印加される。現像バイアス電圧は、−500VのDC電圧と、周波数1800Hz、ピーク間電圧1600Vの矩形のAC電圧を重畳したものを用いた。これにより、感光体1側の静電潜像がトナーで現像される。
【0082】
現像剤4dはトナーtと帯電促進粒子(帯電補助粒子)mの混合物であり、トナーtは結着樹脂、磁性体粒子、電荷制御剤を混合し、混練、粉砕、分級の各工程を経て作成し、これに、帯電促進粒子mや流動化剤を外添剤として添加して作成されたものである。トナーtの重量平均粒径(D4)は7μmであった。帯電促進粒子mは本例においては粒径3μmの導電性酸化亜鉛粒子を用いた。また本例ではトナーt100重量部に対して帯電促進粒子mを2重量部外添した。
【0083】
導電性を有する帯電促進粒子mは本例では比抵抗が10Ω・cm、二次凝集体を含めた平均粒径3μmの導電性酸化亜鉛粒子を用いたけれども、帯電促進粒子mの材料としては、他の金属酸化物などの導電性無機粒子や有機物との混合物など各種導電粒子が使用可能である。
【0084】
粒子抵抗は粒子を介した電荷の授受を行うため比抵抗としては1012Ω・cm以下が必要であり、好ましくは1010Ω・cm以下が望ましい。
【0085】
抵抗測定は、錠剤法により測定し正規化して求めた。即ち、底面積2.26cmの円筒内に凡そ0.5gの粉体試料を入れ上下電極に15kgの加圧を行うと同時に100Vの電圧を印加し抵抗値を計測、その後正規化して比抵抗を算出した。
【0086】
粒径は良好な帯電均一性を得るために50μm以下が望ましい。粒径の下限値は粒子が安定して得られるものとして10nmが限界である。
【0087】
本発明において、粒子が凝集体として構成されている場合の粒径は、その凝集体としての平均粒径として定義した。
【0088】
粒径の測定には、光学あるいは電子顕微鏡による観察から、100個以上抽出し、水平方向最大弦長をもって体積粒度分布を算出し、その50%平均粒径をもって決定した。
【0089】
以上述べたように帯電促進粒子mは、一次粒子の状態で存在するばかりでなく二次粒子の凝集した状態で存在することもなんら問題はない。どのような凝集状態であれ、凝集体として帯電促進粒子としての機能が実現できればその形態は重要ではない。
【0090】
帯電促進粒子mは特に感光体1の帯電に用いる場合に潜像露光時に妨げにならないよう、無色あるいは白色に近い粒子が適切である。さらに、カラー記録を行なう場合、帯電促進粒子mが感光体上から記録材Pに転写した場合を考えると無色、あるいは白色に近いものが望ましい。また、画像露光時に帯電促進粒子による光散乱を防止するためにもその粒子は構成画素サイズ以下であることが望ましい。
【0091】
また、帯電促進粒子mは露光の妨げにならないように非磁性であることが好ましい。
【0092】
5は接触転写手段としての中抵抗の転写ローラであり、感光体1に所定に圧接させて転写ニップ部bを形成させてある。この転写ニップ部bに不図示の給紙部から所定のタイミングで記録媒体としての転写材Pが給紙され、かつ転写ローラ5に転写バイアス印加電源S3から所定の転写バイアス電圧が印加されることで、感光体1側のトナー像が転写ニップ部bに給紙された転写材Pの面に順次に転写されていく。本例ではローラ抵抗値は5×10Ωのものを用い、+2000VのDC電圧を印加して転写を行なった。即ち、転写ニップ部bに導入された転写材Pはこの転写ニップ部bを挟持搬送されて、その表面側に回転感光体1の表面に形成担持されているトナー画像が順次に静電気力と押圧力にて転写されていく。
【0093】
6は熱定着方式等の定着装置である。転写ニップ部bに給紙されて感光体1側のトナー像の転写を受けた転写材Pは回転感光体1の面から分離されてこの定着装置6に導入され、トナー像の定着を受けて画像形成物(プリント、コピー)ととして装置外へ排出される。
【0094】
本例のプリンタはクリーナーレスであり、転写材Pに対するトナー像転写後の回転感光体1面に残留の転写残トナーはクリーナーで除去されることなく、感光体1の回転にともない帯電部nを経由して現像部aに至り、現像装置4において現像同時クリーニング(回収)される(トナーリサイクルプロセス)。
【0095】
(2)感光体1の直接注入帯電について
a)現像装置4の現像剤4dに含有させた導電性を有する帯電促進粒子mは、現像装置4による感光体1側の静電潜像のトナー現像時にトナーとともに適当量が感光体1側に移行する。
【0096】
感光体1上のトナー画像は転写ニップ部bにおいて転写バイアスの影響で転写材P側に引かれて積極的に転移するが、感光体1上の帯電促進粒子mは導電性であることで転写材P側には積極的には転移せず、感光体1上に実質的に付着保持されて残留する。また感光体1面に実質的に付着保持される帯電促進粒子mの存在によりトナー画像の感光体1側から転写剤P側への転写効率が向上する効果もえられる。
【0097】
そしてトナーリサイクルプロセスの画像形成装置はクリーナーを用いないため、転写後の感光体1面に残存の転写残トナーおよび上記の残存帯電促進粒子mは感光体1と接触帯電部材である帯電ローラ2の帯電ニップ部nに感光体1の回転でそのまま持ち運ばれて帯電ローラ2に付着・混入する。
【0098】
したがって、感光体1と帯電ローラ2とのニップ部nにこの帯電促進粒子mが存在した状態で感光体1の接触帯電が行なわれる。なお、印字初期においては帯電ローラ表面に帯電促進粒子が供給されず帯電が行なえないので帯電ローラ表面には予め帯電促進粒子を塗布しておくを可とする。
【0099】
この帯電促進粒子mの存在により、帯電ローラ2にトナーが付着・混入した場合でも、帯電ローラ2の感光体1への緻密な接触性と接触抵抗を維持できるため、接触帯電部材が帯電ローラのような簡易な部材であり、しかも帯電ローラの転写残トナーによる汚染にかかわらず、該帯電ローラ2による感光体1の直接注入帯電を行なわせることができる。
【0100】
つまり、帯電ローラ2が帯電促進粒子mを介して密に感光体に接触して、帯電ローラ2と感光体1のニップ部に存在する帯電促進粒子mが感光体1表面を隙間なく摺擦することで、帯電ローラ2による感光体1の帯電は帯電促進粒子mの存在により放電現象を用いない安定かつ安全な直接注入帯電が支配的となり、従来のローラ帯電等では得られなかった高い帯電効率が得られ、帯電ローラ2に印加した電圧とほぼ同等の電位を感光体1に与えることができる。
【0101】
また帯電ローラ2に付着・混入した転写残トナーは帯電ローラ2から徐々に感光体1上に吐き出されて感光体1面の移動とともに現像部aに至り、現像装置4において現像同時クリーニング(回収)される(トナーリサイクルプロセス)。
【0102】
現像同時クリーニングは前述したように、転写後に感光体1上に残留したトナーを引き続く画像形成工程の現像時、即ち引き続き感光体を帯電し、露光して潜像を形成し、その潜像の現像時において、現像装置のかぶり取りバイアス、即ち現像装置に印加する直流電圧と感光体の表面電位間の電位差であるかぶり取り電位差Vbackによって回収するものである。本実施例におけるプリンタのように反転現像の場合では、この現像同時クリーニングは、感光体の暗部電位から現像スリーブにトナーを回収する電界と、現像スリーブから感光体の明部電位へトナーを付着させる電界の作用でなされる。
【0103】
また帯電ローラ2から帯電促進粒子mが脱落しても、画像形成装置が稼働されることで、現像装置4の現像剤4dに含有させてある帯電促進粒子mが現像部aで感光体1面に移行し該感光体1の回転により転写ニップ部bを経て帯電部nに持ち運ばれて帯電ローラ2に逐次に供給され続けるため、帯電促進粒子mの存在による良好な帯電性が安定して維持される。
【0104】
かくして、接触帯電方式、転写方式、トナーリサイクルプロセスの画像形成装置において、接触帯電部材として帯電ローラを用いて、しかも該帯電ローラ2の転写残トナーによる汚染にかかわらず、低印加電圧でオゾンレスの直接注入帯電を長期に渡り安定に維持させることができ、均一な帯電性を与えることが出来、オゾン生成物による障害、帯電不良による障害等のない、簡易な構成、低コストな画像形成装置を得ることができる。
【0105】
b)帯電ローラ2と感光体1とのニップ部nに帯電促進粒子mを介在させることにより、該帯電促進粒子mの潤滑効果(摩擦低減効果)により帯電ローラ2と感光体1との間に容易に効果的に速度差を設けることが可能となる。
【0106】
帯電ローラ2と感光体1との間に速度差を設けることにより、帯電ローラ2と感光体1のニップ部nにおいて帯電促進粒子mが感光体1に接触する機会を格段に増加させ、高い接触性を得ることができ、容易に直接注入帯電を可能にする。
【0107】
速度差を設ける構成として、好ましくは帯電部nに持ち運ばれる感光体1上の転写残トナーを帯電ローラ2に一時的に回収し均すために、帯電ローラ2を回転駆動し、さらに、その回転方向は感光体1表面の移動方向とは逆方向に回転するように構成することが望ましい。即ち、逆方向回転で感光体1上の転写残トナーを一旦引離し帯電を行なうことにより優位に直接注入帯電を行なうことが可能である。
【0108】
像担持体としての感光体1と接触帯電部材としての帯電ローラ2とのニップ部nにおける帯電促進粒子mの介在量は、少なすぎると、該粒子による潤滑効果が十分に得られず、帯電ローラ2と感光体1との摩擦が大きくて帯電ローラ2を感光体1に速度差を持って回転駆動させることが困難である。つまり、駆動トルクが過大となるし、無理に回転させると帯電ローラ2や感光体1の表面が削れてしまう。更に該粒子による接触機会増加の効果が得られないこともあり十分な帯電性能が得られない。一方、該介在量が多過ぎると、帯電促進粒子の帯電ローラ2からの脱落が著しく増加し作像上に悪影響が出る。
【0109】
実験によると該介在量は10個/mm以上が望ましい。10個/mmより低いと十分な潤滑効果と接触機会増加の効果が得られず帯電性能の低下が生じる。
【0110】
より望ましくは10〜5×10個/mmの該介在量が好ましい。5×10個/mmを超えると、該粒子の感光体1へ脱落が著しく増加し、粒子自体の光透過性を問わず、感光体1への露光量不足が生じる。5×10個/mm以下では脱落する粒子量も低く抑えられ該悪影響を改善できる。該介在量範囲において感光体1上に脱落した粒子の存在量を測ると10〜10個/mmであったことから、作像上弊害がない該存在量としては10個/mm以下が望まれる。
【0111】
該介在量及び感光体1上の該存在量の測定方法について述べる。該介在量は帯電ローラ2と感光体1の接触面部を直接測ることが望ましいが、帯電ローラ2に接触する前に感光体1上に存在した粒子の多くは逆方向に移動しながら接触する帯電ローラ2に剥ぎ取られることから、本発明では接触面部に到達する直前の帯電ローラ2表面の粒子量をもって該介在量とした。具体的には、帯電バイアスを印加しない状態で感光ドラム1及び帯電ローラ2の回転を停止し、感光体1及び帯電ローラ2の表面をビデオマイクロスコープ(OLYMPUS製OVM1000N)及びデジタルスチルレコーダ(DELTIS製SR−3100)で撮影した。帯電ローラ2については、帯電ローラ2を感光ドラム1に当接するのと同じ条件でスライドガラスに当接し、スライドガラスの背面からビデオマイクロスコープにて該接触面を1000倍の対物レンズで10箇所以上撮影した。得られたディジタル画像から個々の粒子を領域分離するため、ある閾値を持って2値化処理し、粒子の存在する領域の数を所望の画像処理ソフトを用いて計測した。また、感光体1上の該存在量についても感光体1上を同様のビデオマイクロスコープにて撮影し同様の処理を行い計測した。
【0112】
該介在量の調整は、現像装置4の現像剤4dにおける帯電促進粒子mの配合量を設定することにより行った。一般には現像剤(トナー)t100重量部に対して帯電促進粒子mは0.01〜20重量部である。
【0113】
〈実施形態例2〉(図2)
本例は前記実施形態例1の画像形成装置において、像担持体である感光体1の表面抵抗を調整することで更に安定して均一に帯電を行なうものである。
【0114】
つまり、接触帯電部材に転写残トナーが混入し感光体1との接触面積が低下した場合でも、帯電促進粒子の介在と、感光体側の表面抵抗を潜像形成可能な領域で低く設定することにより、一層効率良く電荷の授受を行なうものである。
【0115】
本例では感光体1の表面に電荷注入層を設けて感光体表面の抵抗を調節している。図2は、本例で使用した、表面に電荷注入層を設けた感光体1の層構成模型図である。即ち該感光体1は、アルミドラム基体(Alドラム基体)11上に下引き層12、正電荷注入防止層13、電荷発生層14、電荷輸送層15の順に重ねて塗工された一般的な有機感光体ドラムに電荷注入層16を塗布することにより、帯電性能を向上したものである。
【0116】
電荷注入層16は、バインダーとしての光硬化型のアクリル樹脂に、導電性粒子(導電フィラー)としてのSnO超微粒子16a(径が約0.03μm)、4フッ化エチレン樹脂(商品名テフロン)などの滑剤、重合開始剤等を混合分散し、塗工後、光硬化法により膜形成したものである。
【0117】
電荷注入層16として重要な点は、表層の抵抗にある。電荷の直接注入による帯電方式においては、被帯電体側の抵抗を下げることでより効率良く電荷の授受が行えるようになる。一方、感光体として用いる場合には静電潜像を一定時間保持する必要があるため、電荷注入層16の体積抵抗値としては1×10〜1×1014(Ω・cm)の範囲が適当である。
【0118】
また本構成のように電荷注入層16を用いていない場合でも、例えば電荷輸送層15が上記抵抗範囲にある場合は同等の効果が得られる。
【0119】
さらに、表層の体積抵抗が約1013Ωcmであるアモルファスシリコン感光体等を用いても同様な効果が得られる。
【0120】
〈実施形態例の評価〉
比較例とともに本発明の優位性を表1にまとめた。
【0121】
【表1】

Figure 0003652331
〔比較例1〕
比較例1は、帯電部材として帯電ローラを用い、該帯電ローラを感光体に従動する構成とした。また現像剤4dに帯電促進粒子mを配合しない構成とした。即ち帯電促進粒子mを用いない装置である。
【0122】
〔比較例2〕
比較例2は、比較例1の構成において、予め帯電促進粒子を塗布した帯電ローラを用いた。
【0123】
〔評 価〕
各々の例において帯電性の評価は印刷速度の異なる画像記録装置を用いゴースト画像の優劣で評価した。
【0124】
本例は反転現像系で行っているので、ここで意味するゴーストとは、感光体の1周目において画像露光した部分(トナー画像部である)が、感光体2周目で帯電不足を起こすため、感光体上の前回の画像パターンのところがより強く現像され、ゴースト画像が発生することを言う。
【0125】
ここでは、その画像評価を以下の基準で行った。
【0126】
×:ベタ黒後の白地部においてゴーストが見られる。
【0127】
○:ベタ黒後の白地部においてゴーストが見られないが、中間調部において若干ゴーストパターンが見られる。
【0128】
◎:ベタ黒後の白地部及び中間調部の何れにおいてゴーストが見られない。
【0129】
また、評価は印字初期と1000枚(A4縦方向)の印字を行った後に行った。表中のスラッシュ線(斜線)上段は初期、下段は印字後の評価結果を表わしている。
【0130】
表から明らかなように、比較例1では初期において既に、何れの速度でも帯電性を満足することがなかった。つまり、これは帯電部材(帯電ローラ)が感光体に充分接触できないため直接帯電が不可能であることを表わしている。
【0131】
また、比較例2は、帯電促進粒子を塗布した初期はゴーストは見られないが、印字を続けると急速に帯電ローラの汚れが進むと同時に、帯電促進粒子が脱落し画像は大幅に劣化した。
【0132】
実施形態例1では、現像剤4dに帯電促進粒子mを混合し感光体を経由し該粒子を帯電部材へ安定して供給することが可能であるため、感光体に対し充分な接触性が得られ帯電性を満足し、かつそれを維持することができる。更に、感光ドラムと帯電部材の速度をともに増加した場合にも良好な帯電性を示すが、帯電部材の速度が低下すると若干の帯電不足が生じる。従って、帯電部材と感光体は速度差を設けた方がより効率良く帯電が行うことができる。
【0133】
また、実施形態例2においては、感光体表層の抵抗を静電潜像を維持できる範囲で低めに設定することにより、接触状態としては同じであってもより効率良く電荷の授受を行える。それは、よりプロセスが高速で実行される場合に効果があり、表中の感光体速度が100mm/sec、帯電部材速度50mm/secの評価を満足できることから明確である。
【0134】
〈その他〉
1)接触帯電部材としての帯電ローラ2は実施形態例の帯電ローラに限られるものではない。
【0135】
また可撓性の接触帯電部材は弾性帯電ローラの他に、ファーブラシ、フェルト、布などの材質・形状のものも使用可能である。また、これらを積層し、より適切な弾性と導電性を得ることも可能である。
【0136】
2)接触帯電部材2や現像スリーブ4aに対する印加帯電バイアスあるいは印加現像バイアスは直流電圧に交番電圧(交流電圧)を重畳してもよい。
【0137】
交番電圧の波形としては、正弦波、矩形波、三角波等適宜使用可能である。また、直流電源を周期的にオン/オフすることによって形成された矩形波であっても良い。このように交番電圧の波形としては周期的にその電圧値が変化するようなバイアスが使用できる。
【0138】
3)静電潜像形成のための画像露光手段としては、実施形態例の様にディジタル的な潜像を形成するレーザー走査露光手段に限定されるものではなく、通常のアナログ的な画像露光やLEDなどの他の発光素子でも構わないし、蛍光燈等の発光素子と液晶シャッター等の組み合わせによるものなど、画像情報に対応した静電潜像を形成できるものであるなら構わない。
【0139】
像担持体は静電記録誘電体等であっても良い。この場合は、該誘電体面を所定の極性・電位に一様に一次帯電した後、除電針ヘッド、電子銃等の除電手段で選択的に除電して目的の静電潜像を書き込み形成する。
【0140】
4)現像手段4は実施形態例では一成分磁性トナーによる現像装置を例に説明したが現像装置構成について特に限定するものではない。
【0141】
5)像担持体からトナー画像の転写を受ける記録媒体は転写ドラム等の中間転写体であってもよい。
【0142】
6)トナー粒度の測定方法の1例を述べる。測定装置としては、コールターカウンターTA−2型(コールター社製)を用い、個数平均分布、体積平均分布を出力するインターフェイス(日科機製)及びCX−1パーソナルコンピュータ(キヤノン製)を接続し、電解液は一級塩化ナトリウムを用いて1%NaCl水溶液を調製する。
【0143】
測定法としては、前記電解水溶液100〜150ml中に分散剤として界面活性剤、好ましくは、アルキルベンゼンスルホン酸塩0.1〜5ml加え、更に測定試料を0.5〜50mg加える。
【0144】
試料を懸濁した電解液は、超音波分散器で約1〜3分間分散処理を行い、前記コールターカウンターTA−2型により、アパーチャーとして100μアパーチャーを用いて2〜40μmの粒子の粒度分布を測定して、体積平均分布を求める。これらの求めた体積平均分布より体積平均粒径を得る。
【0145】
【発明の効果】
以上述べたように本発明は、接触帯電方式、転写方式、トナーリサイクルプロセス(クリーナーレスシステム)の画像形成装置において、接触帯電部材として帯電ローラやファーブラシ等の簡易な部材を用い、現像手段の現像剤に帯電促進粒子を混合することで、トナーをリサイクルすると同時に接触帯電部材の像担持体への接触密度の向上を図り直接注入帯電を長期に渡り維持することを可能にした。本構成では、絶縁体であるところのトナーが接触帯電部材に混入した場合においても、同時に導電性粒子である帯電促進粒子を安定して供給することにより接触帯電部材と像担持体間に介在させて接触帯電部材の像担持体への接触性を向上させることで直接注入帯電を持続することができた。
【0146】
また、像担持体と接触帯電部材は速度差をもって接触させる。より好ましくは逆方向に移動するよう回転させて帯電することにより、像担持体と接触帯電部材の接触性と接触機会を一層増加させるとともに、転写残トナーの影響を抑え良好な帯電を維持することが可能である。
【0147】
さらに、像担持体表面の抵抗を調節することで、更に高速帯電にも適した帯電装置を構成することが可能になった。高速の記録装置においては、部材の長寿命が要求されるため帯電部材の速度を下げて、感光体など各部材の削れを低減することが望ましい。その意味では、像担持体の表層の抵抗調整をすることにより帯電効率を向上することで、帯電部材が低速度で駆動されているときも十分な帯電性能を得て、それを長期に渡り維持することが可能になった。
【0148】
このように本発明は、接触帯電方式、転写方式、トナーリサイクルプロセスの画像形成装置において、接触帯電部材として帯電ローラやファーブラシ等の簡易な部材を用いて、しかも該接触帯電部材の転写残トナーによる汚染にかかわらず、低印加電圧でオゾンレスの直接注入帯電を長期に渡り安定に維持させて実現する、即ち帯電ローラやファーブラシ等の接触帯電部材を用いた簡易な構成で、直接注入帯電と、トナーリサイクルプロセスを実現することができ初期の目的がよく達成された。
【図面の簡単な説明】
【図1】実施形態例1における画像形成装置の概略構成図
【図2】実施形態例2における、表面に電荷注入層を設けた感光体の層構成模型図
【図3】帯電特性グラフ
【符号の説明】
1 感光体(像担持体、被帯電体)
2 帯電ローラ(接触帯電部材)
3 レーザービームスキャナ(露光器)
4 現像装置
4a 現像スリーブ
4d 現像剤(トナーt+帯電促進粒子m)
5 転写ローラ
6 定着装置
P 転写材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an image forming method and an image forming apparatus such as a copying machine or a printer.
[0002]
More specifically, the present invention relates to an image forming apparatus using a contact charging method, a transfer method, and a toner recycling process.
[0003]
[Prior art]
Conventionally, for example, in an image forming apparatus such as an electrophotographic apparatus or an electrostatic recording apparatus, an image bearing member such as an electrophotographic photosensitive member or an electrostatic recording dielectric is uniformly charged to a required polarity and potential (also a charge eliminating process). A corona charger (corona discharger) has often been used as a charging device.
[0004]
The corona charger is a non-contact type charging device, and includes a discharge electrode such as a wire electrode and a shield electrode surrounding the discharge electrode, and is disposed in a non-contact manner with the discharge opening facing the image carrier that is a charged body. The image carrier surface is charged to a predetermined level by exposing the image carrier surface to a discharge current (corona shower) generated by applying a high voltage to the discharge electrode and the shield electrode.
[0005]
Recently, in medium and low speed image forming apparatuses, contact charging devices have advantages such as low ozone and low power compared to corona chargers as charging devices for charged objects such as image carriers. Have been proposed and put to practical use.
[0006]
The contact charging device contacts a charged object such as an image carrier with a conductive charging member (contact charging member / contact charger) such as a roller type (charging roller), a fur brush type, a magnetic brush type, or a blade type. Then, a predetermined charging bias is applied to the contact charging member to charge the charged body surface to a predetermined polarity and potential.
[0007]
There are two types of contact charging mechanisms (charging mechanism, charging principle): (1) discharge charging mechanism and (2) direct injection charging mechanism, depending on which is dominant. The characteristic of appears.
[0008]
(1). Discharge charging mechanism
This is a mechanism for charging the surface of the member to be charged by a discharge phenomenon that occurs in a minute gap between the contact charging member and the member to be charged.
[0009]
Since the discharge charging mechanism has a constant discharge threshold value for the contact charging member and the member to be charged, it is necessary to apply a voltage larger than the charging potential to the contact charging member. Further, although the generation amount is remarkably smaller than that of the corona charger, it is unavoidable that a discharge product is generated in principle, and thus harmful effects due to active ions such as ozone are unavoidable.
[0010]
(2). Direct injection charging mechanism
In this system, the surface of the charged body is charged by directly injecting the charge from the contact charging member to the charged body. It is also called direct charging, injection charging, or charge injection charging. More specifically, a medium-resistance contact charging member comes into contact with the surface of the member to be charged, and charge is directly injected into the surface of the member to be charged without going through a discharge phenomenon, that is, basically using no discharge. Therefore, even if the applied voltage to the contact charging member is an applied voltage that is equal to or lower than the discharge threshold, the object to be charged can be charged to a potential corresponding to the applied voltage.
[0011]
Since this charging system is not accompanied by the generation of ions, there is no adverse effect caused by the discharge products. However, since direct injection charging is used, the contact property of the contact charging member to the member to be charged greatly affects the charging property. Therefore, the contact charging member needs to be configured more densely, have a large speed difference from the object to be charged, and must be configured to contact the object to be charged more frequently.
[0012]
A) Roller charging
In the contact charging device, a roller charging method using a conductive roller (charging roller) as a contact charging member is preferable in terms of charging stability and is widely used.
[0013]
The roller charging is mainly performed by the discharge charging mechanism (1).
[0014]
The charging roller is made of a conductive or medium resistance rubber material or foam. In addition, there are those obtained by laminating these to obtain desired characteristics.
[0015]
The charging roller has elasticity in order to obtain a certain contact state with a member to be charged (hereinafter referred to as a photosensitive member), but has a large frictional resistance, and is often driven by the photosensitive member or at a slight speed. Driven with a difference. Therefore, even if direct injection charging is attempted, a decrease in absolute charging ability, lack of contactability, roller-shaped unevenness, and charging unevenness due to adhering material on the photosensitive member cannot be avoided. The charging mechanism is dominant.
[0016]
FIG. 3 is a graph showing an example of charging efficiency in contact charging. The horizontal axis represents the bias applied to the contact charging member, and the vertical axis represents the photosensitive member charging potential obtained at that time. The charging characteristic in the case of roller charging is represented by A. That is, charging starts after the discharge threshold of about −500V. Therefore, when charging to -500 V, apply a DC voltage of -1000 V, or in addition to a charging voltage of -500 V DC, apply an AC voltage with a peak-to-peak voltage of 1200 V so as to always have a potential difference greater than the discharge threshold. Thus, a method of converging the photoreceptor potential to the charging potential is common.
[0017]
More specifically, when the charging roller is brought into pressure contact with an OPC photoconductor having a thickness of 25 μm, the surface potential of the photoconductor starts to rise when a voltage of about 640 V or more is applied. Thereafter, the photosensitive member surface potential increases linearly with a slope of 1 with respect to the applied voltage. This threshold voltage is defined as the charging start voltage Vth.
[0018]
That is, in order to obtain the photoreceptor surface potential Vd required for electrophotography, the charging roller requires a DC voltage higher than that required, that is, Vd + Vth. A method of charging by applying only the DC voltage to the contact charging member in this way is referred to as a “DC charging method”.
[0019]
However, in DC charging, the resistance value of the contact charging member fluctuates due to environmental fluctuations, and Vth fluctuates when the film thickness changes due to the photoconductor being scraped. It was difficult.
[0020]
Therefore, an AC component having a peak-to-peak voltage of 2 × Vth or more is added to a DC voltage corresponding to a desired Vd, as disclosed in Japanese Patent Laid-Open No. 63-149669, in order to further uniform charge. An “AC charging method” is used in which the superimposed voltage is applied to the contact charging member. This is for the purpose of smoothing the potential due to AC, and the potential of the charged body converges to Vd, which is the center of the peak of the AC voltage, and is not affected by disturbances such as the environment.
[0021]
However, even in such a contact charging device, the essential charging mechanism uses a discharge phenomenon from the contact charging member to the photosensitive member, so that the voltage applied to the contact charging member is photosensitive as described above. A value higher than the body surface potential is required, and a trace amount of ozone is generated.
[0022]
Further, when AC charging is performed for uniform charging, further generation of ozone, generation of vibration noise (AC charging sound) between the contact charging member and the photosensitive member due to an AC voltage electric field, and surface of the photosensitive member due to discharge As a result, the deterioration and the like became remarkable, which was a new problem.
[0023]
B) Fur brush charging
Fur brush charging uses a member (fur brush charger) having a conductive fiber brush portion as a contact charging member, and the conductive fiber brush portion is brought into contact with a photosensitive member as a member to be charged, and a predetermined charging bias is applied. This is applied to charge the photoreceptor surface to a predetermined polarity and potential.
[0024]
The charge charging mechanism of the fur brush charging is dominated by the discharge charging mechanism (1).
[0025]
Fur brush chargers are available in fixed and roll types. A fixed type is a medium-resistance fiber folded into a base fabric and bonded to an electrode. The roll type is formed by winding a pile around a metal core. The fiber density is 100 / mm 2 However, the contact is still insufficient to achieve sufficiently uniform charging by direct injection charging. As a configuration, it is necessary to have a speed difference that is difficult, which is not realistic.
[0026]
The charging characteristics of the fur brush charged when a DC voltage is applied are the characteristics shown in FIG. Accordingly, in the case of fur brush charging, both the fixed type and the roll type are charged using a discharge phenomenon by applying a high charging bias.
[0027]
C) Magnetic brush charging
Magnetic brush charging uses a member (magnetic brush charger) having a magnetic brush portion formed in a brush shape by magnetically constraining conductive magnetic particles with a magnet roll or the like as a contact charging member, and the magnetic brush portion is to be charged. And a predetermined charging bias is applied to charge the surface of the photosensitive member to a predetermined polarity and potential.
[0028]
In the case of this magnetic brush charging, the direct injection charging mechanism (2) is dominant as the charging mechanism.
[0029]
By using conductive magnetic particles constituting the magnetic brush portion having a particle diameter of 5 to 50 μm and providing a sufficient speed difference from the photoreceptor, uniform direct injection charging is possible.
[0030]
As indicated by C in the charging characteristic graph of FIG. 3, it is possible to obtain a charging potential substantially proportional to the applied bias.
[0031]
However, there are other disadvantages such as a complicated apparatus configuration and conductive magnetic particles constituting the magnetic brush portion falling off and adhering to the photoreceptor.
[0032]
Japanese Patent Laid-Open No. 6-3921 proposes a method of injecting charges into a charge holding member such as a trap level on the surface of a photoreceptor or a conductive particle of a charge injection layer to perform contact injection charging. Since the discharge phenomenon is not used, the voltage required for charging is only the desired photoreceptor surface potential, and ozone is not generated. Furthermore, since no AC voltage is applied, no charging noise is generated, and this is an excellent charging system that is ozone-free and has low power compared to the roller charging system.
[0033]
D) Toner recycling process (cleanerless system)
In the transfer type image forming apparatus, the transfer residual toner remaining on the photoconductor (image carrier) after the transfer is removed from the photoconductor surface by a cleaner (cleaning device) and becomes waste toner. It is desirable not to come out from the aspect. Therefore, the image forming apparatus of the toner recycling process is configured such that the cleaner is eliminated, and the transfer residual toner on the photosensitive member after transfer is removed from the photosensitive member by “development simultaneous cleaning” by the developing device and collected and reused in the developing device. Has also appeared.
[0034]
Simultaneous development cleaning refers to the toner remaining on the photoconductor after the transfer, during the subsequent development, that is, the photoconductor is subsequently charged and exposed to form a latent image, and a fog removal bias ( This is a method of recovery by a fog removal potential difference Vback, which is a potential difference between the DC voltage applied to the developing device and the surface potential of the photoreceptor. According to this method, since the transfer residual toner is collected by the developing device and reused after the next step, waste toner can be eliminated, and troublesome maintenance can be reduced. Further, the cleaner-less has a great space advantage, and the image forming apparatus can be greatly downsized.
[0035]
E) Powder application to contact charging member
Japanese Patent Publication No. 7-99442 discloses a configuration in which powder is applied to a contact surface of a contact charging member with a surface of an object to be charged in order to prevent uneven charging and perform stable uniform charging. Although the contact charging member (charging roller) is driven to rotate (without speed difference driving), the generation of ozone products is much less than that of corona chargers such as Scorotron. The charging principle is mainly based on the discharge charging mechanism as in the case of the roller charging described above. In particular, in order to obtain more stable charging uniformity, a voltage obtained by superimposing an AC voltage on a DC voltage is applied, and therefore, more ozone products are generated due to discharge. Therefore, when the apparatus is used for a long time or when the cleaner-less image forming apparatus is used for a long time, adverse effects such as image flow due to ozone products tend to appear.
[0036]
Japanese Patent Application Laid-Open No. 5-150539 discloses that in an image forming method using contact charging, charging inhibition due to toner particles and silica fine particles adhering to the surface of the charging means during repeated image formation for a long time is prevented. Therefore, it is disclosed that the developer contains at least visible particles and conductive particles having an average particle size smaller than the visible particles. However, this contact charging is based on the discharge charging mechanism, not the direct injection charging mechanism, and has the above-described problems due to discharge charging.
[0037]
[Problems to be solved by the invention]
1) As described in the section of the prior art, in the contact charging, the surface of the contact charging member is rough for direct injection charging with a simple configuration using a charging roller or a fur brush as the contact charging member. Thus, intimate contact with the image bearing member as the charged member is not ensured, and direct injection charging is impossible.
[0038]
Therefore, in contact charging, even when a simple member such as a charging roller or a fur brush is used as a contact charging member, direct injection charging that is more excellent in charging uniformity and stable over a long period of time is realized. Therefore, it is expected to realize ozone-less direct injection charging with a simple configuration.
[0039]
2) Further, in the image forming apparatus of the toner recycling process, when a contact charging device is adopted as a charging means for the image carrier, a cleaner that removes residual transfer residual toner on the surface of the image carrier after transfer is not used. The residual toner remaining on the surface of the image carrier after the transfer is carried as it is by the movement of the image carrier surface to the charging portion which is the contact portion between the image carrier and the contact charging member, and the contact charging member is contaminated with toner. The direct injection charging from the contact charging member to the image bearing member is also inhibited. In addition, when charging failure occurs, toner mixture into the contact charger further increases, and charging failure is intensified.
[0040]
Accordingly, the present invention provides a contact charging method, a transfer method, and a toner recycling process (cleanerless system) image forming apparatus using a simple member such as a charging roller or a fur brush as the contact charging member. Regardless of contamination due to transfer residual toner, ozone-less direct injection charging is stably maintained over a long period of time with a low applied voltage, that is, with a simple configuration using a contact charging member such as a charging roller or a fur brush. The purpose is to realize injection charging and toner recycling process.
[0041]
[Means for Solving the Problems]
The present invention is an image forming apparatus having the following configuration.
[0042]
(1) Photoconductor When, The photoreceptor Charging means for charging Exposure means for exposing the photoconductor to form an electrostatic latent image on the photoconductor, and the photoconductor Formed in Said A developing unit that visualizes the electrostatic latent image as a toner image with toner, and a transfer unit that transfers the toner image to a recording medium; after the developing unit transfers the toner image to the recording medium; Photoconductor In the image forming apparatus capable of collecting the toner remaining on the top,
The charging means is a charging member to which a voltage is applied, The photoreceptor And a flexible charging member that forms a nip portion, Said In advance on the surface of the charging member Non-magnetic Loading conductive particles in the nip Non-magnetic Interposing conductive particles,
The developer of the developing means is toner and Non-magnetic Containing conductive particles, Non-magnetic Conductive particles from the developing means The photoreceptor An image forming apparatus, wherein the image forming apparatus is supplied to the nip portion.
[0043]
(2) The surface of the charging member is Non-magnetic With conductive particles Photoconductor The image forming apparatus according to (1), wherein the image forming apparatus moves with a speed difference with respect to the surface of the photosensitive member so as to rub the surface.
[0044]
(3) The above Non-magnetic Conductive particles have a resistance of 10 12 The image forming apparatus according to (1) or (2), wherein the image forming apparatus has an Ω · cm or less and a particle size of 50 μm or less.
[0045]
(4) The above Non-magnetic Conductive particles have a resistance of 10 10 The image forming apparatus according to claim 1, wherein the image forming apparatus has an Ω · cm or less and a particle size of 50 μm or less.
[0046]
(5) The charging member and the Photoconductor The image forming apparatus according to any one of (1) to (4), wherein the nip portions move in opposite directions to each other at the nip portion.
[0047]
(6) The image forming apparatus according to any one of (1) to (5), wherein the charging member is an elastic conductive roller.
[0048]
(7) The image forming apparatus according to any one of (1) to (6), wherein the charging member includes a foam on a surface thereof.
[0049]
(8) The charging member is disposed in the nip portion. Non-magnetic The image forming apparatus according to any one of (1) to (7), wherein the conductive particles are carried and conveyed.
[0050]
(9) The above Photoconductor The volume resistance of the outermost surface layer is 1 × 10 9 (Ω · cm) or more 1 × 10 14 The image forming apparatus according to any one of (1) to (8), wherein the image forming apparatus is (Ω · cm) or less.
[0053]
(10) The developing means simultaneously develops the electrostatic latent image on the photoreceptor with toner. Photoconductor The toner remaining in the toner can be collected. (9) The image forming apparatus according to any one of the above.
[0054]
<Operation>
a) Conductive charge accelerating particles contained in the developer of the developing means (Nonmagnetic conductive particles) Is an image carrier by the developing means. (Photoconductor) When the toner of the side electrostatic latent image is developed, an appropriate amount is transferred to the image carrier side together with the toner.
[0055]
The toner image on the image carrier is attracted and actively transferred to the recording medium side due to the effect of the transfer bias in the transfer unit. Does not actively transfer and remains substantially adhered and held on the image carrier.
[0056]
Since the image forming apparatus of the toner recycling process does not use a cleaner, the transfer residual toner remaining on the surface of the image carrier after transfer and the above-described residual charge accelerating particles are placed on the nip portion between the image carrier and the contact charging member. It is carried as it is by moving and adheres to and mixes with the contact charging member.
[0057]
Therefore, contact charging of the image carrier is performed in a state where the charge accelerating particles are present in the nip portion between the image carrier and the contact charging member.
[0058]
Due to the presence of the charge accelerating particles, even when toner adheres to or mixes with the contact charging member, the contact charging member can maintain a close contact property and contact resistance with the image carrier. It is a simple member such as a brush, and it is possible to perform direct injection charging of the image carrier with the contact charging member regardless of contamination of the contact charging member with residual toner.
[0059]
That is, the contact charging member comes into close contact with the image carrier via the charge accelerating particles, and the charge accelerating particles existing in the nip portion between the contact charging member and the image carrier rub against the surface of the image carrier without gaps. Therefore, the charging of the image carrier by the contact charging member is dominated by stable and safe direct injection charging that does not use the discharge phenomenon due to the presence of the charge accelerating particles, and high charging efficiency not obtained by conventional roller charging or the like is obtained. Thus, a potential substantially equal to the voltage applied to the contact charging member can be applied to the image carrier.
[0060]
Further, the transfer residual toner adhering to and mixed in the contact charging member is gradually discharged from the contact charging member onto the image carrier, reaches the developing unit along with the movement of the image carrier surface, and is simultaneously cleaned (collected) by the developing means (development). Toner recycling process).
[0061]
Even if the charge accelerating particles fall off from the contact charging member, the image forming apparatus is operated so that the charge accelerating particles contained in the developer of the developing means are transferred to the surface of the image carrier at the developing portion. As the surface moves, it is carried to the charging unit via the transfer unit and continuously supplied to the contact charging member, so that good chargeability due to the presence of the charge accelerating particles is stably maintained.
[0062]
Thus, in an image forming apparatus using a contact charging method, a transfer method, or a toner recycling process, a simple member such as a charging roller or a fur brush is used as a contact charging member, and regardless of contamination of the contact charging member due to transfer residual toner. , Ozone-less direct injection charging can be stably maintained over a long period of time with a low applied voltage, uniform chargeability can be given, and there is no obstruction due to ozone products, no obstruction due to poor charging, etc., A low-cost image forming apparatus can be obtained.
[0063]
b) By interposing the charge accelerating particles in the nip portion between the contact charging member and the image carrier, the effect of lubrication (friction reducing effect) of the charge accelerating particles is easily achieved between the contact charging member and the image carrier. Thus, it is possible to provide a speed difference.
[0064]
By providing a speed difference between the contact charging member and the image carrier, the chance of the charge accelerating particles contacting the image carrier at the nip portion between the contact charging member and the image carrier is greatly increased, and high contactability is achieved. Which can be easily obtained and allows direct injection charging.
[0065]
As a configuration for providing the speed difference, the contact charging member is rotationally driven to provide a speed difference between the image carrier and the contact charging member. Preferably, in order to temporarily collect and level the transfer residual toner on the image carrier carried by the charging unit on the contact charging member, the contact charging member is driven to rotate. It is desirable to configure to rotate in the direction opposite to the moving direction. That is, it is possible to perform direct injection charging preferentially by once separating the transfer residual toner on the image carrier by reverse rotation and performing charging.
[0066]
Although it is possible to move the charging member in the same direction as the moving direction of the image carrier surface to give a speed difference, the charging property of direct injection charging is the ratio of the peripheral speed of the image carrier to the peripheral speed of the charging member. Therefore, in order to obtain the same peripheral speed ratio as in the reverse direction, the rotation speed of the charging member is larger in the forward direction than in the reverse direction. Therefore, it is advantageous in terms of the rotation speed to move the charging member in the reverse direction. It is. The peripheral speed ratio described here is
Peripheral speed ratio (%) = (charging member peripheral speed−image carrier peripheral speed) / image carrier peripheral speed × 100
(The charging member peripheral speed is a positive value when the surface of the charging member moves in the same direction as the surface of the image carrier at the nip portion).
[0067]
c) By using an elastic conductive roller or a brush made of conductive fibers as the contact charging member, the transfer residual toner on the image carrier is temporarily collected and the charge accelerating particles are supported so that direct injection charging is superior. To run.
[0068]
d) The volume resistance of the outermost surface layer of the image carrier is 1 × 10 9 (Ω · cm) or more 1 × 10 14 By setting it to (Ω · cm) or less, it is possible to maintain an electrostatic latent image and to provide sufficient chargeability even in an apparatus having a high process speed, and to realize direct injection charging.
[0069]
DETAILED DESCRIPTION OF THE INVENTION
<Embodiment Example 1> (FIG. 1)
FIG. 1 is a schematic configuration diagram of an example of an image forming apparatus according to the present invention.
[0070]
The image forming apparatus of this example is a laser printer (recording apparatus) using a transfer type electrophotographic process, a direct injection charging system, and a toner recycling process (cleanerless system).
[0071]
(1) Overall schematic configuration of this example printer
Reference numeral 1 denotes a φ30 mm rotating drum type OPC photosensitive member (negative photosensitive member) as an image bearing member, which is rotationally driven in a clockwise direction indicated by an arrow at a peripheral speed (process speed) of 50 mm / sec.
[0072]
Reference numeral 2 denotes a conductive elastic roller (hereinafter referred to as a charging roller) as a contact charging member.
[0073]
The charging roller 2 is formed by forming a rubber or foam medium resistance layer 2b as a flexible member on a cored bar 2a. The middle resistance layer 2b is formulated with a resin (for example, urethane), conductive particles (for example, carbon black), a sulfurizing agent, a foaming agent, and the like, and is formed in a roller shape on the core metal 2a. Thereafter, the surface was polished as necessary to prepare a charging roller 2 which is a conductive elastic roller having a diameter of 12 mm and a longitudinal length of 250 mm.
[0074]
The roller resistance of the charging roller 2 of this example was measured and found to be 100 kΩ. The roller resistance is measured by applying 100 V between the core metal 2a and the aluminum drum in a state where the charging roller 2 is pressure-bonded to an aluminum drum having a diameter of 30 mm so that the core metal 2a of the charging roller 2 is loaded with a total pressure of 1 kg. did.
[0075]
Here, it is important that the charging roller 2 which is a conductive elastic roller functions as an electrode. In other words, it is necessary to provide a sufficient contact state with the member to be charged by providing elasticity, and at the same time to have a sufficiently low resistance to charge the moving member to be charged. On the other hand, it is necessary to prevent voltage leakage in the case where a defect site such as a pinhole exists in the member to be charged. When an electrophotographic photosensitive member is used as the member to be charged, 10 is necessary to obtain sufficient chargeability and leakage resistance. 4 -10 7 A resistance of Ω is desirable.
[0076]
If the hardness of the charging roller 2 is too low, the shape is not stable, so that the contact property with the member to be charged is deteriorated. If the hardness is too high, the charging nip portion cannot be secured between the member and the member to be charged. Since the micro-contact property to the surface of the charged body is deteriorated, the preferred range of Asker C hardness is 25 to 50 degrees.
[0077]
The material of the charging roller 2 is not limited to the elastic foam, and the material of the elastic body may be EPDM, urethane, NBR, silicone rubber, or the like such as carbon black or metal oxide for resistance adjustment to IR or the like. Examples thereof include a rubber material in which a conductive material is dispersed and a foamed material of these materials. It is also possible to adjust the resistance using an ion conductive material without dispersing the conductive substance.
[0078]
The charging roller 2 is disposed in pressure contact with a photosensitive member 1 as a member to be charged with a predetermined pressing force against elasticity. n is a charging nip portion which is a nip portion between the photosensitive member 1 and the charging roller 2 The charging nip width is 3 mm. In this example, the charging roller 2 is rotationally driven in the clockwise direction of the arrow at about 80 rpm so that the charging roller surface and the photosensitive member surface move in the opposite directions to each other at a constant speed in the charging nip portion n. That is, the surface of the charging roller 2 as the contact charging member has a speed difference with respect to the surface of the photosensitive member 1 as the member to be charged.
[0079]
Further, a DC voltage of −700 V is applied as a charging bias to the cored bar 2a of the charging roller 2 from the charging bias application power source S1. In this example, the surface of the photoreceptor 1 is uniformly charged by a direct injection charging method at a potential (−680 V) substantially equal to the voltage applied to the charging roller 2. This will be described later.
[0080]
A laser beam scanner (exposure device) 3 includes a laser diode, a polygon mirror, and the like. This laser beam scanner outputs a laser beam whose intensity is modulated in accordance with the time-series electric digital pixel signal of the target image information, and scans and exposes the uniformly charged surface of the rotating photoreceptor 1 with the laser beam. By this scanning exposure L, an electrostatic latent image corresponding to target image information is formed on the surface of the rotary photosensitive member 1.
[0081]
Reference numeral 4 denotes a developing device. The electrostatic latent image on the surface of the rotating photoreceptor 1 is developed as a toner image by this developing device. The developing device of this example is a reversal developing device using magnetic one-component insulating toner (negative toner). Reference numeral 4a denotes a non-magnetic rotary developing sleeve as a developer carrying member enclosing a magnet roll 4b. The rotating developer sleeve 4a is coated with a developer 4d in a thin layer by a regulating blade 4c. The toner of the developer 4d is regulated in layer thickness with respect to the rotary developing sleeve 4a by the regulating blade 4c, and is charged. The developer coated on the rotating developing sleeve 4a is transported to the developing portion (developing region portion) a which is a facing portion between the photoreceptor 1 and the sleeve 4a by the rotation of the sleeve 4a. A developing bias voltage is applied to the sleeve 4a from a developing bias applying power source S2. The developing bias voltage used was a superposition of a DC voltage of −500 V and a rectangular AC voltage with a frequency of 1800 Hz and a peak-to-peak voltage of 1600 V. As a result, the electrostatic latent image on the photoreceptor 1 side is developed with toner.
[0082]
Developer 4d is a mixture of toner t and charge accelerating particles (charging auxiliary particles) m. Toner t is prepared by mixing binder resin, magnetic particles and charge control agent, and kneading, pulverizing, and classifying. In addition, the charge promoting particles m and a fluidizing agent are added as external additives. The weight average particle diameter (D4) of the toner t was 7 μm. In this example, conductive zinc oxide particles having a particle size of 3 μm were used as the charge accelerating particles m. In this example, 2 parts by weight of the charge accelerating particles m are externally added to 100 parts by weight of the toner t.
[0083]
In this example, the electrification promoting particle m having conductivity has a specific resistance of 10 6 Although conductive zinc oxide particles having an average particle size of 3 μm including Ω · cm and secondary agglomerates were used, as the material of the charge accelerating particles m, conductive inorganic particles such as other metal oxides and organic substances can be used. Various conductive particles such as a mixture can be used.
[0084]
The particle resistance is 10 to 10 because the specific resistance is exchanged through particles. 12 Ω · cm or less is required, preferably 10 10 Ω · cm or less is desirable.
[0085]
The resistance was measured by the tablet method and normalized. That is, the bottom area 2.26cm 2 Approximately 0.5 g of a powder sample was placed in the cylinder, and 15 kg of pressure was applied to the upper and lower electrodes. At the same time, a voltage of 100 V was applied to measure the resistance value, and then normalized to calculate the specific resistance.
[0086]
The particle size is desirably 50 μm or less in order to obtain good charging uniformity. The lower limit of the particle size is 10 nm, as long as particles can be stably obtained.
[0087]
In the present invention, the particle size when the particles are constituted as an aggregate is defined as an average particle size as the aggregate.
[0088]
For the measurement of the particle size, 100 or more samples were extracted from observation with an optical or electron microscope, the volume particle size distribution was calculated with the maximum horizontal chord length, and the 50% average particle size was determined.
[0089]
As described above, there is no problem that the charge promoting particles m exist not only in the state of primary particles but also in the state of aggregation of secondary particles. In any aggregate state, the form is not important as long as the function as the charge promoting particles can be realized as the aggregate.
[0090]
In particular, when the charge promoting particles m are used for charging the photosensitive member 1, colorless or nearly white particles are suitable so as not to disturb the latent image exposure. Further, when performing color recording, it is desirable that the charge accelerating particles m be transferred to the recording material P from the photoreceptor to be colorless or nearly white. Also, in order to prevent light scattering by the charge promoting particles during image exposure, the particles are desirably smaller than the constituent pixel size.
[0091]
In addition, the charge promoting particles m are preferably non-magnetic so as not to hinder exposure.
[0092]
Reference numeral 5 denotes a medium resistance transfer roller as a contact transfer means, which is brought into pressure contact with the photoreceptor 1 to form a transfer nip portion b. A transfer material P as a recording medium is fed to the transfer nip b from a paper feed unit (not shown) at a predetermined timing, and a predetermined transfer bias voltage is applied to the transfer roller 5 from a transfer bias application power source S3. Thus, the toner image on the photosensitive member 1 side is sequentially transferred onto the surface of the transfer material P fed to the transfer nip portion b. In this example, the roller resistance value is 5 × 10. 8 The transfer was carried out by applying a DC voltage of +2000 V using an Ω. That is, the transfer material P introduced into the transfer nip portion b is nipped and conveyed by the transfer nip portion b, and the toner images formed and supported on the surface of the rotary photosensitive member 1 are sequentially pressed against the surface by the electrostatic force and the pressing force. Transferred by pressure.
[0093]
Reference numeral 6 denotes a fixing device such as a heat fixing method. The transfer material P that has been fed to the transfer nip portion b and has received the transfer of the toner image on the photoconductor 1 side is separated from the surface of the rotary photoconductor 1 and is introduced into the fixing device 6 to receive the fixing of the toner image. It is discharged out of the apparatus as an image formed product (print, copy).
[0094]
The printer of this example is cleaner-less, and residual transfer residual toner remaining on the surface of the rotating photosensitive member 1 after the transfer of the toner image to the transfer material P is not removed by the cleaner. Then, it reaches the developing section a and is simultaneously cleaned (collected) by the developing device 4 (toner recycling process).
[0095]
(2) Direct injection charging of the photoreceptor 1
a) An appropriate amount of the charge accelerating particles m having conductivity contained in the developer 4d of the developing device 4 together with the toner when the developing device 4 develops the toner of the electrostatic latent image on the photoconductor 1 side is placed on the photoconductor 1 side. Transition.
[0096]
The toner image on the photoconductor 1 is attracted to the transfer material P side and actively transferred at the transfer nip b due to the effect of the transfer bias. However, the charge promoting particles m on the photoconductor 1 are transferred due to their conductivity. The material P is not positively transferred to the material P side, and remains substantially adhered and held on the photoreceptor 1. In addition, the presence of the charge accelerating particles m that are substantially adhered and held on the surface of the photosensitive member 1 can also improve the transfer efficiency of the toner image from the photosensitive member 1 side to the transfer agent P side.
[0097]
Since the image forming apparatus of the toner recycling process does not use a cleaner, the residual toner remaining on the surface of the photoreceptor 1 after transfer and the above-described residual charge accelerating particles m are transferred to the photoreceptor 1 and the charging roller 2 which is a contact charging member. The photosensitive member 1 is carried as it is to the charging nip portion n by being rotated, and adheres to and mixes with the charging roller 2.
[0098]
Therefore, contact charging of the photosensitive member 1 is performed in a state in which the charge accelerating particles m exist in the nip portion n between the photosensitive member 1 and the charging roller 2. In the initial stage of printing, since the charge accelerating particles are not supplied to the surface of the charging roller and cannot be charged, it is possible to apply the charge accelerating particles to the surface of the charging roller in advance.
[0099]
Due to the presence of the charge accelerating particles m, even when toner adheres to or mixes with the charging roller 2, the contact property of the charging roller 2 to the photosensitive member 1 and the contact resistance can be maintained. Such a simple member, and the charging roller 2 can perform direct injection charging of the photosensitive member 1 regardless of contamination of the charging roller due to transfer residual toner.
[0100]
That is, the charging roller 2 comes into close contact with the photosensitive member via the charging accelerating particles m, and the charging accelerating particles m existing in the nip portion between the charging roller 2 and the photosensitive member 1 rub against the surface of the photosensitive member 1 without a gap. Thus, the charging of the photoreceptor 1 by the charging roller 2 is dominated by stable and safe direct injection charging without using a discharge phenomenon due to the presence of the charge accelerating particles m, and high charging efficiency that cannot be obtained by conventional roller charging or the like. And a potential substantially equal to the voltage applied to the charging roller 2 can be applied to the photoreceptor 1.
[0101]
Further, the transfer residual toner adhering to and mixed in the charging roller 2 is gradually discharged from the charging roller 2 onto the photosensitive member 1 to reach the developing portion a along with the movement of the surface of the photosensitive member 1, and in the developing device 4 simultaneous cleaning (collection) of development. (Toner recycling process)
[0102]
As described above, the simultaneous development cleaning is performed in the image forming process in which the toner remaining on the photoreceptor 1 after the transfer is continued, that is, the photoreceptor is continuously charged and exposed to form a latent image, and the latent image is developed. At this time, the image is recovered by the fog removal bias of the developing device, that is, the fog removal potential difference Vback which is the potential difference between the DC voltage applied to the developing device and the surface potential of the photosensitive member. In the case of reversal development as in the printer in this embodiment, this simultaneous development cleaning is performed by attaching toner from the dark portion potential of the photosensitive member to the developing sleeve and from the developing sleeve to the bright portion potential of the photosensitive member. This is done by the action of an electric field.
[0103]
Even if the charge accelerating particles m fall off from the charging roller 2, the image forming apparatus is operated, so that the charge accelerating particles m contained in the developer 4d of the developing device 4 are transferred to the surface of the photoreceptor 1 at the developing portion a. Since the rotation of the photosensitive member 1 is carried to the charging portion n through the transfer nip portion b by the rotation of the photosensitive member 1 and continuously supplied to the charging roller 2, the good charging property due to the presence of the charge accelerating particles m is stabilized. Maintained.
[0104]
Thus, in an image forming apparatus using a contact charging method, a transfer method, and a toner recycling process, a charging roller is used as a contact charging member, and ozoneless direct operation is possible with a low applied voltage regardless of contamination of the charging roller 2 due to residual transfer toner. Injection charging can be maintained stably over a long period of time, uniform chargeability can be imparted, and a simple configuration and low-cost image forming apparatus free from failures due to ozone products, failures due to poor charging, etc. are obtained. be able to.
[0105]
b) By interposing the charge accelerating particles m in the nip portion n between the charging roller 2 and the photosensitive member 1, the lubricating effect (friction reducing effect) of the charging accelerating particles m is provided between the charging roller 2 and the photosensitive member 1. It is possible to easily and effectively provide a speed difference.
[0106]
By providing a speed difference between the charging roller 2 and the photoreceptor 1, the chance of the charge accelerating particles m to contact the photoreceptor 1 at the nip n between the charging roller 2 and the photoreceptor 1 is greatly increased, and high contact is achieved. And can be directly charged by direct injection.
[0107]
As a configuration for providing a speed difference, preferably, the charging roller 2 is rotationally driven in order to temporarily collect and level the transfer residual toner on the photosensitive member 1 carried to the charging unit n by the charging roller 2, It is desirable that the rotation direction is configured to rotate in the direction opposite to the moving direction of the surface of the photoreceptor 1. That is, it is possible to preferentially perform direct injection charging by once separating the transfer residual toner on the photosensitive member 1 by reverse rotation and performing charging.
[0108]
If the amount of the charge accelerating particles m in the nip n between the photosensitive member 1 as the image carrier and the charging roller 2 as the contact charging member is too small, the lubricating effect by the particles cannot be obtained sufficiently, and the charging roller The friction between the photosensitive member 1 and the photosensitive member 1 is large, and it is difficult to rotationally drive the charging roller 2 to the photosensitive member 1 with a speed difference. That is, the driving torque becomes excessive, and the surface of the charging roller 2 and the photosensitive member 1 is scraped if it is forcibly rotated. Furthermore, the effect of increasing the contact opportunity by the particles may not be obtained, and sufficient charging performance cannot be obtained. On the other hand, when the amount of the inclusion is too large, dropping of the charge accelerating particles from the charging roller 2 is remarkably increased, which adversely affects image formation.
[0109]
According to experiments, the amount of intervention is 10 3 Piece / mm 2 The above is desirable. 10 3 Piece / mm 2 If it is lower, a sufficient lubrication effect and an effect of increasing the contact opportunity cannot be obtained, resulting in a decrease in charging performance.
[0110]
More desirably 10 3 ~ 5x10 5 Piece / mm 2 This amount of inclusion is preferred. 5 × 10 5 Piece / mm 2 Exceeding this causes the particles to drop off to the photoconductor 1 significantly, resulting in insufficient exposure of the photoconductor 1 regardless of the light transmittance of the particles themselves. 5 × 10 5 Piece / mm 2 In the following, the amount of dropped particles can be kept low, and the adverse effect can be improved. When the abundance of particles dropped on the photoreceptor 1 in the intervening amount range is measured, 10 is obtained. 2 -10 5 Piece / mm 2 Therefore, the abundance that is not harmful to image formation is 10 5 Piece / mm 2 The following is desired:
[0111]
A method for measuring the intervening amount and the existing amount on the photoreceptor 1 will be described. It is desirable to directly measure the contact surface portion between the charging roller 2 and the photosensitive member 1. However, most of the particles existing on the photosensitive member 1 before contacting the charging roller 2 are moved in the opposite direction and contact with each other. Since it is peeled off by the roller 2, in the present invention, the amount of particles on the surface of the charging roller 2 immediately before reaching the contact surface portion is used as the amount of interposition. Specifically, rotation of the photosensitive drum 1 and the charging roller 2 is stopped in a state where no charging bias is applied, and the surfaces of the photosensitive member 1 and the charging roller 2 are video microscope (OLYMPUS OVM1000N) and a digital still recorder (manufactured by DELTAS). SR-3100). The charging roller 2 is in contact with the slide glass under the same conditions as the case where the charging roller 2 is in contact with the photosensitive drum 1, and the contact surface of the charging roller 2 is 10 or more with a 1000 × objective lens from the back surface of the slide glass. I took a picture. In order to separate individual particles from the obtained digital image, binarization processing was performed with a certain threshold value, and the number of regions where particles exist was measured using desired image processing software. Further, the abundance on the photoconductor 1 was measured by photographing the photoconductor 1 with the same video microscope and performing the same processing.
[0112]
The amount of intervening was adjusted by setting the blending amount of the charge accelerating particles m in the developer 4d of the developing device 4. Generally, the charge promoting particles m are 0.01 to 20 parts by weight with respect to 100 parts by weight of the developer (toner).
[0113]
<Embodiment 2> (FIG. 2)
In this example, in the image forming apparatus of Embodiment 1 described above, the surface resistance of the photoreceptor 1 as an image carrier is adjusted to perform charging more stably and uniformly.
[0114]
In other words, even when the transfer residual toner is mixed in the contact charging member and the contact area with the photoreceptor 1 is reduced, the interposition of the charge accelerating particles and the surface resistance on the photoreceptor side are set low in the region where the latent image can be formed. Thus, charge transfer is performed more efficiently.
[0115]
In this example, a charge injection layer is provided on the surface of the photoreceptor 1 to adjust the resistance of the surface of the photoreceptor. FIG. 2 is a layer configuration model diagram of the photoreceptor 1 used in this example and provided with a charge injection layer on the surface. That is, the photosensitive member 1 is generally coated on an aluminum drum substrate (Al drum substrate) 11 in the order of an undercoat layer 12, a positive charge injection preventing layer 13, a charge generation layer 14, and a charge transport layer 15. By applying the charge injection layer 16 to the organic photoreceptor drum, the charging performance is improved.
[0116]
The charge injection layer 16 is made of SnO as conductive particles (conductive filler) on a photo-curable acrylic resin as a binder. 2 Ultrafine particles 16a (diameter is about 0.03 μm), a lubricant such as tetrafluoroethylene resin (trade name: Teflon), a polymerization initiator, and the like are mixed and dispersed, and after coating, a film is formed by a photocuring method.
[0117]
An important point as the charge injection layer 16 is the resistance of the surface layer. In the charging method by direct injection of charges, charges can be exchanged more efficiently by reducing the resistance on the charged object side. On the other hand, since the electrostatic latent image needs to be held for a certain time when used as a photoconductor, the volume resistance value of the charge injection layer 16 is 1 × 10 6. 9 ~ 1x10 14 A range of (Ω · cm) is appropriate.
[0118]
Even when the charge injection layer 16 is not used as in this configuration, for example, when the charge transport layer 15 is in the resistance range, the same effect can be obtained.
[0119]
Furthermore, the volume resistance of the surface layer is about 10 13 The same effect can be obtained by using an amorphous silicon photoconductor having an Ωcm.
[0120]
<Evaluation of Example Embodiment>
Table 1 summarizes the advantages of the present invention along with the comparative examples.
[0121]
[Table 1]
Figure 0003652331
[Comparative Example 1]
In Comparative Example 1, a charging roller was used as the charging member, and the charging roller was driven by the photoreceptor. The developer 4d is not mixed with the charge accelerating particles m. That is, the apparatus does not use the charge accelerating particles m.
[0122]
[Comparative Example 2]
In Comparative Example 2, a charging roller in which the charge accelerating particles were previously applied in the configuration of Comparative Example 1 was used.
[0123]
[Evaluation]
In each example, the chargeability was evaluated based on the superiority or inferiority of the ghost image using image recording apparatuses having different printing speeds.
[0124]
In this example, since the reversal development system is used, ghost as used herein means that a portion exposed to an image (a toner image portion) on the first round of the photoconductor causes insufficient charging on the second round of the photoconductor. Therefore, it means that the previous image pattern on the photoconductor is more strongly developed and a ghost image is generated.
[0125]
Here, the image evaluation was performed according to the following criteria.
[0126]
X: A ghost is seen in the white background after solid black.
[0127]
○: A ghost pattern is not observed in the white background portion after the solid black, but a slight ghost pattern is observed in the halftone portion.
[0128]
(Double-circle): A ghost is not seen in the white background part and halftone part after a solid black.
[0129]
The evaluation was performed after the initial printing and printing of 1000 sheets (A4 lengthwise direction). The upper part of the slash line (hatched line) in the table indicates the initial stage, and the lower part indicates the evaluation result after printing.
[0130]
As is apparent from the table, in Comparative Example 1, the chargeability was not satisfied at any speed already in the initial stage. In other words, this indicates that the charging member (charging roller) cannot sufficiently contact the photoconductor, and thus cannot be directly charged.
[0131]
In Comparative Example 2, no ghost was observed at the initial stage of application of the charge accelerating particles, but when the printing was continued, the charging roller was rapidly stained, and at the same time, the charge accelerating particles dropped and the image was greatly deteriorated.
[0132]
In Embodiment 1, the charge promoting particles m can be mixed with the developer 4d, and the particles can be stably supplied to the charging member via the photosensitive member, so that sufficient contact with the photosensitive member can be obtained. The charging property is satisfied and can be maintained. Further, good chargeability is exhibited even when the speeds of the photosensitive drum and the charging member are both increased. However, when the speed of the charging member is decreased, a slight charge shortage occurs. Therefore, charging can be performed more efficiently if a speed difference is provided between the charging member and the photosensitive member.
[0133]
Further, in the second embodiment, by setting the resistance of the photoreceptor surface layer to be low within a range in which the electrostatic latent image can be maintained, even if the contact state is the same, charge can be exchanged more efficiently. This is effective when the process is executed at a higher speed, and is clear because the photosensitive member speed in the table satisfies the evaluation of 100 mm / sec and the charging member speed of 50 mm / sec.
[0134]
<Others>
1) The charging roller 2 as the contact charging member is not limited to the charging roller of the embodiment.
[0135]
In addition to the elastic charging roller, the flexible contact charging member can be made of a material / shape such as a fur brush, felt, or cloth. Moreover, these can be laminated | stacked and it can also obtain more suitable elasticity and electroconductivity.
[0136]
2) The applied charging bias or the applied developing bias applied to the contact charging member 2 and the developing sleeve 4a may be superimposed with an alternating voltage (AC voltage) on a DC voltage.
[0137]
As the waveform of the alternating voltage, a sine wave, a rectangular wave, a triangular wave, or the like can be used as appropriate. Further, it may be a rectangular wave formed by periodically turning on / off a DC power source. In this way, a bias that changes the voltage value periodically can be used as the waveform of the alternating voltage.
[0138]
3) The image exposure means for forming the electrostatic latent image is not limited to the laser scanning exposure means for forming a digital latent image as in the embodiment, but a normal analog image exposure or Other light emitting elements such as LEDs may be used, and any combination of a light emitting element such as a fluorescent lamp and a liquid crystal shutter may be used as long as it can form an electrostatic latent image corresponding to image information.
[0139]
The image carrier may be an electrostatic recording dielectric or the like. In this case, the dielectric surface is uniformly primary-charged to a predetermined polarity and potential, and then selectively neutralized by a neutralizing means such as a static elimination needle head or an electron gun to write and form a target electrostatic latent image.
[0140]
4) In the embodiment, the developing unit 4 has been described by taking a developing device using a single component magnetic toner as an example, but the configuration of the developing device is not particularly limited.
[0141]
5) The recording medium that receives the transfer of the toner image from the image carrier may be an intermediate transfer member such as a transfer drum.
[0142]
6) An example of a toner particle size measuring method will be described. As a measuring device, a Coulter counter TA-2 type (manufactured by Coulter Inc.) was used, and an interface (manufactured by Nikka) and a CX-1 personal computer (manufactured by Canon) that output number average distribution and volume average distribution were connected, and electrolysis was performed. Prepare 1% NaCl aqueous solution using primary sodium chloride.
[0143]
As a measuring method, a surfactant, preferably 0.1 to 5 ml of alkylbenzene sulfonate, is added to 100 to 150 ml of the electrolytic aqueous solution, and 0.5 to 50 mg of a measurement sample is further added.
[0144]
The electrolyte in which the sample is suspended is subjected to a dispersion treatment for about 1 to 3 minutes with an ultrasonic disperser, and the particle size distribution of 2 to 40 μm particles is measured using the 100 μ aperture as the aperture by the Coulter Counter TA-2 type. Then, the volume average distribution is obtained. The volume average particle diameter is obtained from the obtained volume average distribution.
[0145]
【The invention's effect】
As described above, the present invention uses a simple member such as a charging roller or a fur brush as a contact charging member in a contact charging method, a transfer method, and a toner recycling process (cleanerless system) image forming apparatus. By mixing the charge accelerating particles with the developer, the toner can be recycled, and at the same time, the contact density of the contact charging member to the image carrier can be improved, and the direct injection charging can be maintained for a long time. In this configuration, even when the toner as the insulator is mixed into the contact charging member, the charge promoting particles as the conductive particles are simultaneously stably supplied to interpose between the contact charging member and the image carrier. Thus, direct injection charging could be maintained by improving the contact property of the contact charging member to the image carrier.
[0146]
Further, the image carrier and the contact charging member are brought into contact with each other with a speed difference. More preferably, by rotating and charging so as to move in the opposite direction, the contact property and contact opportunity between the image carrier and the contact charging member can be further increased, and the influence of residual toner can be suppressed and good charging can be maintained. Is possible.
[0147]
Furthermore, by adjusting the resistance of the surface of the image carrier, it is possible to configure a charging device that is more suitable for high-speed charging. In a high-speed recording apparatus, since a long life of the member is required, it is desirable to reduce the speed of the charging member to reduce the abrasion of each member such as the photoconductor. In that sense, the charging efficiency is improved by adjusting the resistance of the surface layer of the image bearing member, so that sufficient charging performance can be obtained even when the charging member is driven at a low speed and maintained for a long period of time. It became possible to do.
[0148]
As described above, the present invention uses a simple member such as a charging roller or a fur brush as a contact charging member in an image forming apparatus using a contact charging method, a transfer method, or a toner recycling process, and the transfer residual toner of the contact charging member. Regardless of contamination due to, the ozone-less direct injection charging can be stably maintained over a long period of time with a low applied voltage, that is, with a simple configuration using a contact charging member such as a charging roller or a fur brush, The toner recycling process can be realized and the initial purpose is well achieved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an image forming apparatus according to a first exemplary embodiment.
FIG. 2 is a layer configuration model diagram of a photoreceptor having a charge injection layer provided on the surface in Embodiment 2.
Fig. 3 Charging characteristic graph
[Explanation of symbols]
1 Photoconductor (image carrier, charged body)
2 Charging roller (contact charging member)
3 Laser beam scanner (exposure device)
4 Development device
4a Development sleeve
4d Developer (toner t + charge-promoting particle m)
5 Transfer roller
6 Fixing device
P transfer material

Claims (10)

感光体と、前記感光体を帯電する帯電手段と、前記感光体に静電潜像を形成するために前記感光体を露光する露光手段と、前記感光体に形成された前記静電潜像をトナーによりトナー画像として可視化する現像手段と、そのトナー画像を記録媒体に転写する転写手段を有し、前記現像手段がトナー画像を記録媒体に転写した後に感光体上に残留したトナーを回収することが可能である画像形成装置において、
前記帯電手段は、電圧が印加された帯電部材であって、前記感光体とニップ部を形成する可撓性の帯電部材を備え、前記帯電部材の表面に予め非磁性導電粒子を担持して前記ニップ部に非磁性導電粒子を介在させ、
前記現像手段の現像剤はトナー及び非磁性導電粒子を含み、非磁性導電粒子は前記現像手段から前記感光体へ付与されて前記ニップ部へ補給されることを特徴とする画像形成装置。
A photosensitive member, the charging means for charging the photosensitive member, an exposure means for exposing said photosensitive member to form an electrostatic latent image on the photosensitive member, the electrostatic latent image formed on the photosensitive member A developing unit that visualizes the toner image with toner; and a transfer unit that transfers the toner image to a recording medium. The developing unit collects the toner remaining on the photoreceptor after the toner image is transferred to the recording medium. In an image forming apparatus capable of
Said charging means is a charging member to which a voltage is applied, the comprises a flexible charging member to form a photosensitive member and the nip, the carrying the previously non-magnetic conductive particles to the surface of the charging member Non-magnetic conductive particles are interposed in the nip,
The image forming apparatus according to claim 1, wherein the developer of the developing unit includes toner and nonmagnetic conductive particles, and the nonmagnetic conductive particles are applied from the developing unit to the photoreceptor and replenished to the nip portion.
前記帯電部材表面は、前記非磁性導電粒子で感光体面を摺擦するように感光体面に対して速度差を持って移動することを特徴とする請求項1に記載の画像形成装置。The charging member surface, the image forming apparatus according to claim 1, characterized in that to move with a speed difference relative to the photoreceptor surface to rub the photosensitive member surface in the non-magnetic conductive particles. 前記非磁性導電粒子は、その抵抗が1012Ω・cm以下であり、粒径が50μm以下であることを特徴とする請求項1又は2に記載の画像形成装置。The image forming apparatus according to claim 1, wherein the nonmagnetic conductive particles have a resistance of 10 12 Ω · cm or less and a particle size of 50 μm or less. 前記非磁性導電粒子は、その抵抗が1010Ω・cm以下であり、粒径が50μm以下であることを特徴とする請求項1又は2に記載の画像形成装置。The image forming apparatus according to claim 1, wherein the nonmagnetic conductive particles have a resistance of 10 10 Ω · cm or less and a particle size of 50 μm or less. 前記帯電部材と前記感光体は、前記ニップ部において互いに逆方向に移動することを特徴とする請求項1から4の何れか1つに記載の画像形成装置。5. The image forming apparatus according to claim 1, wherein the charging member and the photosensitive member move in directions opposite to each other at the nip portion. 前記帯電部材は、弾性導電ローラであることを特徴とする請求項1から5の何れか1つに記載の画像形成装置。  6. The image forming apparatus according to claim 1, wherein the charging member is an elastic conductive roller. 前記帯電部材は、表面に発泡体を備えることを特徴とする請求項1から6の何れか1つに記載の画像形成装置。  The image forming apparatus according to claim 1, wherein the charging member includes a foam on a surface thereof. 前記帯電部材は、前記ニップ部に前記非磁性導電粒子を担持搬送することを特徴とする請求項1から7の何れか1つに記載の画像形成装置。The image forming apparatus according to claim 1, wherein the charging member carries and transports the nonmagnetic conductive particles to the nip portion. 前記感光体の最表面層の体積抵抗が1×10(Ω・cm)以上1×1014(Ω・cm)以下であることを特徴とする請求項1から8の何れか1つに記載の画像形成装置。9. The volume resistance of the outermost surface layer of the photoconductor is 1 × 10 9 (Ω · cm) or more and 1 × 10 14 (Ω · cm) or less. 9. Image forming apparatus. 前記現像手段は、感光体の静電潜像をトナーで現像すると同時に感光体に残留するトナーを回収することが可能であることを特徴とする請求項1からの何れか1つに記載の画像形成装置。The developing unit is according to any one of claims 1, wherein 9 that it is possible to recover the toner remaining an electrostatic latent image on the photoconductor at the same time the photosensitive member is developed with toner Image forming apparatus.
JP2002205503A 1997-03-05 2002-07-15 Image forming apparatus Expired - Fee Related JP3652331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002205503A JP3652331B2 (en) 1997-03-05 2002-07-15 Image forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-67426 1997-03-05
JP6742697 1997-03-05
JP2002205503A JP3652331B2 (en) 1997-03-05 2002-07-15 Image forming apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7352898A Division JP3715779B2 (en) 1997-03-05 1998-03-05 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2003057922A JP2003057922A (en) 2003-02-28
JP3652331B2 true JP3652331B2 (en) 2005-05-25

Family

ID=26408641

Family Applications (2)

Application Number Title Priority Date Filing Date
JP7352898A Expired - Fee Related JP3715779B2 (en) 1997-03-05 1998-03-05 Image forming apparatus
JP2002205503A Expired - Fee Related JP3652331B2 (en) 1997-03-05 2002-07-15 Image forming apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP7352898A Expired - Fee Related JP3715779B2 (en) 1997-03-05 1998-03-05 Image forming apparatus

Country Status (1)

Country Link
JP (2) JP3715779B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60111436T2 (en) 2000-02-21 2006-05-11 Canon K.K. Developer, image production process and process cartridge
EP1128225B1 (en) 2000-02-21 2005-12-14 Canon Kabushiki Kaisha Magnetic toner and image-forming method making use of the same
JP2001242684A (en) * 2000-03-01 2001-09-07 Canon Inc Image forming device and process cartridge
CA2337087C (en) 2000-03-08 2006-06-06 Canon Kabushiki Kaisha Magnetic toner, process for production thereof, and image forming method, apparatus and process cartridge using the toner
US6534228B2 (en) 2000-05-18 2003-03-18 Canon Kabushiki Kaisha Electrophotographic photosensitive member and image forming apparatus
US6636715B2 (en) 2000-05-22 2003-10-21 Canon Kabushiki Kaisha Photosensitive member and image forming apparatus having the same
JP2002082517A (en) 2000-09-07 2002-03-22 Canon Inc Image forming device and process cartridge
JP2002108058A (en) 2000-10-02 2002-04-10 Canon Inc Image forming device
DE60126461T2 (en) 2000-11-15 2007-10-25 Canon K.K. Image forming method and image forming apparatus
JP4750287B2 (en) * 2001-01-10 2011-08-17 キヤノン株式会社 Image forming apparatus
DE60205142T2 (en) 2001-01-11 2006-05-24 Canon K.K. An electrophotographic image forming apparatus and image forming method
JP4708574B2 (en) 2001-01-15 2011-06-22 キヤノン株式会社 Image forming apparatus
US6714746B2 (en) 2001-01-23 2004-03-30 Canon Kabushiki Kaisha Image forming apparatus rotationally driving image bearing member and contact electrifying member of process cartridge and process cartridge comprising image bearing member and contact electrifying member
JP3913067B2 (en) 2001-01-31 2007-05-09 キヤノン株式会社 Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
US6947676B2 (en) 2001-05-07 2005-09-20 Canon Kabushiki Kaisha Image forming apparatus and controlling method therefor determining state use of cartridge
JP3997065B2 (en) 2001-08-20 2007-10-24 キヤノン株式会社 Process cartridge and image forming apparatus
US6924076B2 (en) 2001-08-20 2005-08-02 Canon Kabushiki Kaisha Developing assembly, process cartridge and image-forming method
EP1298498B1 (en) 2001-09-28 2005-07-06 Canon Kabushiki Kaisha Toner and image forming method
JP4154168B2 (en) 2002-04-15 2008-09-24 キヤノン株式会社 Image forming apparatus
JP4250373B2 (en) 2002-04-17 2009-04-08 キヤノン株式会社 Image forming apparatus
JP2004021127A (en) 2002-06-19 2004-01-22 Canon Inc Magnetic toner, image forming method using the toner, and process cartridge
JP4532965B2 (en) 2003-05-08 2010-08-25 キヤノン株式会社 Image forming apparatus
JP4343668B2 (en) 2003-12-11 2009-10-14 キヤノン株式会社 Developing device, cartridge, and image forming apparatus
JP2005173484A (en) 2003-12-15 2005-06-30 Canon Inc Image forming apparatus and process cartridge
JP2005173485A (en) 2003-12-15 2005-06-30 Canon Inc Developing device, process cartridge and image forming apparatus
JP4649217B2 (en) 2005-01-28 2011-03-09 キヤノン株式会社 Developing device, process cartridge, and image forming apparatus
JP4785408B2 (en) 2005-04-18 2011-10-05 キヤノン株式会社 Developing device, process cartridge, and image forming apparatus
JP4785407B2 (en) 2005-04-18 2011-10-05 キヤノン株式会社 Developing device, process cartridge, and image forming apparatus
US10150255B2 (en) * 2015-12-02 2018-12-11 General Electric Company Direct metal electrophotography additive manufacturing methods

Also Published As

Publication number Publication date
JP2003057922A (en) 2003-02-28
JP3715779B2 (en) 2005-11-16
JPH10307455A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
JP3652331B2 (en) Image forming apparatus
JP3715780B2 (en) Image forming apparatus
JP3435434B2 (en) Charging device, image forming apparatus and process cartridge
JP3292156B2 (en) Charging member, charging method, charging device, image forming apparatus, and process cartridge
JP3292155B2 (en) Image forming device
JP3647263B2 (en) Image recording device
JP3387815B2 (en) Charging device and image forming device
JPH10307458A (en) Image forming device
JP3332865B2 (en) Image forming device
JP3315645B2 (en) Charging method, charging device, and image recording apparatus using the charging device
JP2001194865A (en) Image forming device
JP3320356B2 (en) Image forming device
JP3315642B2 (en) Image forming device
JP3647264B2 (en) Image forming apparatus
JP3253280B2 (en) Image forming device
JP3647265B2 (en) Image forming apparatus
JP3703314B2 (en) Image forming apparatus
JP3805113B2 (en) Charging method, charging device, and image recording apparatus using the charging device
JP3376278B2 (en) Image forming device
JP3805112B2 (en) Charging method, charging device, image forming apparatus, and process cartridge
JP3513502B2 (en) Image forming device
JP3397700B2 (en) Charging member, charging method, charging device, image forming apparatus, and process cartridge
JPH11153897A (en) Electrifying method, electrifying device, image forming device and process cartridge
JP3359285B2 (en) Charging method, charging device, and image recording apparatus using the charging device
JP2002014522A (en) Image recorder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees