JP3647265B2 - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP3647265B2
JP3647265B2 JP15061998A JP15061998A JP3647265B2 JP 3647265 B2 JP3647265 B2 JP 3647265B2 JP 15061998 A JP15061998 A JP 15061998A JP 15061998 A JP15061998 A JP 15061998A JP 3647265 B2 JP3647265 B2 JP 3647265B2
Authority
JP
Japan
Prior art keywords
charging
image
image carrier
developer
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15061998A
Other languages
Japanese (ja)
Other versions
JPH11190930A (en
Inventor
純 平林
晴美 石山
康則 児野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15061998A priority Critical patent/JP3647265B2/en
Publication of JPH11190930A publication Critical patent/JPH11190930A/en
Application granted granted Critical
Publication of JP3647265B2 publication Critical patent/JP3647265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/02Arrangements for laying down a uniform charge
    • G03G2215/021Arrangements for laying down a uniform charge by contact, friction or induction

Description

【0001】
【発明の属する技術分野】
本発明は複写機やプリンタ等の画像形成装置に関する。より詳しくは、接触帯電方式の画像形成装置に関する。
【0002】
【従来の技術】
従来、例えば、電子写真方式や静電記録方式等の画像形成装置において、電子写真感光体・静電記録誘電体等の像担持体を所要の極性・電位に一様に帯電処理(除電処理も含む)する帯電装置としてはコロナ帯電器(コロナ放電器)が使用されていた。
【0003】
コロナ帯電器は非接触型の帯電装置であり、例えば、ワイヤ電極等の放電電極と該放電電極を囲むシールド電極を備え、放電開口部を被帯電体である像担持体に対向させて非接触に配設し、放電電極とシールド電極に高圧を印加することにより生じる放電電流(コロナシャワー)に像担持体面をさらすことで像担持体面を所定に帯電させるものである。
【0004】
近時は、像担持体等の被帯電体の帯電装置として、コロナ帯電器に比べて低オゾン・低電力等の利点があることから接触帯電装置が多く提案され、また実用化されている。
【0005】
接触帯電装置は、像担持体等の被帯電体に、ローラ型(帯電ローラ)、ファーブラシ型、磁気ブラシ型、ブレード型等の導電性の帯電部材を接触させ、この帯電部材(接触帯電部材・接触帯電器、以下、接触帯電部材と記す)に所定の帯電バイアスを印加して被帯電体面を所定の極性・電位に帯電させるものである。
【0006】
接触帯電の帯電機構(帯電のメカニズム、帯電原理)には、▲1▼放電帯電機構と▲2▼注入帯電機構の2種類の帯電機構が混在しており、どちらが支配的であるかにより各々の特性が現れる。
【0007】
▲1▼.放電帯電機構
接触帯電部材と被帯電体との微小間隙に生じる放電現象により被帯電体表面が帯電する機構である。
【0008】
放電帯電機構は接触帯電部材と被帯電体に一定の放電しきい値を有するため、帯電電位より大きな電圧を接触帯電部材に印加する必要がある。また、コロナ帯電器に比べれば発生量は格段に少ないけれども放電生成物を生じることが原理的に避けられないため、オゾンなど活性イオンによる弊害は避けられない。
【0009】
▲2▼.注入帯電機構
接触帯電部材から被帯電体に直接に電荷が注入されることで被帯電体表面が帯電する機構である。直接帯電、あるいは注入帯電、あるいは電荷注入帯電とも称される。
【0010】
より詳しくは、中抵抗の接触帯電部材が被帯電体表面に接触して、放電現象を介さずに、つまり放電を基本的に用いないで被帯電体表面に直接電荷注入を行うものである。よって、接触帯電部材への印加電圧が放電閾値以下の印加電圧であっても、被帯電体を印加電圧相当の電位に帯電することができる。この注入帯電機構はイオンの発生を伴わないため放電生成物による弊害は生じない。
【0011】
しかし、注入帯電であるため、接触帯電部材の被帯電体への接触性が帯電性に大きく効いてくる。そこで接触帯電部材はより密に構成し、また被帯電体との速度差を多く持ち、より高い頻度で被帯電体に接触する構成をとる必要がある。
【0012】
A)ローラ帯電
接触帯電装置は、接触帯電部材として導電ローラ(帯電ローラ)を用いたローラ帯電方式が帯電の安定性という点で好ましく、広く用いられている。
【0013】
このローラ帯電はその帯電機構は前記▲1▼の放電帯電機構が支配的である。
【0014】
帯電ローラは、導電あるいは中抵抗のゴム材あるいは発泡体を用いて作成される。さらにこれらを積層して所望の特性を得たものもある。
【0015】
帯電ローラは被帯電体(以下、感光体と記す)との一定の接触状態を得るために弾性を持たせているが、そのため摩擦抵抗が大きく、多くの場合、感光体に従動あるいは若干の速度差をもって駆動される。従って、注入帯電しようとしても、絶対的帯電能力の低下や接触性の不足やローラ上のムラや感光体の付着物による帯電ムラは避けられないため、従来のローラ帯電ではその帯電機構は放電帯電機構が支配的である。
【0016】
図4は接触帯電における帯電効率例を表わしたグラフである。横軸に接触帯電部材に印加したバイアス、縦軸にはその時得られた感光体帯電電位を表わすものである。
【0017】
従来のローラ帯電の場合の帯電特性はAで表わされる。即ち凡そ−500Vの放電閾値を過ぎてから帯電が始まる。従って、−500Vに帯電する場合は−1000Vの直流電圧を印加するか、あるいは、−500V直流の帯電電圧に加えて、放電閾値以上の電位差を常に持つようにピーク間電圧1200Vの交流電圧を印加して感光体電位を帯電電位に収束させる方法が一般的である。
【0018】
より具体的に説明すると、厚さ25μmのOPC感光体に対して帯電ローラを加圧当接させた場合には、約640V以上の電圧を印加すれば感光体の表面電位が上昇し始め、それ以降は印加電圧に対して傾き1で線形に感光体表面電位が増加する。この閾値電圧を帯電開始電圧Vthと定義する。
【0019】
つまり、電子写真に必要とされる感光体表面電位Vdを得るためには帯電ローラにはVd+Vthという必要とされる以上のDC電圧が必要となる。このようにしてDC電圧のみを接触帯電部材に印加して帯電を行なう方法を「DC帯電方式」と称する。
【0020】
しかし、DC帯電においては環境変動等によって接触帯電部材の抵抗値が変動するため、また、感光体が削れることによって膜厚が変化するとVthが変動するため、感光体の電位を所望の値にすることが難しかった。
【0021】
このため、更なる帯電の均一化を図るために特開昭63−149669号公報に開示されるように、所望のVdに相当するDC電圧に2×Vth以上のピーク間電圧を持つAC成分を重畳した電圧を接触帯電部材に印加する「AC帯電方式」が用いられる。これは、ACによる電位のならし効果を目的としたものであり、被帯電体の電位はAC電圧のピークの中央であるVdに収束し、環境等の外乱には影響されることはない。
【0022】
ところが、このような接触帯電装置においても、その本質的な帯電機構は、放電帯電機構によるものが主であり、接触帯電部材から感光体への放電現象を用いているため、先に述べたように接触帯電部材に印加する電圧は感光体表面電位以上の値が必要とされ、微量のオゾンは発生する。
【0023】
また、帯電均一化のためにAC帯電を行なった場合にはさらなるオゾンの発生、AC電圧の電界による接触帯電部材と感光体の振動騒音(AC帯電音)の発生、また、放電による感光体表面の劣化等が顕著になり、新たな問題点となっていた。
【0024】
B)ファーブラシ帯電
ファーブラシ帯電は、接触帯電部材として導電性繊維のブラシ部を有する部材(ファーブラシ帯電器)を用い、その導電性繊維ブラシ部を被帯電体としての感光体に接触させ、所定の帯電バイアスを印加して感光体面を所定の極性・電位に帯電させるものである。
【0025】
このファーブラシ帯電もその帯電機構は前記▲1▼の放電帯電機構が支配的である。
【0026】
ファーブラシ帯電器は固定タイプとロールタイプが実用化されている。中抵抗の繊維を基布に折り込みパイル状に形成したものを電極に接着したものが固定タイプで、ロールタイプはパイルを芯金に巻き付けて形成する。繊維密度としては100本/mm2 程度のものが比較的容易に得られるが、注入帯電機構により十分均一な帯電を行うにはそれでも接触性は不十分であり、注入帯電機構により十分均一な帯電を行うには感光体に対し機械構成としては困難なほどに速度差を持たせる必要があり、現実的ではない。
【0027】
このファーブラシ帯電の直流電圧印加時の帯電特性は図4のBに示される特性をとる。従って、ファーブラシ帯電の場合も、固定タイプ、ロールタイプどちらも多くは、高い帯電バイアスを印加し放電帯電機構を用いて帯電を行っている。
【0028】
C)磁気ブラシ帯電
磁気ブラシ帯電は、接触帯電部材として導電性磁性粒子をマグネットロール等で磁気拘束してブラシ状に形成した磁気ブラシ部を有する部材(磁気ブラシ帯電器)を用い、その磁気ブラシ部を被帯電体としての感光体に接触させ、所定の帯電バイアスを印加して感光体面を所定の極性・電位に帯電させるものである。
【0029】
この磁気ブラシ帯電の場合はその帯電機構は前記▲2▼の注入帯電機構が支配的である。
【0030】
磁気ブラシ部を構成させる導電性磁性粒子として粒径5〜50μmのものを用い、感光体と十分速度差を設けることで、均一に注入帯電を可能にする。
【0031】
図4の帯電特性グラフのCにあるように、印加バイアスとほぼ比例した帯電電位を得ることが可能になる。
【0032】
しかしながら、機器構成が複雑であること、磁気ブラシ部を構成している導電性磁性粒子が脱落して感光体に付着する等他の弊害もある。
【0033】
特開平6−3921号公報等には感光体表面にあるトラップ準位または電荷注入層の導電粒子等の電荷保持部材に電荷を注入して接触注入帯電を行なう方法が提案されている。放電現象を用いないため、帯電に必要とされる電圧は所望する感光体表面電位分のみであり、オゾンの発生もない。さらに、AC電圧を印加しないので、帯電音の発生もなく、ローラ帯電方式と比べると、オゾンレス、低電力の優れた帯電方式である。
【0034】
D)クリーナレス(トナーリサイクルシステム)
転写方式の画像形成装置においては、転写後の感光体(像担持体)に残存する転写残現像剤(トナー)はクリーナ(クリーニング装置)によって感光体面から除去されて廃トナーとなるが、この廃トナーは環境保護の面からも出ないことが望ましい。そこでクリーナをなくし、転写後の感光体上の転写残現像剤は現像装置によって「現像同時クリーニング」で感光体上から除去し現像装置に回収・再用する装置構成にしたクリーナレスの画像形成装置も出現している。
【0035】
現像同時クリーニングとは、転写後に感光体上に残留した現像剤を次工程以降の現像時、即ち引き続き感光体を帯電し、露光して潜像を形成し、該潜像の現像時にかぶり取りバイアス(現像装置に印加する直流電圧と感光体の表面電位間の電位差であるかぶり取り電位差Vback)によって回収する方法である。この方法によれば、転写残現像剤は現像装置に回収されて次工程以後に再用されるため、廃トナーをなくし、メンテナンスに手を煩わせることも少なくすることができる。またクリーナレスであることでスペース面での利点も大きく、画像形成装置を大幅に小型化できるようになる。
【0036】
クリーナレスは上記のように転写残トナーを専用のクリーナによって感光体面から除去するのではなく、帯電手段部を経由させて現像装置に至らせて再度現像プロセスにて利用するものであるため、感光体の帯電手段として接触帯電を用いた場合においては感光体と接触帯電部材との接触部に絶縁性である現像剤が介在した状態で如何にして感光体を帯電するかが課題になっている。上記したローラ帯電やファーブラシ帯電においては、感光体上の転写残トナーを拡散し非パターン化するとともに、大きなバイアスを印加し放電による帯電を用いることが多い。磁気ブラシ帯電においては接触帯電部材として粉体を用いるため、その粉体である導電性磁性粒子の磁気ブラシ部が感光体に柔軟に接触し感光体を帯電できる利点があるが、機器構成が複雑であること、磁気ブラシ部を構成している導電性磁性粒子の脱落による弊害が大きい。
【0037】
E)接触帯電部材に対する粉末塗布
接触帯電装置について、帯電ムラを防止し安定した均一帯電を行なうために、接触帯電部材に被帯電体面との接触面に粉末を塗布する構成が特公平7−99442号公報に開示されているが、接触帯電部材(帯電ローラ)が被帯電体(感光体)に従動回転(速度差駆動なし)であり、スコロトロン等のコロナ帯電器と比べるとオゾン生成物の発生は格段に少なくなっているものの、帯電原理は前述のローラ帯電の場合と同様に依然として放電帯電機構を主としている。特に、より安定した帯電均一性を得るためにはDC電圧にAC電圧を重畳した電圧を印加するために、放電によるオゾン生成物の発生はより多くなってしまう。よって、長期に装置を使用した場合や、クリーナレスの画像形成装置を長期に使用した場合において、オゾン生成物による画像流れ等の弊害が現れやすい。
また、特開平5−150539号公報には、接触帯電を用いた画像形成方法において、長時間画像形成を繰り返すうちにトナー粒子やシリカ微粒子が帯電手段の表面に付着することによる帯電阻害を防止するために、現像剤中に、少なくとも顕画粒子と、顕画粒子より小さい平均粒径を有する導電性粒子を含有することが開示されている。しかし、この接触帯電は放電帯電機構によるもので、直接注入帯電機構ではなく、放電帯電による前述の問題がある。
【0038】
【発明が解決しようとする課題】
上記の従来の技術の項に記載したように、従来、接触帯電において、接触帯電部材として帯電ローラあるいはファーブラシを用いた簡易な構成では注入帯電機構を行なうには該接触帯電部材の表面が粗くて被帯電体としての像担持体との密な接触が確保されず、注入帯電機構は困難であった。
【0039】
そのため接触帯電においては、接触帯電部材として帯電ローラやファーブラシ等の簡易な部材を用いた場合でも、より帯電均一性に優れ且つ長期に渡り安定した注入帯電機構を実現する、即ち、低印加電圧でオゾンレスの注入帯電機構を簡易な構成で実現することが期待されている。
【0040】
また、像担持体の帯電手段として接触帯電装置を採用した接触帯電方式で転写方式の画像形成装置においては、接触帯電部材が現像剤で汚染されることも注入帯電機構の阻害因子である。
【0041】
即ち、転写後の像担持体面に残存の転写残現像剤を除去する専用のクリーナを具備させた画像形成装置の場合でも、転写後の像担持体面に残存の転写残現像剤がクリーナで100%除去されるものではなく、転写残現像剤の一部はクリーナをすり抜けて接触帯電部材と像担持体の接触部である帯電部に持ち運ばれて接触帯電部材に付着・混入することで接触帯電部材の現像剤汚染が生じる。従来現像剤は一般に絶縁体であるため接触帯電部材の現像剤汚染は帯電不良を生じさせる因子である。
【0042】
特に、クリーナレスの画像形成装置にあっては、転写後の像担持体面に残存の転写残現像剤を除去する専用のクリーナを用いないため、転写後の像担持体面に残存の転写残現像剤が像担持体と接触帯電部材の接触部である帯電部に像担持体面の移動でそのまま持ち運ばれて接触帯電部材がクリーナのある画像形成装置の場合よりも多量の現像剤で汚染されるために、転写残現像剤による帯電阻害の影響が大きい。
【0043】
帯電ローラ等の接触帯電部材と現像剤との付着力が大きく接触帯電部材に現像剤吐き出しバイアスなどを印加しても現像剤が接触帯電部材に強固に付着しており十分な帯電性を得ることはできなかった。
【0044】
帯電不良が生じると更に接触帯電部材への現像剤混入が増加し帯電不良を激化させる。
【0045】
つまり、ここでは、帯電ローラ等の簡易な接触帯電部材で注入帯電するには接触帯電部材の表面が粗いこと、更に接触帯電部材と現像剤との付着力が大きく接触帯電部材の現像剤汚染を改善できないこと、が問題となっている。
【0046】
そこで本発明は、像担持体の帯電手段として接触帯電装置を採用した接触帯電方式、転写方式の画像形成装置、あるいは接触帯電方式、転写方式、クリーナレスの画像形成装置について、接触帯電部材として帯電ローラやファーブラシ等の簡易な部材を用いて、また接触帯電部材の現像剤汚染にかかわらず、低印加電圧でオゾンレスの注入帯電とクリーナレスシステムを問題なく実行可能にし、高品位な画像形成を長期に渡り維持させること、画像比率の高い画像を出力した後でも高品位な画像形成を長期に渡り維持させること等を目的とする。
【0047】
【課題を解決するための手段】
本発明は下記の構成を特徴とする画像形成装置である。
【0048】
(1)像担持体に、像担持体を帯電する帯電工程(行程)、像担持体の帯電面に静電潜像を形成する情報書き込み工程、その静電潜像を帯電した現像剤により現像する現像工程、像担持体上の現像剤像を記録媒体に転写する転写工程を含む作像プロセスを適用して画像形成を実行し、像担持体は繰り返して作像に供する画像形成装置において、
a.像担持体を帯電する帯電手段は、電圧が印加され、像担持体とニップ部を形成する可撓性の帯電部材により像担持体面を帯電する接触帯電装置であり、帯電部材は像担持体に対して速度差をもって移動し、少なくとも帯電部材と像担持体とのニップ部には帯電を促進させるための導電性を有する帯電促進粒子が介在していること、
b.現像手段の現像剤には帯電促進粒子を混入させ、該現像手段内において、該帯電促進粒子を接触帯電装置のDC帯電極性と同極性に帯電させること
を特徴とする画像形成装置。
【0049】
(2)像担持体に、像担持体を帯電する帯電工程、像担持体の帯電面に静電潜像を形成する情報書き込み工程、その静電潜像を帯電した現像剤により現像する現像工程、像担持体上の現像剤像を記録媒体に転写する転写工程を含む作像プロセスを適用して画像形成を実行し、像担持体は繰り返して作像に供する画像形成装置において、
a.像担持体を帯電する帯電手段は、電圧が印加され、像担持体とニップ部を形成する可撓性の帯電部材により像担持体面を帯電する接触帯電装置であり、帯電部材は像担持体に対して速度差をもって移動し、少なくとも帯電部材と像担持体とのニップ部には帯電を促進させるための導電性を有する帯電促進粒子が介在していること、
b.現像手段は正規現像手段であり、現像剤には帯電促進粒子を混入させ、該現像手段内において、該帯電促進粒子を現像剤と異極性に帯電させること
を特徴とする画像形成装置。
【0050】
(3)像担持体に、像担持体を帯電する帯電工程、像担持体の帯電面に静電潜像を形成する情報書き込み工程、その静電潜像を帯電した現像剤により現像する現像工程、像担持体上の現像剤像を記録媒体に転写する転写工程を含む作像プロセスを適用して画像形成を実行し、像担持体は繰り返して作像に供する画像形成装置において、
a.像担持体を帯電する帯電手段は、電圧が印加され、像担持体とニップ部を形成する可撓性の帯電部材により像担持体面を帯電する接触帯電装置であり、帯電部材は像担持体に対して速度差をもって移動し、少なくとも帯電部材と像担持体とのニップ部には帯電を促進させるための導電性を有する帯電促進粒子が介在していること、
b.現像手段は反転現像手段であり、現像剤には帯電促進粒子を混入させ、該現像手段内において、該帯電促進粒子を現像剤と同極性に帯電させること
を特徴とする画像形成装置。
【0051】
(4)現像手段が現像剤像を記録媒体に転写した後に像担持体上に残留した現像剤を回収するクリーニング手段を兼ねていることを特徴とする(1)ないし(3)の何れか1つに記載の画像形成装置。
【0052】
(5)帯電促進粒子が現像剤との摺擦によって摩擦帯電して電荷極性を持つことを特徴とする(1)ないし(4)の何れか1つに記載の画像形成装置。
【0053】
(6)現像剤を摩擦帯電させる部材が帯電促進粒子を帯電させる部材を兼ねることを特徴とする(1)ないし(4)の何れか1つに記載の画像形成装置。
【0054】
(7)帯電促進粒子は、その粒径が現像剤の1/2以下であり、抵抗値が1×1012(Ω・cm)以下であることを特徴とする(1)ないし(6)の何れか1つに記載の画像形成装置。
【0055】
(8)帯電促進粒子は、その粒径が現像剤の1/2以下であり、抵抗値が1×1010(Ω・cm)以下であることを特徴とする(1)ないし(6)の何れか1つに記載の画像形成装置。
【0056】
(9)帯電部材は像担持体の移動方向とは逆方向に速度差を保ちつつ駆動されることを特徴とする(1)ないし(8)の何れか1つに記載の画像形成装置。
【0057】
(10)像担持体の帯電面に静電潜像を形成する情報書き込み手段が像露光手段であることを特徴とする(1)ないし(9)の何れか1つに記載の画像形成装置。
【0058】
〈作 用〉
a)帯電促進粒子は帯電補助を目的とした導電性の粒子であり、接触帯電において少なくとも帯電部材と像担持体とのニップ部にこの帯電促進粒子を介在させることで均一で安定な直接帯電を実現している。帯電促進粒子は、抵抗値を1×1012(Ω・cm)以下に、さらに好ましくは、1×1010(Ω・cm)以下のものにすることで帯電性を損なわない。また粒径を現像剤の粒径の1/2以下のものにすることで像担持体に対する画像露光の妨げとならない。
【0059】
即ち、像担持体と接触帯電部材とのニップ部である帯電部に帯電促進粒子を介在させることで、該粒子の滑剤効果により、摩擦抵抗が大きくてそのままでは像担持体に対して速度差を持たせて接触させることが困難であった帯電ローラであっても、それを像担持体面に対して無理なく容易に効果的に速度差を持たせて接触させた状態にすることが可能となると共に、該接触帯電部材が該粒子を介して像担持体面に密に接触してより高い頻度で像担持体面に接触する構成となる。
【0060】
接触帯電部材と像担持体との間に十分な速度差を設けることにより、接触帯電部材と像担持体のニップ部において帯電促進粒子が像担持体に接触する機会を格段に増加させ、高い接触性を得ることができ、接触帯電部材と像担持体のニップ部に存在する帯電促進粒子が像担持体表面を隙間なく摺擦することで像担持体に電荷を直接注入できるようになり、接触帯電部材による像担持体の接触帯電は帯電促進粒子の介存により注入帯電が支配的となる。
【0061】
b)速度差を設ける構成としては、接触帯電部材を回転駆動あるいは固定して像担持体と速度差を設けることになる。転写方式あるいは転写方式・クリーナレスの画像形成装置にあっては、好ましくは、帯電部に持ち運ばれる、クリーナをすり抜けた現像剤或はクリーナレスの場合の転写残現像剤を接触帯電部材に一時的に回収し均すために、接触帯電部材を回転駆動し、さらに、その回転方向は像担持体表面の移動方向とは逆方向に回転するように構成することが望ましい。即ち、逆方向回転で像担持体上の残存現像剤を一旦引離し帯電を行なうことにより優位に注入帯電を行なうことが可能である。
【0062】
接触帯電部材を像担持体表面の移動方向と同じ方向に移動させて速度差をもたせることも可能であるが、注入帯電の帯電性は像担持体の周速と接触帯電部材の周速の比に依存するため、逆方向と同じ周速比を得るには順方向では接触帯電部材の回転数が逆方向の時に比べて大きくなるので、接触帯電部材を逆方向に移動させる方が回転数の点で有利である。ここで記述した周速比は
周速比(%)=(帯電部材周速−像担持体周速)/像担持体周速×100
である(帯電部材周速はニップ部において帯電部材表面が像担持体表面と同じ方向に移動するとき正の値である)。
【0063】
c)クリーナレスの画像形成装置にあっては、転写後の像担持体面に残存の転写残現像剤は像担持体と接触帯電部材のニップ部である帯電部に像担持体面の移動でそのまま持ち運ばれる。
【0064】
この場合、接触帯電部材を像担持体に対して速度差をもって接触させることで、転写残現像剤のパターンが攪乱されて崩され、中間調画像において、前回の画像パターン部分がゴーストとなって現れることがなくなる。
【0065】
d)帯電部に持ち運ばれた、クリーナをすり抜けた現像剤或はクリーナレスの場合の転写残現像剤は接触帯電部材に付着・混入する。従来現像剤は絶縁体であるため接触帯電部材に対する転写残現像剤の付着・混入は像担持体の帯電において帯電不良を生じさせる因子である。
【0066】
しかしこの場合でも、帯電促進粒子が像担持体と接触帯電部材とのニップ部である帯電部に介在することにより、接触帯電部材の像担持体への緻密な接触性と接触抵抗を維持できるため、接触帯電部材の転写残現像剤による汚染にかかわらず、低印加電圧でオゾンレスの直接帯電を長期に渡り安定に維持させることができ、均一な帯電性を与えることが出来る。
【0067】
e)接触帯電部材に付着・混入した現像剤は接触帯電部材から徐々に像担持体上に吐き出されて像担持体面の移動とともに現像部位に至り、現像手段において現像同時クリーニング(回収)される(トナーリサイクル)。
【0068】
この場合、接触帯電部材に帯電促進粒子が担持されていることで、接触帯電部材とこれに付着・混入する転写残現像剤の付着力が低減化されて接触帯電部材から像担持体上にへの現像剤の吐き出し効率が向上する。
【0069】
f)最初に、像担持体と接触帯電部材とのニップ部である帯電部に十分量の帯電促進粒子を介在させても、あるいは接触帯電部材に十分量の帯電促進粒子を塗布しておいても、装置の使用に伴い帯電部から帯電促進粒子が減少したり、帯電促進粒子が劣化したりすることで、帯電性の低下が生じる。
【0070】
本発明においては、帯電部から帯電促進粒子が減少したり、帯電促進粒子が劣化したりすることで、帯電性の低下が生じると、現像手段の現像剤に混入させてある帯電促進粒子が現像部において帯電性の低下した像担持体面部分に付着し、像担持体面の移動に伴い転写部を経由して帯電部に持ち運ばれることで、帯電部や接触帯電部材に自動的に供給されて、良好な帯電性が維持される。
【0071】
像担持体上の現像剤像は転写部において転写バイアスの影響で記録媒体側に引かれて積極的に転移するが、像担持体上の帯電促進粒子は導電性であることで記録媒体側には積極的には転移せず、像担持体上に実質的に付着保持されて残留して像担持体面の移動に伴い転写部を経由して帯電部に持ち運ばれる。
【0072】
この場合、クリーナを具備させた画像形成装置の場合でも、転写後の像担持体面に残留の転写残現像剤(紙粉等も含む)と帯電促進粒子の内、転写残現像剤はその大部分はクリーナで回収されるが、帯電促進粒子は現像剤に比べて粒径が小さいためクリーナをすり抜けやすく、そのすり抜けで帯電部に持ち運ばれる。またクリーナレスの画像形成装置であれば、転写後の像担持体面に残留の転写残現像剤と帯電促進粒子はそのまま帯電部に持ち運ばれる。
【0073】
即ち、現像手段の現像剤に帯電促進粒子を混入させ、、帯電性が低下した像担持体部分に帯電粒子が現像(像担持体に対する帯電促進粒子の付着)されるような極性に現像手段内で帯電粒子を帯電させるものである。具体的には、
▲1▼.現像手段の現像剤には帯電促進粒子を混入させ、該現像手段内において、該帯電促進粒子を前記接触帯電装置のDC帯電極性と同極性に帯電させる
▲2▼.或は現像手段は正規現像手段であり、現像剤には帯電促進粒子を混入させ、該現像手段内において、該帯電促進粒子を現像剤と異極性に帯電させる、
▲3▼.或は現像手段は反転現像手段であり、現像剤には帯電促進粒子を混入させ、該現像手段内において、該帯電促進粒子を現像剤と同極性に帯電させる、
ことにより、帯電部から帯電促進粒子が減少したり、帯電促進粒子が劣化したりすることで、帯電性の低下が生じると、現像手段の現像剤に混入させてある帯電促進粒子が現像部において帯電性の低下した像担持体面部分に付着し、像担持体面の移動に伴い転写部を経由して帯電部に持ち運ばれることで、帯電部や接触帯電部材に自動的に供給されて、良好な帯電性が維持される。
【0074】
g)かくして、接触帯電方式、転写方式、さらにはクリーナレスの画像形成装置について、接触帯電部材として帯電ローラやファーブラシ等の簡易な部材を用いて低印加電圧でオゾンレスの注入帯電機構を実現でき、注入帯電を可能にする帯電促進粒子の帯電部や接触帯電部材への供給が自動的に実行されるとともに、現像剤(トナー)により汚染された接触帯電部材から帯電の阻害因子である現像剤を効率よく吐き出させて、良好な帯電性を長期にわたり安定に維持させることができて、注入帯電とトナーリサイクルシステムを問題なく実行でき、高品位な画像形成を長期に渡り維持させることができる。また、画像比率の高い画像を出力した後でも高品位な画像形成を長期に渡り維持させることができる。
【0075】
【発明の実施の形態】
〈実施例1〉(図1)
図1は本発明に従う画像形成装置の一例の概略構成模型図である。
【0076】
本実施例の画像形成装置は、転写式電子写真プロセス利用、接触帯電方式、クリーナレス、プロセスカートリッジ式のレーザープリンタである。
【0077】
また本実施例のプリンタは、正規現像を用い、現像剤に混入させた帯電促進粒子を現像剤との摩擦帯電により、現像剤と反対の極性に帯電させることを特徴としている。
【0078】
(1)本例プリンタの全体的な概略構成
[像担持体]
1は像担持体(被帯電体)としての回転ドラム型の電子写真感光体である。本実施例のプリンタは正規現像を用いており、感光体1はポジ感光体を用いている。本実施例の感光体1は直径30mmのOPC感光体であり、矢印の時計方向に94mm/secの周速度をもって回転駆動される。
【0079】
[帯 電]
2は感光体1に所定の押圧力をもって接触させて配設した可撓性の接触帯電部材としての導電性弾性ローラ(帯電ローラ)である。aは感光体1と帯電ローラ2との帯電ニップ部である。この帯電ローラ2には予めその外周面に帯電促進粒子mをコートして担持させてあり、帯電ニップ部aには帯電促進粒子mが存在している。
【0080】
帯電ローラ2は本実施例においては帯電ニップ部aにおいて感光体1の回転方向と逆方向(カウンター)に100%の周速で回転駆動され、感光体1面に対して速度差を持って接触する。そしてこの帯電ローラ2に帯電バイアス電源S1から所定の帯電バイアスが印加される。これにより回転感光体1の周面が注入帯電方式で所定の極性・電位に一様に接触帯電処理される。本実施例では帯電ローラ2には感光体1の外周面がほぼ700Vに一様に帯電処理されるように、帯電バイアス電源S1から帯電バイアスを印加する。
【0081】
この帯電ローラ2、帯電促進粒子m、注入帯電等については別項で詳述する。
【0082】
[露 光]
そして回転感光体1の帯電処理面に対して、レーザーダイオードやポリゴンミラー等を含む不図示のレーザービームスキャナから出力されるレーザービームによる走査露光Lがなされる。レーザービームスキャナから出力されるレーザービームは目的の画像情報の時系列電気デジタル画素信号に対応して強度変調されたものであり、このレーザービームによる走査露光Lにて回転感光体1の外周面に目的の画像情報に対応した静電潜像が形成される。
【0083】
本実施例では正規現像を用いており、回転感光体1の外周面のレーザービームによる走査露光Lにおいて、非露光部が画像部であり、露光部が非画像部である。
【0084】
[現 像]
3は正規現像装置であり、回転感光体1の外周面に形成された上記の静電潜像はこの現像装置3により現像剤像(トナー像)として正規現像される。
【0085】
本例の現像装置3は現像剤31として負帯電性の平均粒径7μmの非磁性1成分絶縁現像剤(トナー)を用いたものである。
【0086】
現像剤31には帯電促進粒子mを外添(混入)してあり、その外添量は本実施例においては現像剤100重量部に対して2重量部としてある。
【0087】
32はマグネット33を内包する直径16mmの非磁性現像スリーブであり、この現像スリーブ32に上記現像剤31(+m)をコートし、感光体1表面との距離を500μmに固定した状態で、感光体1と等速で回転させ、現像スリーブ32に現像バイアス電源S2より現像バイアス電圧を印加する。
【0088】
現像装置内の現像剤31(+m)は回転現像スリーブ32上を搬送される過程において、弾性ブレード(規制ブレード)34で層厚規制を受け、また弾性ブレード34との摺擦により摩擦帯電し、電荷を持つ。
【0089】
現像バイアス電圧は、380VのDC電圧と、周波数1800Hz、ピーク間電圧1600Vの矩形のAC電圧を重畳したものを用い、現像スリーブ32と感光体1の間の現像部位bで1成分ジャンピング現像を行なわせる。
【0090】
回転感光体1面の静電潜像の画像部である非露光部に現像剤が付着して静電潜像が正規現像される。
【0091】
[転 写]
4は接触転写手段としての中抵抗の転写ローラであり、感光体1に所定に圧接させて転写ニップ部cを形成させてある。この転写ニップ部cに不図示の給紙部から所定のタイミングで被記録体としての転写材Pが給紙され、かつ転写ローラ4に転写バイアス電源S3から所定の転写バイアス電圧が印加されることで、感光体1側の現像剤像が転写ニップ部cに給紙された転写材Pの面に順次に転写されていく。
【0092】
本実施例で使用の転写ローラ4は、芯金41に中抵抗発泡層42を形成した、ローラ抵抗値5×108 Ωのものであり、+2200VのDC電圧を芯金41に印加して転写を行なった。転写ニップ部cに導入された転写材Pはこの転写ニップ部cを挟持搬送されて、その表面側に回転感光体1の表面に形成担持されている現像剤像が順次に静電気力と押圧力にて転写されていく。
【0093】
[定 着]
5は熱定着方式等の定着装置である。転写ニップ部cに給紙されて感光体1側の現像剤像の転写を受けた転写材Pは回転感光体1の面から分離されてこの定着装置5に導入され、現像剤像の定着を受けて画像形成物(プリント、コピー)として装置外へ排出される。
【0094】
[カートリッジ]
本実施例のプリンタは、感光体1、接触帯電部材2、現像装置3の3つのプロセス機器をカートリッジケースに包含させてプリンタ本体に対して一括して着脱自在のカートリッジCとしてある。カートリッジ化するプロセス機器の組み合わせ等は上記に限られるものではない。
【0095】
(2)帯電ローラ2
本実施例における接触帯電部材としての帯電ローラ2は芯金21上にゴムあるいは発泡体の中抵抗層22を形成することにより作成される。
【0096】
中抵抗層22は樹脂(例えばウレタン)、導電性粒子(例えばカーボンブラック)、硫化剤、発泡剤等により処方され、芯金21の上にローラ状に形成した。その後必要に応じて表面を研磨した。
【0097】
本実施例の帯電ローラ2のローラ抵抗を測定したところ100kΩであった。ローラ抵抗は、帯電ローラ2の芯金21に総圧1kgの加重がかかるようφ30mmのアルミドラムに帯電ローラ2を圧着した状態で、芯金21とアルミドラムとの間に100Vを印加し、計測した。
【0098】
ここで、接触帯電部材である帯電ローラ2は電極として機能することが重要である。つまり、弾性を持たせて被帯電体との十分な接触状態を得ると同時に、移動する被帯電体を充電するに十分低い抵抗を有する必要がある。一方では被帯電体にピンホールなどの低耐圧欠陥部位が存在した場合に電圧のリークを防止する必要がある。被帯電体として電子写真用感光体を用いた場合、十分な帯電性と耐リークを得るには104 〜107 Ωの抵抗が望ましい。
【0099】
帯電ローラ2の表面は帯電促進粒子mを保持できるようミクロな凹凸があるものが望ましい。
【0100】
帯電ローラ2の硬度は、硬度が低すぎると形状が安定しないために被帯電体との接触性が悪くなり、高すぎると被帯電体との間に帯電ニップ部aを確保できないだけでなく、被帯電体表面へのミクロな接触性が悪くなるので、アスカーC硬度で25度から50度が好ましい範囲である。
【0101】
帯電ローラ2の材質としては、弾性発泡体に限定するものではなく、弾性体の材料として、EPDM、ウレタン、NBR、シリコーンゴムや、IR等に抵抗調整のためにカーボンブラックや金属酸化物等の導電性物質を分散したゴム材や、またこれらを発泡させたものがあげられる。また、特に導電性物質を分散せずに、イオン導電性の材料を用いて抵抗調整をすることも可能である。
【0102】
帯電ローラ2は被帯電体としての感光ドラム1に対して弾性に抗して所定の押圧力で圧接させて配設し、本実施例では幅数mmの帯電ニップ部aを形成させてある。
【0103】
(3)帯電促進粒子m
本実施例では、接触帯電部材としての帯電ローラ2の外周面に予めコートする帯電促進粒子m及び現像装置3の現像剤31に外添する帯電促進粒子mとして、比抵抗が107 Ω・cm、平均粒径1.5μmの導電性酸化亜鉛粒子を用いた。
帯電促進粒子は、一次粒子の状態で存在するばかりでなく、二次粒子の凝集した状態で存在することもなんら問題はない。どのような凝集状態であれ、凝集体として帯電促進粒子としての機能が実現できればその形態は重要ではない。
【0104】
粒径は粒子が凝集体を構成している場合は、その凝集体としての平均粒径として定義した。粒径の測定には、光学あるいは電子顕微鏡による観察から、100個以上抽出し、水平方向最大弦長をもって体積粒度分布を算出し、その50%平均粒径をもって決定した。
【0105】
帯電促進粒子mの抵抗値が1012Ω・cm以上であると帯電性が損なわれた。そのため、抵抗値が1012Ω・cm以下である必要があり、さらに好ましくは1010Ω・cm以下である必要がある。本実施例では1×107 Ω・cmのものを用いた。抵抗測定は、錠剤法により測定し正規化して求めた。即ち、底面積2.26cm2 の円筒内に約0.5gの粉体試料を入れ上下電極に15kgの加圧を行うと同時に100Vの電圧を印加し抵抗値を計測し、その後正規化して比抵抗を算出した。
【0106】
帯電促進粒子mは潜像露光時に妨げにならないよう、白色または透明に近いことが望ましく、よって非磁性であることが好ましい。さらに、帯電促進粒子が感光体上から記録材Pに一部転写されてしまうことを考えるとカラー記録では無色、あるいは白色のものが望ましい。また、粒径も現像剤31の粒径に対して、1/2以下程度でないと画像露光を遮ることがあった。そのため帯電促進粒子mの粒径は現像剤31の粒径の1/2よりも小さいことが望ましい。粒径の下限値としては、粒子として安定に得られるものとして10nmが限界と考えられる。
【0107】
帯電促進粒子mの材料としては、本実施例では酸化亜鉛を用いたが、これに限るものではなく、その他アルミナなど他の金属酸化物の導電性無機粒子や有機物との混合物、あるいは、これらに表面処理を施したものなど各種導電粒子が使用可能である。
【0108】
本実施例においては、現像装置3の現像剤31に外添した帯電促進粒子m(酸化亜鉛粒子)は現像剤31との摺擦により、現像剤31と逆極性であるプラスの電荷の極性が付加される。即ち、帯電促進粒子mは正規現像の現像剤とは逆極性に帯電される(=接触帯電装置のDC帯電極性と同極性に帯電)。
【0109】
そして本実施例においては、上記のように帯電促進粒子mは現像装置3内で現像剤31との摺擦により、プラスの電荷を持ち、感光体1に現像(=感光体面に付着、以下同じ)される。即ち、帯電促進粒子mは現像剤31と逆極性であるために、感光体の電位がマイナス側である領域、すなわち帯電されていない領域、に現像される。
【0110】
ここで、帯電促進粒子mと現像剤31間の摩擦帯電特性の測定は次のようにして行なった。即ち、内面に現像剤31を熱融解させコートした容器に帯電促進粒子mを入れ、容器を振り、その後に、帯電促進粒子を吸引し、帯電促進粒子の帯電電荷量を測定することにより、摩擦帯電特性の測定を行なった。
【0111】
(4)注入帯電
▲1▼.像担持体である感光体1と接触帯電部材である帯電ローラ2との帯電ニップ部aに帯電促進粒子mを介在させることで、該粒子mの滑剤効果により、摩擦抵抗が大きくてそのままでは感光体1に対して速度差を持たせて接触させることが困難であった帯電ローラであっても、それを感光体1面に対して無理なく容易に効果的に速度差を持たせて接触させた状態にすることが可能となると共に、該帯電ローラ2が該粒子mを介して感光体1面に密に接触してより高い頻度で感光体1面に接触する構成となる。
【0112】
帯電ローラ2と感光体1との間に十分な速度差を設けることにより、帯電ローラ2と感光体1の帯電ニップ部において帯電促進粒子mが感光体1に接触する機会を格段に増加させ、高い接触性を得ることができ、帯電ローラ2と感光体1の帯電ニップ部aに存在する帯電促進粒子mが感光体1表面を隙間なく摺擦することで感光体1に電荷を直接注入できるようになり、帯電ローラ2による感光体1の接触帯電は帯電促進粒子mの介存により注入帯電機構が支配的となる。
【0113】
速度差を設ける構成としては、帯電ローラ2を回転駆動あるいは固定して感光ドラム1と速度差を設けることになる。好ましくは帯電ニップ部aに持ち運ばれる感光体1上の転写残現像剤を帯電ローラ2に一時的に回収し均すために、帯電ローラ2を回転駆動し、さらに、その回転方向は感光体1表面の移動方向とは逆方向に回転するように構成することが望ましい。即ち、逆方向回転で感光体1上の転写残現像剤を一旦引離し帯電を行なうことにより優位に注入帯電を行なうことが可能である。
【0114】
従って、従来のローラ帯電等では得られなかった高い帯電効率が得られ、帯電ローラ2に印加した電圧とほぼ同等の帯電電位を感光体1に与えることができる。かくして、接触帯電部材として帯電ローラ2を用いた場合でも、該帯電ローラ2に対する帯電に必要な印加バイアスは感光体1に必要な帯電電位相当の電圧で十分であり、放電現象を用いない安定かつ安全な接触帯電方式ないし装置を実現することができる。
【0115】
帯電ニップ部aや帯電ローラ2の表面に帯電促進粒子mを予め担持させておくことで、プリンタ使用の全くの初期より上記の直接帯電性能を支障なく発揮させることができる。
【0116】
▲2▼.クリーナレスの画像形成装置にあっては、転写後の感光体1面に残存の転写残現像剤は感光体1と帯電ローラ2の帯電ニップ部aに感光体1面の移動でそのまま持ち運ばれる。
【0117】
この場合、帯電ローラ2を感光体1に対して速度差をもって接触させることで、転写残現像剤のパターンが攪乱されて崩され、中間調画像において、前回の画像パターン部分がゴーストとなって現れることがなくなる。
【0118】
▲3▼.帯電ニップ部aに持ち運ばれた転写残現像剤は帯電ローラ2に付着・混入する。従来現像剤は絶縁体であるため帯電ローラ2に対する転写残現像剤の付着・混入は感光体1の帯電において帯電不良を生じさせる因子である。
【0119】
しかしこの場合でも、帯電促進粒子mが感光体1と帯電ローラ2との帯電ニップ部aに介在することにより、帯電ローラ2の感光体1への緻密な接触性と接触抵抗を維持できるため、帯電ローラ2の転写残現像剤による汚染にかかわらず、低印加電圧でオゾンレスの直接帯電を長期に渡り安定に維持させることができ、均一な帯電性を与えることが出来る。
【0120】
▲4▼.帯電ローラ2に付着・混入した転写残現像剤は帯電ローラ2から徐々に感光体1上に吐き出されて感光体1面の移動とともに現像部位bに至り、現像装置3において現像同時クリーニング(回収)される(トナーリサイクル)。
【0121】
この場合、帯電ローラ2に帯電促進粒子mが担持されていることで、帯電ローラ2とこれに付着・混入する転写残現像剤の付着力が低減化されて帯電ローラ2から感光体1上への現像剤の吐き出し効率が向上する。
現像同時クリーニングは前述したように、転写後に感光体1上に残留したトナーを引き続く画像形成工程の現像時、即ち引き続き感光体を帯電し、露光して潜像を形成し、その潜像の現像時において、現像装置のかぶり取りバイアス、即ち現像装置に印加する直流電圧と感光体の表面電位間の電位差であるかぶり取り電位差Vbackによって回収するものである。本実施例におけるプリンタのように反転現像の場合では、この現像同時クリーニングは、感光体の暗部電位から現像スリーブにトナーを回収する電界と、現像スリーブから感光体の明部電位へトナーを付着させる電界の作用でなされる。
【0122】
▲5▼.また感光体1面に実質的に付着保持される帯電促進粒子mの存在により現像剤の感光体1側から転写材P側への転写効率が向上する効果もえられる。
【0123】
(5)帯電ニップ部aや帯電ローラ2に対する帯電促進粒子mの補給
最初に、感光体1と帯電ローラ2との帯電ニップ部aに十分量の帯電促進粒子mを介在させても、あるいは帯電ローラ2に十分量の帯電促進粒子mを塗布しておいても、装置の使用に伴い帯電促進粒子mが帯電ニップ部aや帯電ローラ2から減少したり、帯電促進粒子mが劣化したりすることで、帯電性の低下が生じる。
【0124】
そのため、帯電性の低下が生じた際には、帯電ニップ部aや帯電ローラ2に対して帯電促進粒子mを補給する必要がある。
【0125】
本実施例においては、帯電ニップ部aや帯電ローラ2から帯電促進粒子mが減少したり、帯電促進粒子mが劣化したりすることで、帯電性の低下が生じると、現像装置3の現像剤31に混入させてある帯電促進粒子mが現像部aにおいて帯電性の低下した感光体1面部分に付着し、感光体1面の移動に伴い転写部cを経由して帯電ニップ部aに持ち運ばれることで、帯電ローラ2や帯電ニップ部aに自動的に供給されて、良好な帯電性が維持される。
【0126】
感光体1上の現像剤像は転写部cにおいて転写バイアスの影響で記録媒体側に引かれて積極的に転移するが、感光体1上の帯電促進粒子mは抵抗値が低いために記録媒体側には積極的には転移せず、感光体1上に実質的に付着保持されて残留して感光体1面の移動に伴い転写部cを経由して帯電ニップ部aに持ち運ばれる。
【0127】
即ち本実施例では、帯電促進粒子mを現像装置3内から供給することによって、帯電促進粒子mを補給する。本実施例のプリンタでは正規現像を用い、帯電促進粒子mが現像剤31と逆極性に摩擦帯電し、プラスの電荷を持っている。そのため、感光体1上で比較的マイナス側の電位を持つ領域、即ち帯電されていない領域、に現像される。したがって、帯電ニップ部aや帯電ローラ2から帯電促進粒子mが減少、あるいは、劣化し、帯電不良の部分が生じた場合、電位が低い帯電不良部分に対して自動的に帯電促進粒子を多く補給することが可能となる。
【0128】
このように、本実施例では帯電促進粒子mが減少したり、劣化した部分に対して自動的に補給量を増やすことが可能となる。
【0129】
かくして、接触帯電方式、転写方式、クリーナレスの画像形成装置について、接触帯電部材として帯電ローラ2等の簡易な部材を用いて低印加電圧でオゾンレスの注入帯電を実現でき、注入帯電を可能にする帯電促進粒子mの帯電ニップ部aや帯電ローラ2への供給が自動的に実行されるとともに、現像剤により汚染された帯電ローラ2から帯電の阻害因子である現像剤を効率よく吐き出させて、良好な帯電性を長期にわたり安定に維持させることができて、注入帯電とトナーリサイクルシステムを問題なく実行でき、高品位な画像形成を長期に渡り維持させることができる。また、画像比率の高い画像を出力した後でも高品位な画像形成を長期に渡り維持させることができる。
【0130】
像担持体としての感光体1と接触帯電部材としての帯電ローラ2との帯電ニップ部aにおける帯電促進粒子mの介在量は、少なすぎると、該粒子による潤滑効果が十分に得られず、帯電ローラ2と感光体1との摩擦が大きくて帯電ローラ2を感光体1に速度差を持って回転駆動させることが困難である。つまり、駆動トルクが過大となるし、無理に回転させると帯電ローラ2や感光体1の表面が削れてしまう。更に該粒子による接触機会増加の効果が得られないこともあり十分な帯電性能が得られない。一方、該介在量が多過ぎると、帯電促進粒子の帯電ローラ2からの脱落が著しく増加し作像上に悪影響が出る。
実験によると該介在量は103 個/mm2 以上が望ましい。103 個/mm2 より低いと十分な潤滑効果と接触機会増加の効果が得られず帯電性能の低下が生じる。
より望ましくは103 〜5×105 個/mm2 の該介在量が好ましい。5×105 個/mm2 を超えると、該粒子の感光体1へ脱落が著しく増加し、粒子自体の光透過性を問わず、感光体1への露光量不足が生じる。5×105 個/mm2 以下では脱落する粒子量も低く抑えられ該悪影響を改善できる。該介在量範囲において感光体1上に脱落した粒子の存在量を測ると102 〜105 個/mm2 であったことから、作像上弊害がない該存在量としては105 個/mm2 以下が望まれる。
【0131】
該介在量及び感光体1上の該存在量の測定方法について述べる。該介在量は帯電ローラ2と感光体1の帯電ニップ部aを直接測ることが望ましいが、帯電ローラ2に接触する前に感光体1上に存在した粒子の多くは逆方向に移動しながら接触する帯電ローラ2に剥ぎ取られることから、本発明では帯電ニップ部aに到達する直前の帯電ローラ2表面の粒子量をもって該介在量とした。具体的には、帯電バイアスを印加しない状態で感光ドラム1及び帯電ローラ2の回転を停止し、感光体1及び帯電ローラ2の表面をビデオマイクロスコープ(OLYMPUS製OVM1000N)及びデジタルスチルレコーダ(DELTIS製SR−3100)で撮影した。帯電ローラ2については、帯電ローラ2を感光体1に当接するのと同じ条件でスライドガラスに当接し、スライドガラスの背面からビデオマイクロスコープにて該接触面を1000倍の対物レンズで10箇所以上撮影した。得られたデジタル画像から個々の粒子を領域分離するため、ある閾値を持って2値化処理し、粒子の存在する領域の数を所望の画像処理ソフトを用いて計測した。また、感光体1上の該存在量についても感光体1上を同様のビデオマイクロスコープにて撮影し同様の処理を行い計測した。
換言すると、帯電ニップ部aにおける帯電促進粒子mの存在量がそのような介在量になるように現像装置3の現像剤31に対する帯電促進粒子mの配合量を設定する。一般には現像剤(トナー)100重量部に対して帯電促進粒子mは0.01〜20重量部である。
【0132】
(6)比較例
比較例A:上記実施例1のプリンタにおいて、帯電促進粒子mとして電荷を持たないものを使用したプリンタ
比較例B:上記実施例1のプリンタにおいて、帯電促進粒子mとして現像剤31と同極性の電荷を持つものを使用したプリンタ
比較例Aのプリンタでは、帯電促進粒子mが特定の電荷を持たず、現像装置3の現像スリーブ32からの電荷注入によって、現像が行なわれる。この場合には、帯電ニップ部aや帯電ローラ2から帯電促進粒子mが減少あるいは劣化して、帯電性の低下が生じたときに、特に帯電促進粒子mの現像量が増加することはなかった。
【0133】
比較例Bのプリンタでは、帯電性が低下した際には、帯電促進粒子の現像量も低下し、帯電ニップ部aや帯電ローラ2に対する帯電促進粒子mの補給量が減少してしまい、帯電性が低下し続けた。
【0134】
これらの比較例AやBのプリンタに対して実施例1のプリンタでは、帯電ニップ部aや帯電ローラ2における帯電促進粒子mの減少あるいは劣化による帯電不良が生じると、帯電促進粒子の現像量が増加し、帯電ニップ部aや帯電ローラ2に補給される帯電促進粒子mが増加するため、帯電性が低下していくことがなかった。
【0135】
〈実施例2〉(図2)
本実施例は反転現像を用いた画像形成装置において、現像装置内で帯電促進粒子を現像剤と同極性に帯電させることを特徴としている。帯電の手段としては、現像剤を帯電させる弾性ブレードを用いて、帯電促進粒子を帯電させている。
【0136】
具体的には、実施例1のプリンタについて、図2のように、
a.像担持体1としてネガ感光体を用いた、
b.帯電ローラ2には感光体1の外周面がほぼ−700Vに一様に帯電されるように、帯電バイアス電源S1から帯電バイアスを印加した、
c.感光体1に対する画像露光は実施例1のプリンタと同様にレーザービームによる走査露光Lであるが、本実施例では反転現像系であるため、露光部が画像部であり、非露光部が非画像部である、
d.現像装置3は反転現像装置であり、現像バイアス電圧は、−400VのDC電圧と、周波数1800V、ピーク間電圧1600Vの矩形のAC電圧を重畳したものを用いた、
e.帯電ローラ2の外周面に予めコートする帯電促進粒子m及び現像装置3の現像剤31に外添する帯電促進粒子mとして、比抵抗が107 Ω・cm、平均粒径1.5μmの導電性酸化亜鉛粒子にポリエチレンを分散させたものを用いた、f.現像装置3の現像剤31には上記の帯電促進粒子mを現像剤100重量部に対して2重量部外添してあり、該帯電促進粒子mは弾性ブレード34との摺擦により、現像剤31と同様にマイナスの電荷を持つ(=接触帯電装置のDC帯電極性と同極性に帯電)、
g.転写バイアスは+1800Vにした。
【0137】
上記a〜g以外は実施例1と同様のプリンタである。
【0138】
而して、本実施例のプリンタにおいては現像装置3の現像剤31に外添の帯電促進粒子mが弾性ブレード34との摺擦により、現像剤31と同極性であるマイナスの電荷を持つ。このため、感光体1の帯電が不完全な部分(電位がプラス側である領域)に現像される。
【0139】
本実施例では帯電促進粒子mを現像装置3内から現像することによって、帯電促進粒子mを補給する。反転現像を用い、帯電促進粒子mが現像剤31と同極性のマイナスに摩擦帯電しているために、帯電促進粒子mは電位がプラス側の方に多く現像される。
【0140】
したがって、帯電ニップ部aや帯電ローラ2から帯電促進粒子mが減少、あるいは、劣化し、帯電不良の部分が生じた場合、電位がプラス側である帯電不良部分に対して自動的に帯電促進粒子を多く補給することが可能となる。
【0141】
このように、本実施例では帯電促進粒子mが減少したり、劣化した部分に対して自動的に補給量を増やすことが可能となる。
【0142】
〈その他〉
1)可撓性の接触帯電部材としての帯電ローラ2は実施例の帯電ローラの構成に限られるものではない。
【0143】
また可撓性の接触帯電部材は帯電ローラの他に、ファーブラシ帯電器などとすることもできる。フェルト・布などの材質・形状のものも使用可能である。また、これらを積層し、より適切な弾性と導電性を得ることも可能である。
【0144】
2)接触帯電における注入帯電機構は、接触帯電部材の被帯電体への接触性が帯電性に大きく効いてくる。そこで接触帯電部材はより密に構成し、また被帯電体との速度差を多く持ち、より高い頻度で被帯電体に接触する構成にする。
【0145】
また、被帯電体の表面に電荷注入層を設けて被帯電体表面の抵抗を調節することで接触帯電における注入帯電機構を支配的にすることができる。
【0146】
図3は表面に電荷注入層16を設けた感光体1の層構成模型図である。即ち該感光体1は、アルミドラム基体(Alドラム基体)11上に下引き層12、正電荷注入防止層13、電荷発生層14、電荷輸送層15の順に重ねて塗工された一般的な有機感光体に電荷注入層16を塗布することにより、帯電性能を向上したものである。
【0147】
電荷注入層16は、バインダーとしての光硬化型のアクリル樹脂に、導電性粒子(導電フィラー)としてのSnO2 超微粒子16a(径が約0.03μm)、4フッ化エチレン樹脂(商品名テフロン)などの滑剤、重合開始剤等を混合分散し、塗工後、光硬化法により膜形成したものである。
【0148】
電荷注入層16として重要な点は、表層の抵抗にある。電荷の直接注入による帯電方式においては、被帯電体側の抵抗を下げることでより効率良く電荷の授受が行えるようになる。一方、感光体として用いる場合には静電潜像を一定時間保持する必要があるため、電荷注入層16の体積抵抗値としては1×109 〜1×1014(Ω・cm)の範囲が適当である。
【0149】
また本構成のように電荷注入層16を用いていない場合でも、例えば電荷輸送層15が上記抵抗範囲に或る場合は同等の効果が得られる。
【0150】
さらに、表層の体積抵抗が約1013Ω・cmであるアモルファスシリコン感光体等を用いても同様な効果が得られる。
【0151】
3)接触帯電部材や現像装置等に対してAC電圧(交番電圧)成分を印加する場合の、そのAC電圧波形としては、正弦波、矩形波、三角波等適宜使用可能である。また、直流電源を周期的にオン/オフすることによって形成された矩形波であっても良い。このように交番電圧の波形としては周期的にその電圧値が変化するようなバイアスが使用できる。
【0152】
4)静電潜像形成のための画像露光手段としては、実施形態例の様にデジタル的な潜像を形成するレーザー走査露光手段に限定されるものではなく、通常のアナログ的な画像露光やLEDなどの他の発光素子でも構わないし、蛍光燈等の発光素子と液晶シャッター等の組み合わせによるものなど、画像情報に対応した静電潜像を形成できるものであるなら構わない。
【0153】
像担持体1は静電記録誘電体等であっても良い。この場合は、該誘電体面を所定の極性・電位に一様に一次帯電した後、除電針ヘッド、電子銃等の除電手段で選択的に除電して目的の静電潜像を書き込み形成する。
【0154】
5)現像手段3についても、その現像方式・構成は実施例のものに限定されるものではないことは勿論である。
【0155】
6)本発明の画像形成装置は転写後の像担持体面から転写残現像剤や紙粉を除去するクリーナを具備させたものであってもよい。
【0156】
7)像担持体1から現像剤像の転写を受ける被記録体は転写ドラム等の中間転写体であってもよい。
【0157】
8)現像剤(トナー)31の粒度の測定方法の1例を述べる。測定装置としては、コールターカウンターTA−2型(コールター社製)を用い、個数平均分布、体積平均分布を出力するインターフェイス(日科機製)及びCX−1パーソナルコンピュータ(キヤノン製)を接続し、電解液は一級塩化ナトリウムを用いて1%NaCl水溶液を調製する。
【0158】
測定法としては、前記電解水溶液100〜150ml中に分散剤として界面活性剤、好ましくは、アルキルベンゼンスルホン酸塩0.1〜5ml加え、更に測定試料を0.5〜50mg加える。
【0159】
試料を懸濁した電解液は、超音波分散器で約1〜3分間分散処理を行い、前記コールターカウンターTA−2型により、アパーチャーとして100μアパーチャーを用いて2〜40μmの粒子の粒度分布を測定して、体積平均分布を求める。これらの求めた体積平均分布より体積平均粒径を得る。
【0160】
【発明の効果】
以上述べたように本発明によれば、接触帯電方式、転写方式、さらにはクリーナレスの画像形成装置について、接触帯電部材として帯電ローラやファーブラシ等の簡易な部材を用いて低印加電圧でオゾンレスの注入帯電を実現でき、注入帯電を可能にする帯電促進粒子の帯電部や接触帯電部材への供給が自動的に実行されるとともに、現像剤(トナー)により汚染された接触帯電部材から帯電の阻害因子である現像剤を効率よく吐き出させて、良好な帯電性を長期にわたり安定に維持させることができて、注入帯電機構とトナーリサイクルシステムを問題なく実行でき、高品位な画像形成を長期に渡り維持させることができる。また、画像比率の高い画像を出力した後でも高品位な画像形成を長期に渡り維持させることができる。
【図面の簡単な説明】
【図1】実施例1の画像形成装置の概略構成図
【図2】実施例2の画像形成装置の概略構成図
【図3】表面に電荷注入層を設けた感光体の一例の層構成模型図
【図4】帯電特性グラフ
【符号の説明】
1 感光体(像担持体、被帯電体)
2 帯電ローラ(接触帯電部材)
3 現像装置(正規現像装置または反転現像装置)
31 現像剤(トナー)
m 帯電促進粒子
4 転写ローラ
5 定着装置
P 転写材
C プロセスカートリッジ
S1〜S3 バイアス印加電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an image forming apparatus such as a copying machine or a printer. More specifically, the present invention relates to a contact charging type image forming apparatus.
[0002]
[Prior art]
Conventionally, for example, in an image forming apparatus such as an electrophotographic system or an electrostatic recording system, an image bearing member such as an electrophotographic photosensitive member or an electrostatic recording dielectric is uniformly charged to a required polarity and potential (also a static elimination process). A corona charger (corona discharger) has been used as a charging device to be included.
[0003]
A corona charger is a non-contact type charging device. For example, a corona charger is provided with a discharge electrode such as a wire electrode and a shield electrode surrounding the discharge electrode, and a discharge opening is opposed to an image carrier as a charged body. The image carrier surface is charged to a predetermined level by exposing the image carrier surface to a discharge current (corona shower) generated by applying a high voltage to the discharge electrode and the shield electrode.
[0004]
Recently, a contact charging device has been proposed and put to practical use as a charging device for an object to be charged such as an image bearing member because it has advantages such as low ozone and low power compared to a corona charger.
[0005]
The contact charging device contacts a charged object such as an image carrier with a conductive charging member such as a roller type (charging roller), a fur brush type, a magnetic brush type, or a blade type, and the charging member (contact charging member). A predetermined charging bias is applied to a contact charger (hereinafter referred to as a contact charging member) to charge the surface of the object to be charged to a predetermined polarity and potential.
[0006]
There are two types of charging mechanisms (1) discharge charging mechanism and (2) injection charging mechanism in the contact charging mechanism (charging mechanism, charging principle). Each charging mechanism depends on which is dominant. A characteristic appears.
[0007]
(1). Discharge charging mechanism
This is a mechanism for charging the surface of the member to be charged by a discharge phenomenon that occurs in a minute gap between the contact charging member and the member to be charged.
[0008]
Since the discharge charging mechanism has a constant discharge threshold value for the contact charging member and the member to be charged, it is necessary to apply a voltage larger than the charging potential to the contact charging member. Further, although the generation amount is remarkably smaller than that of the corona charger, it is unavoidable that a discharge product is generated in principle, and thus harmful effects due to active ions such as ozone are unavoidable.
[0009]
(2). Injection charging mechanism
This is a mechanism for charging the surface of the member to be charged by directly injecting the charge from the contact charging member to the member to be charged. It is also called direct charging, injection charging, or charge injection charging.
[0010]
More specifically, a medium-resistance contact charging member comes into contact with the surface of the member to be charged, and charge is directly injected into the surface of the member to be charged without going through a discharge phenomenon, that is, basically using no discharge. Therefore, even if the applied voltage to the contact charging member is an applied voltage that is equal to or lower than the discharge threshold, the object to be charged can be charged to a potential corresponding to the applied voltage. Since this injection charging mechanism does not involve the generation of ions, there is no adverse effect caused by the discharge product.
[0011]
However, since the charging is injection charging, the contact property of the contact charging member to the member to be charged greatly affects the charging property. Therefore, the contact charging member needs to be configured more densely, have a large speed difference from the object to be charged, and must be configured to contact the object to be charged more frequently.
[0012]
A) Roller charging
In the contact charging device, a roller charging method using a conductive roller (charging roller) as a contact charging member is preferable in terms of charging stability and is widely used.
[0013]
The roller charging is mainly performed by the discharge charging mechanism (1).
[0014]
The charging roller is made of a conductive or medium resistance rubber material or foam. In addition, there are those obtained by laminating these to obtain desired characteristics.
[0015]
The charging roller has elasticity in order to obtain a certain contact state with a member to be charged (hereinafter referred to as a photosensitive member), but has a large frictional resistance, and is often driven by the photosensitive member or at a slight speed. Driven with a difference. Therefore, even if injection charging is attempted, a decrease in absolute charging ability, insufficient contact, uneven charging on the roller, and uneven charging due to the adherence of the photosensitive member cannot be avoided. The mechanism is dominant.
[0016]
FIG. 4 is a graph showing an example of charging efficiency in contact charging. The horizontal axis represents the bias applied to the contact charging member, and the vertical axis represents the photosensitive member charging potential obtained at that time.
[0017]
The charging characteristic in the case of conventional roller charging is represented by A. That is, charging starts after the discharge threshold of about −500V. Therefore, when charging to -500 V, apply a DC voltage of -1000 V, or in addition to a charging voltage of -500 V DC, apply an AC voltage with a peak-to-peak voltage of 1200 V so as to always have a potential difference greater than the discharge threshold. Thus, a method of converging the photoreceptor potential to the charging potential is common.
[0018]
More specifically, when the charging roller is brought into pressure contact with an OPC photoconductor having a thickness of 25 μm, the surface potential of the photoconductor starts to rise when a voltage of about 640 V or more is applied. Thereafter, the photosensitive member surface potential increases linearly with a slope of 1 with respect to the applied voltage. This threshold voltage is defined as the charging start voltage Vth.
[0019]
That is, in order to obtain the photoreceptor surface potential Vd required for electrophotography, the charging roller requires a DC voltage higher than that required, that is, Vd + Vth. A method of charging by applying only the DC voltage to the contact charging member in this way is referred to as a “DC charging method”.
[0020]
However, in DC charging, the resistance value of the contact charging member fluctuates due to environmental fluctuations, and Vth fluctuates when the film thickness changes due to the photoconductor being scraped. It was difficult.
[0021]
Therefore, an AC component having a peak-to-peak voltage of 2 × Vth or more is added to a DC voltage corresponding to a desired Vd, as disclosed in Japanese Patent Laid-Open No. 63-149669, in order to further uniform charge. An “AC charging method” is used in which the superimposed voltage is applied to the contact charging member. This is for the purpose of smoothing the potential due to AC, and the potential of the charged body converges to Vd, which is the center of the peak of the AC voltage, and is not affected by disturbances such as the environment.
[0022]
However, even in such a contact charging device, the essential charging mechanism is mainly based on a discharge charging mechanism and uses the discharge phenomenon from the contact charging member to the photosensitive member. In addition, the voltage applied to the contact charging member needs to have a value equal to or higher than the surface potential of the photoreceptor, and a trace amount of ozone is generated.
[0023]
Further, when AC charging is performed for uniform charging, further generation of ozone, generation of vibration noise (AC charging sound) between the contact charging member and the photosensitive member due to an AC voltage electric field, and surface of the photosensitive member due to discharge As a result, the deterioration and the like became remarkable, which was a new problem.
[0024]
B) Fur brush charging
Fur brush charging uses a member (fur brush charger) having a conductive fiber brush portion as a contact charging member, and the conductive fiber brush portion is brought into contact with a photosensitive member as a member to be charged, and a predetermined charging bias is applied. This is applied to charge the photoreceptor surface to a predetermined polarity and potential.
[0025]
The charge charging mechanism of the fur brush charging is dominated by the discharge charging mechanism (1).
[0026]
Fur brush chargers are available in fixed and roll types. A fixed type is a medium-resistance fiber folded into a base fabric and bonded to an electrode. The roll type is formed by winding a pile around a metal core. The fiber density is 100 / mm 2 However, the contact property is still insufficient for sufficiently uniform charging by the injection charging mechanism, and the photosensitive member is mechanically charged for sufficiently uniform charging by the injection charging mechanism. As a configuration, it is necessary to have a speed difference that is difficult, which is not realistic.
[0027]
The charging characteristics of the fur brush charged when a DC voltage is applied are the characteristics shown in FIG. 4B. Accordingly, in the case of fur brush charging, both the fixed type and the roll type are charged using a discharge charging mechanism with a high charging bias applied.
[0028]
C) Magnetic brush charging
Magnetic brush charging uses a member (magnetic brush charger) having a magnetic brush portion formed in a brush shape by magnetically constraining conductive magnetic particles with a magnet roll or the like as a contact charging member, and the magnetic brush portion is to be charged. And a predetermined charging bias is applied to charge the surface of the photosensitive member to a predetermined polarity and potential.
[0029]
In the case of this magnetic brush charging, the charging mechanism of (2) is dominant as the charging mechanism.
[0030]
As the conductive magnetic particles constituting the magnetic brush portion, those having a particle diameter of 5 to 50 μm are used, and a sufficient speed difference from the photoconductor is provided, so that injection charging can be performed uniformly.
[0031]
As indicated by C in the charging characteristic graph of FIG. 4, it is possible to obtain a charging potential substantially proportional to the applied bias.
[0032]
However, there are other disadvantages such as a complicated apparatus configuration and conductive magnetic particles constituting the magnetic brush portion falling off and adhering to the photoreceptor.
[0033]
Japanese Patent Laid-Open No. 6-3921 proposes a method of injecting charges into a charge holding member such as a trap level on the surface of a photoreceptor or a conductive particle of a charge injection layer to perform contact injection charging. Since the discharge phenomenon is not used, the voltage required for charging is only the desired photoreceptor surface potential, and ozone is not generated. Furthermore, since no AC voltage is applied, no charging noise is generated, and this is an excellent charging system that is ozone-free and has low power compared to the roller charging system.
[0034]
D) Cleanerless (toner recycling system)
In a transfer type image forming apparatus, residual developer (toner) remaining on the photoreceptor after transfer (image carrier) is removed from the photoreceptor surface by a cleaner (cleaning device) to become waste toner. It is desirable that the toner does not come out from the viewpoint of environmental protection. Therefore, the cleaner is eliminated, and the transfer residual developer on the photosensitive member after transfer is removed from the photosensitive member by “development simultaneous cleaning” by the developing device, and is collected and reused in the developing device. Has also appeared.
[0035]
Simultaneous development cleaning refers to the developer remaining on the photoconductor after transfer during the subsequent development, that is, the photoconductor is subsequently charged and exposed to form a latent image, and the latent image is developed with a fog removal bias. (A fog removal potential difference Vback which is a potential difference between the DC voltage applied to the developing device and the surface potential of the photosensitive member). According to this method, the untransferred developer is collected by the developing device and reused after the next step. Therefore, waste toner can be eliminated and maintenance work can be reduced. Further, the cleanerless has a great advantage in terms of space, and the image forming apparatus can be greatly downsized.
[0036]
As described above, the cleaner-less system does not remove the transfer residual toner from the surface of the photosensitive member by a dedicated cleaner, but instead reaches the developing device via the charging unit and uses it again in the development process. When contact charging is used as the charging means for the body, there is a problem of how to charge the photosensitive body in a state where an insulating developer is interposed in the contact portion between the photosensitive body and the contact charging member. . In the above-described roller charging or fur brush charging, the transfer residual toner on the photosensitive member is diffused to be non-patterned, and charging by discharging by applying a large bias is often used. In magnetic brush charging, powder is used as the contact charging member, so there is an advantage that the magnetic brush portion of the conductive magnetic particles, which is the powder, can flexibly contact the photoconductor to charge the photoconductor, but the device configuration is complicated. That is, the harmful effect caused by dropping off of the conductive magnetic particles constituting the magnetic brush portion is great.
[0037]
E) Powder application to contact charging member
Japanese Patent Publication No. 7-99442 discloses a configuration in which powder is applied to a contact surface of a contact charging member with a surface of an object to be charged in order to prevent uneven charging and perform stable uniform charging. Although the contact charging member (charging roller) is driven to rotate (without speed difference driving), the generation of ozone products is much less than that of corona chargers such as Scorotron. The charging principle is mainly based on the discharge charging mechanism as in the case of the roller charging described above. In particular, in order to obtain more stable charging uniformity, a voltage obtained by superimposing an AC voltage on a DC voltage is applied, and therefore, more ozone products are generated due to discharge. Therefore, when the apparatus is used for a long period of time or when the cleanerless image forming apparatus is used for a long period of time, adverse effects such as image flow due to ozone products tend to appear.
Japanese Patent Application Laid-Open No. 5-150539 discloses that in an image forming method using contact charging, charging inhibition due to toner particles and silica fine particles adhering to the surface of the charging means during repeated image formation for a long time is prevented. Therefore, it is disclosed that the developer contains at least visible particles and conductive particles having an average particle size smaller than the visible particles. However, this contact charging is based on the discharge charging mechanism, not the direct injection charging mechanism, and has the above-described problems due to discharge charging.
[0038]
[Problems to be solved by the invention]
As described in the section of the prior art above, in the conventional contact charging, the surface of the contact charging member is rough in order to perform the injection charging mechanism with a simple configuration using a charging roller or a fur brush as the contact charging member. Thus, intimate contact with the image carrier as a charged body is not ensured, and the injection charging mechanism is difficult.
[0039]
Therefore, in contact charging, even when a simple member such as a charging roller or a fur brush is used as the contact charging member, an injection charging mechanism that is more excellent in charging uniformity and stable for a long period of time is realized. Therefore, it is expected to realize an ozone-less injection charging mechanism with a simple configuration.
[0040]
Further, in a contact charging type and transfer type image forming apparatus that employs a contact charging device as a charging means for the image carrier, contamination of the contact charging member with the developer is also an inhibiting factor of the injection charging mechanism.
[0041]
That is, even in the case of an image forming apparatus provided with a dedicated cleaner for removing residual transfer residual developer on the surface of the image carrier after transfer, the residual transfer residual developer on the surface of the image carrier after transfer is 100% with the cleaner. A part of the residual developer that has not been removed passes through the cleaner and is carried to the charging part, which is the contact part between the contact charging member and the image carrier, and is attached to and mixed in the contact charging member. Developer contamination of the member occurs. Since the conventional developer is generally an insulator, the developer contamination of the contact charging member is a factor that causes charging failure.
[0042]
In particular, in a cleanerless image forming apparatus, a dedicated cleaner for removing the residual transfer residual developer on the surface of the image carrier after transfer is not used, so that the residual residual developer on the surface of the image carrier after transfer. Is carried by the image carrier surface as it is moved to the charging portion, which is the contact portion between the image carrier and the contact charging member, and the contact charging member is contaminated with a larger amount of developer than in the case of an image forming apparatus having a cleaner. In addition, the effect of charging inhibition by the transfer residual developer is large.
[0043]
Adhesive force between the contact charging member such as a charging roller and the developer is large, and even when a developer discharge bias is applied to the contact charging member, the developer is firmly attached to the contact charging member and sufficient chargeability is obtained. I couldn't.
[0044]
When charging failure occurs, the developer charging into the contact charging member further increases and the charging failure is intensified.
[0045]
In other words, here, the surface of the contact charging member is rough for injection charging with a simple contact charging member such as a charging roller, and the adhesion between the contact charging member and the developer is large, thereby causing contamination of the developer on the contact charging member. Inability to improve is a problem.
[0046]
In view of this, the present invention provides charging as a contact charging member for a contact charging type, transfer type image forming apparatus, or a contact charging type, transfer type, or cleanerless image forming apparatus that employs a contact charging unit as a charging means for an image carrier. Using simple members such as rollers and fur brushes, and regardless of developer contamination of contact charging members, ozoneless injection charging and cleanerless systems can be executed without problems at low applied voltage, and high-quality image formation is possible. The purpose is to maintain the image for a long period of time and to maintain high-quality image formation for a long period of time even after outputting an image with a high image ratio.
[0047]
[Means for Solving the Problems]
The present invention is an image forming apparatus having the following configuration.
[0048]
(1) A charging step (process) for charging the image carrier on the image carrier, an information writing step for forming an electrostatic latent image on the charging surface of the image carrier, and developing the electrostatic latent image with a charged developer. In an image forming apparatus that performs image formation by applying an image forming process including a developing step and a transfer step of transferring a developer image on the image carrier to a recording medium, and the image carrier repeatedly provides images,
a. The charging means for charging the image carrier is a contact charging device in which a voltage is applied and the surface of the image carrier is charged by a flexible charging member that forms a nip portion with the image carrier. The charging member is attached to the image carrier. In contrast, the particles are moved with a speed difference, and at least in the nip portion between the charging member and the image carrier, the charge-promoting particles having conductivity for promoting charging are interposed,
b. Charge-promoting particles are mixed in the developer of the developing unit, and the charge-promoting particles are charged in the developing unit with the same polarity as the DC charging polarity of the contact charging device.
An image forming apparatus.
[0049]
(2) A charging step for charging the image carrier on the image carrier, an information writing step for forming an electrostatic latent image on the charging surface of the image carrier, and a development step for developing the electrostatic latent image with a charged developer. In an image forming apparatus that executes image formation by applying an image forming process including a transfer step of transferring a developer image on an image carrier to a recording medium, and the image carrier repeatedly provides images,
a. The charging means for charging the image carrier is a contact charging device in which a voltage is applied and the surface of the image carrier is charged by a flexible charging member that forms a nip portion with the image carrier. The charging member is attached to the image carrier. In contrast, the particles are moved with a speed difference, and at least in the nip portion between the charging member and the image carrier, the charge-promoting particles having conductivity for promoting charging are interposed,
b. The developing means is a regular developing means, in which the charge accelerating particles are mixed in the developer, and in the developing means, the charge accelerating particles are charged with a polarity different from that of the developer.
An image forming apparatus.
[0050]
(3) A charging step for charging the image carrier on the image carrier, an information writing step for forming an electrostatic latent image on the charging surface of the image carrier, and a development step for developing the electrostatic latent image with a charged developer. In an image forming apparatus that executes image formation by applying an image forming process including a transfer step of transferring a developer image on an image carrier to a recording medium, and the image carrier repeatedly provides images,
a. The charging means for charging the image carrier is a contact charging device in which a voltage is applied and the surface of the image carrier is charged by a flexible charging member that forms a nip portion with the image carrier. The charging member is attached to the image carrier. In contrast, the particles are moved with a speed difference, and at least in the nip portion between the charging member and the image carrier, the charge-promoting particles having conductivity for promoting charging are interposed,
b. The developing means is a reversal developing means, in which charge accelerating particles are mixed in the developer, and the charge accelerating particles are charged in the same polarity as the developer in the developing means.
An image forming apparatus.
[0051]
(4) Any one of (1) to (3), wherein the developing means also serves as a cleaning means for collecting the developer remaining on the image carrier after the developer image is transferred to the recording medium. The image forming apparatus described in 1.
[0052]
(5) The image forming apparatus according to any one of (1) to (4), wherein the charge accelerating particles are triboelectrically charged by rubbing against the developer and have a charge polarity.
[0053]
(6) The image forming apparatus according to any one of (1) to (4), wherein the member that frictionally charges the developer also serves as a member that charges the charge accelerating particles.
[0054]
(7) The charge accelerating particles have a particle size of ½ or less of the developer and a resistance value of 1 × 10. 12 The image forming apparatus according to any one of (1) to (6), wherein the image forming apparatus is (Ω · cm) or less.
[0055]
(8) The charge accelerating particles have a particle size of ½ or less of the developer and a resistance value of 1 × 10. Ten The image forming apparatus according to any one of (1) to (6), wherein the image forming apparatus is (Ω · cm) or less.
[0056]
(9) The image forming apparatus according to any one of (1) to (8), wherein the charging member is driven while maintaining a speed difference in a direction opposite to the moving direction of the image carrier.
[0057]
(10) The image forming apparatus according to any one of (1) to (9), wherein the information writing means for forming an electrostatic latent image on the charging surface of the image carrier is an image exposure means.
[0058]
<Operation>
a) The charge accelerating particles are conductive particles for the purpose of assisting charging. In the contact charging, at least a nip portion between the charging member and the image bearing member is interposed between the charging accelerating particles to achieve uniform and stable direct charging. Realized. The charge promoting particles have a resistance value of 1 × 10 12 (Ω · cm) or less, more preferably 1 × 10 Ten The chargeability is not impaired by using (Ω · cm) or less. Further, by setting the particle size to ½ or less of the particle size of the developer, image exposure on the image carrier is not hindered.
[0059]
That is, by interposing the charge accelerating particles in the charging portion that is the nip portion between the image carrier and the contact charging member, the frictional effect of the particles increases the frictional resistance, and the speed difference with respect to the image carrier is left as it is. Even a charging roller that was difficult to hold and contact can be brought into contact with the surface of the image bearing member easily and effectively with a speed difference. At the same time, the contact charging member comes into close contact with the surface of the image carrier through the particles and comes into contact with the surface of the image carrier more frequently.
[0060]
By providing a sufficient speed difference between the contact charging member and the image carrier, the chance of the charge accelerating particles contacting the image carrier at the nip portion between the contact charging member and the image carrier is greatly increased, and high contact is achieved. The charge accelerating particles present in the nip portion between the contact charging member and the image carrier can rub the image carrier surface without any gap so that charges can be directly injected into the image carrier. Contact charging of the image bearing member by the charging member is dominated by injection charging due to the presence of the charge accelerating particles.
[0061]
b) As a configuration for providing a speed difference, the contact charging member is rotationally driven or fixed to provide a speed difference with the image carrier. In the transfer type or transfer type / cleanerless image forming apparatus, it is preferable that the developer passed through the cleaner carried by the charging unit or the transfer residual developer in the case of cleanerless is temporarily applied to the contact charging member. In order to collect and level the target, it is desirable that the contact charging member is driven to rotate, and the rotation direction of the contact charging member rotates in the direction opposite to the moving direction of the image carrier surface. That is, injection charging can be performed preferentially by once separating and charging the residual developer on the image carrier by reverse rotation.
[0062]
Although it is possible to move the contact charging member in the same direction as the moving direction of the image carrier surface to give a speed difference, the charging property of injection charging is the ratio of the peripheral speed of the image carrier to the peripheral speed of the contact charging member. Therefore, in order to obtain the same peripheral speed ratio as in the reverse direction, the rotational speed of the contact charging member is larger in the forward direction than in the reverse direction. This is advantageous. The peripheral speed ratio described here is
Peripheral speed ratio (%) = (charging member peripheral speed−image carrier peripheral speed) / image carrier peripheral speed × 100
(The charging member peripheral speed is a positive value when the surface of the charging member moves in the same direction as the surface of the image carrier at the nip portion).
[0063]
c) In a cleanerless image forming apparatus, the residual developer remaining on the surface of the image carrier after transfer is held as it is by moving the surface of the image carrier to the charging portion which is the nip portion between the image carrier and the contact charging member. Carried.
[0064]
In this case, by bringing the contact charging member into contact with the image carrier with a speed difference, the pattern of the residual transfer developer is disturbed and destroyed, and the previous image pattern portion appears as a ghost in the halftone image. Nothing will happen.
[0065]
d) The developer that has been carried to the charging unit and has passed through the cleaner or the transfer residual developer in the case of cleanerless adheres to and mixes with the contact charging member. Conventionally, since the developer is an insulator, the adhesion / mixing of the transfer residual developer to the contact charging member is a factor that causes charging failure in charging of the image carrier.
[0066]
However, even in this case, since the charge accelerating particles are interposed in the charging portion, which is the nip portion between the image carrier and the contact charging member, the contact property of the contact charging member to the image carrier and the contact resistance can be maintained. Regardless of the contamination of the contact charging member with the residual transfer developer, the ozone-less direct charging can be stably maintained over a long period of time with a low applied voltage, and uniform chargeability can be provided.
[0067]
e) The developer adhering to and mixed in the contact charging member is gradually discharged from the contact charging member onto the image carrier, reaches the development site as the image carrier surface moves, and is simultaneously cleaned (collected) by the developing means (development). Toner recycling).
[0068]
In this case, since the charge promoting particles are carried on the contact charging member, the adhesion force between the contact charging member and the transfer residual developer adhering to and mixed with the contact charging member is reduced, and the contact charging member moves onto the image carrier. The developer discharge efficiency is improved.
[0069]
f) First, even if a sufficient amount of charge promoting particles are interposed in the charging portion, which is the nip portion between the image carrier and the contact charging member, or a sufficient amount of charge promoting particles is applied to the contact charging member. However, as the device is used, the charge accelerating particles are decreased from the charging portion or the charge accelerating particles are deteriorated.
[0070]
In the present invention, when the charge-promoting particles are decreased from the charging portion or the charge-promoting particles are deteriorated, and the chargeability is lowered, the charge-promoting particles mixed in the developer of the developing means are developed. Is attached to the surface of the image carrier where the charging property has been lowered at the portion, and is carried to the charging portion via the transfer portion as the image carrier surface moves, so that it is automatically supplied to the charging portion and the contact charging member. Good chargeability is maintained.
[0071]
The developer image on the image carrier is attracted and actively transferred to the recording medium side due to the effect of the transfer bias in the transfer portion, but the charge promoting particles on the image carrier are electrically conductive and thus move to the recording medium side. Does not move positively, remains substantially adhered and held on the image carrier, and is carried to the charging unit via the transfer unit as the image carrier surface moves.
[0072]
In this case, even in the case of an image forming apparatus provided with a cleaner, most of the residual transfer developer (including paper dust) remaining on the surface of the image carrier after transfer and the charge accelerating particles are mostly residual transfer developer. Is collected by the cleaner, but the charge accelerating particles have a smaller particle size than the developer, and therefore easily pass through the cleaner and are carried to the charging unit by the slip. In the case of a cleanerless image forming apparatus, the residual developer remaining on the transfer and the charge accelerating particles remaining on the surface of the image carrier after transfer are carried directly to the charging unit.
[0073]
That is, the charge accelerating particles are mixed in the developer of the developing unit, and the charged particles are developed (attached to the image bearing member) on the image carrier portion where the chargeability is lowered. The charged particles are charged. In particular,
(1). Charge-promoting particles are mixed in the developer of the developing unit, and the charge-promoting particles are charged to the same polarity as the DC charging polarity of the contact charging device in the developing unit.
(2). Alternatively, the developing means is a regular developing means, in which charge accelerating particles are mixed in the developer, and in the developing means, the charge accelerating particles are charged with a polarity different from that of the developer.
(3). Alternatively, the developing means is a reversal developing means, in which charge accelerating particles are mixed in the developer, and in the developing means, the charge accelerating particles are charged to the same polarity as the developer.
As a result, when the charge-promoting particles are reduced from the charged portion or the charge-promoting particles are deteriorated, and the chargeability is lowered, the charge-promoting particles mixed in the developer of the developing unit are removed in the developing portion. It adheres to the surface of the image bearing member with reduced chargeability and is carried to the charging unit via the transfer unit along with the movement of the image bearing surface, so that it is automatically supplied to the charging unit and contact charging member. High chargeability is maintained.
[0074]
g) Thus, an ozone-less injection charging mechanism can be realized at a low applied voltage by using a simple member such as a charging roller or a fur brush as a contact charging member for a contact charging method, a transfer method, or a cleanerless image forming apparatus. In addition, the charge-promoting particles that enable injection charging are automatically supplied to the charging portion and the contact charging member, and the developer is an inhibitor of charging from the contact charging member contaminated by the developer (toner). Can be efficiently discharged, and good chargeability can be stably maintained over a long period of time, injection charging and a toner recycling system can be executed without problems, and high-quality image formation can be maintained over a long period of time. Further, high-quality image formation can be maintained for a long time even after an image with a high image ratio is output.
[0075]
DETAILED DESCRIPTION OF THE INVENTION
<Example 1> (FIG. 1)
FIG. 1 is a schematic configuration diagram of an example of an image forming apparatus according to the present invention.
[0076]
The image forming apparatus of this embodiment is a transfer type electrophotographic process use, contact charging type, cleanerless, process cartridge type laser printer.
[0077]
The printer of this embodiment is characterized in that regular development is used and the charge accelerating particles mixed in the developer are charged to the opposite polarity to the developer by frictional charging with the developer.
[0078]
(1) Overall schematic configuration of this example printer
[Image carrier]
Reference numeral 1 denotes a rotating drum type electrophotographic photosensitive member as an image bearing member (charged member). The printer of this embodiment uses regular development, and the photosensitive member 1 uses a positive photosensitive member. The photoconductor 1 of this embodiment is an OPC photoconductor having a diameter of 30 mm, and is driven to rotate at a peripheral speed of 94 mm / sec in the clockwise direction of an arrow.
[0079]
[Charge]
Reference numeral 2 denotes a conductive elastic roller (charging roller) as a flexible contact charging member disposed in contact with the photoreceptor 1 with a predetermined pressing force. a is a charging nip portion between the photoreceptor 1 and the charging roller 2; The charging roller 2 is preliminarily coated with the charge promoting particles m on the outer peripheral surface thereof, and the charge accelerating particles m exist in the charging nip portion a.
[0080]
In this embodiment, the charging roller 2 is rotationally driven at a peripheral speed of 100% in the opposite direction (counter) to the rotation direction of the photosensitive member 1 in the charging nip portion a, and contacts the surface of the photosensitive member 1 with a speed difference. To do. A predetermined charging bias is applied to the charging roller 2 from the charging bias power source S1. As a result, the peripheral surface of the rotating photosensitive member 1 is uniformly contact-charged to a predetermined polarity and potential by the injection charging method. In this embodiment, a charging bias is applied to the charging roller 2 from the charging bias power source S1 so that the outer peripheral surface of the photoreceptor 1 is uniformly charged to about 700V.
[0081]
The charging roller 2, the charge accelerating particles m, injection charging, and the like will be described in detail in another section.
[0082]
[Exposure]
Then, scanning exposure L with a laser beam output from a laser beam scanner (not shown) including a laser diode, a polygon mirror, and the like is performed on the charged surface of the rotating photosensitive member 1. The laser beam output from the laser beam scanner is intensity-modulated in accordance with the time-series electric digital pixel signal of the target image information, and is applied to the outer peripheral surface of the rotating photosensitive member 1 by scanning exposure L with this laser beam. An electrostatic latent image corresponding to the target image information is formed.
[0083]
In the present embodiment, regular development is used, and in the scanning exposure L by the laser beam on the outer peripheral surface of the rotating photoconductor 1, the non-exposed portion is an image portion and the exposed portion is a non-image portion.
[0084]
[Current image]
Reference numeral 3 denotes a regular developing device, and the electrostatic latent image formed on the outer peripheral surface of the rotating photoconductor 1 is normally developed as a developer image (toner image) by the developing device 3.
[0085]
The developing device 3 of this example uses a non-magnetic one-component insulating developer (toner) having a negative charge average particle diameter of 7 μm as the developer 31.
[0086]
The developer 31 is externally added (mixed) with the charge accelerating particles m, and the external addition amount is 2 parts by weight with respect to 100 parts by weight of the developer in this embodiment.
[0087]
Reference numeral 32 denotes a non-magnetic developing sleeve having a diameter of 16 mm containing the magnet 33. The developing sleeve 32 is coated with the developer 31 (+ m) and the distance from the surface of the photosensitive member 1 is fixed to 500 μm. The developing bias voltage is applied to the developing sleeve 32 from the developing bias power source S2.
[0088]
The developer 31 (+ m) in the developing device is subjected to layer thickness regulation by the elastic blade (regulating blade) 34 in the process of being conveyed on the rotary developing sleeve 32, and is frictionally charged by sliding with the elastic blade 34. Have a charge.
[0089]
The development bias voltage is obtained by superimposing a DC voltage of 380 V and a rectangular AC voltage having a frequency of 1800 Hz and a peak-to-peak voltage of 1600 V, and one-component jumping development is performed at the development site b between the development sleeve 32 and the photoreceptor 1. Make it.
[0090]
A developer adheres to a non-exposed portion which is an image portion of the electrostatic latent image on the surface of the rotating photosensitive member 1 so that the electrostatic latent image is normally developed.
[0091]
[Transfer]
Reference numeral 4 denotes a medium resistance transfer roller as a contact transfer means, which is brought into pressure contact with the photoreceptor 1 to form a transfer nip portion c. A transfer material P as a recording medium is fed to the transfer nip c from a paper feed unit (not shown) at a predetermined timing, and a predetermined transfer bias voltage is applied to the transfer roller 4 from a transfer bias power source S3. Thus, the developer image on the photosensitive member 1 side is sequentially transferred onto the surface of the transfer material P fed to the transfer nip c.
[0092]
The transfer roller 4 used in this example has a roller resistance value of 5 × 10, in which a medium resistance foam layer 42 is formed on a cored bar 41. 8 The transfer was carried out by applying a DC voltage of +2200 V to the cored bar 41. The transfer material P introduced into the transfer nip portion c is nipped and conveyed by the transfer nip portion c, and the developer image formed and supported on the surface of the rotary photosensitive member 1 is successively transferred to the surface side by electrostatic force and pressing force. Will be transcribed.
[0093]
[Fixed]
Reference numeral 5 denotes a fixing device such as a heat fixing method. The transfer material P that has been fed to the transfer nip c and has received the transfer of the developer image on the side of the photoconductor 1 is separated from the surface of the rotary photoconductor 1 and introduced into the fixing device 5 to fix the developer image. Upon receipt, the image is discharged out of the apparatus as a print (print, copy).
[0094]
[cartridge]
In the printer of this embodiment, three process devices, that is, the photosensitive member 1, the contact charging member 2, and the developing device 3, are included in a cartridge case, and the cartridge C is detachably attached to the printer main body. The combination of process devices to be converted into cartridges is not limited to the above.
[0095]
(2) Charging roller 2
The charging roller 2 as a contact charging member in the present embodiment is formed by forming a middle resistance layer 22 of rubber or foam on a cored bar 21.
[0096]
The middle resistance layer 22 was formulated with a resin (for example, urethane), conductive particles (for example, carbon black), a sulfurizing agent, a foaming agent, and the like, and formed on the cored bar 21 in a roller shape. Thereafter, the surface was polished as necessary.
[0097]
The roller resistance of the charging roller 2 of this example was measured and found to be 100 kΩ. The roller resistance is measured by applying 100 V between the cored bar 21 and the aluminum drum in a state where the charging roller 2 is pressure-bonded to the φ30 mm aluminum drum so that the total pressure of 1 kg is applied to the cored bar 21 of the charging roller 2. did.
[0098]
Here, it is important that the charging roller 2 as a contact charging member functions as an electrode. In other words, it is necessary to provide a sufficient contact state with the member to be charged by providing elasticity, and at the same time to have a sufficiently low resistance to charge the moving member to be charged. On the other hand, it is necessary to prevent voltage leakage when a low-voltage defect site such as a pinhole is present in the member to be charged. When an electrophotographic photosensitive member is used as the member to be charged, 10 is necessary to obtain sufficient chargeability and leakage resistance. Four -10 7 A resistance of Ω is desirable.
[0099]
It is desirable that the surface of the charging roller 2 has micro unevenness so that the charge accelerating particles m can be held.
[0100]
If the hardness of the charging roller 2 is too low, the shape is not stable, so that the contact with the member to be charged is deteriorated. If the hardness is too high, the charging nip portion a cannot be secured between the member and the member to be charged. Since the micro contact property to the surface of the member to be charged is deteriorated, the preferred Asker C hardness is 25 to 50 degrees.
[0101]
The material of the charging roller 2 is not limited to an elastic foam, but as an elastic material such as EPDM, urethane, NBR, silicone rubber, IR, etc., carbon black, metal oxide, etc. for resistance adjustment. Examples thereof include a rubber material in which a conductive material is dispersed and a foamed material of these materials. It is also possible to adjust the resistance using an ion conductive material without dispersing the conductive substance.
[0102]
The charging roller 2 is disposed in pressure contact with the photosensitive drum 1 as a member to be charged with a predetermined pressing force against elasticity, and in this embodiment, a charging nip a having a width of several millimeters is formed.
[0103]
(3) Charge promoting particles m
In this embodiment, the specific resistance is 10 as the charge promoting particles m coated in advance on the outer peripheral surface of the charging roller 2 as the contact charging member and the charge promoting particles m externally added to the developer 31 of the developing device 3. 7 Conductive zinc oxide particles having an Ω · cm and an average particle diameter of 1.5 μm were used.
There is no problem that the charge promoting particles exist not only in the state of primary particles but also in the state of aggregation of secondary particles. In any aggregate state, the form is not important as long as the function as the charge promoting particles can be realized as the aggregate.
[0104]
The particle size was defined as the average particle size of the aggregate when the particles constituted an aggregate. For the measurement of the particle size, 100 or more samples were extracted from observation with an optical or electron microscope, the volume particle size distribution was calculated with the maximum horizontal chord length, and the 50% average particle size was determined.
[0105]
The resistance value of the charge promoting particles m is 10 12 When it was Ω · cm or more, the chargeability was impaired. Therefore, the resistance value is 10 12 Ω · cm or less, more preferably 10 Ten Must be Ω · cm or less. In this embodiment, 1 × 10 7 The thing of ohm * cm was used. The resistance was measured by the tablet method and normalized. That is, the bottom area 2.26cm 2 About 0.5 g of a powder sample was placed in the cylinder, and 15 kg of pressure was applied to the upper and lower electrodes. At the same time, a voltage of 100 V was applied to measure the resistance value, and then normalized to calculate the specific resistance.
[0106]
The charge accelerating particles m are desirably white or nearly transparent so as not to hinder the latent image exposure, and are therefore preferably non-magnetic. Further, considering that the charge accelerating particles are partially transferred from the photoreceptor to the recording material P, it is preferable that the color recording is colorless or white. Further, the image exposure may be blocked unless the particle size is about ½ or less of the particle size of the developer 31. Therefore, it is desirable that the particle diameter of the charge accelerating particles m is smaller than ½ of the particle diameter of the developer 31. As the lower limit of the particle size, 10 nm is considered to be the limit as a particle that can be stably obtained.
[0107]
In this embodiment, zinc oxide is used as the material for the charge accelerating particles m. However, the present invention is not limited to this, and other metal oxides such as alumina are mixed with conductive inorganic particles or organic substances, or the like. Various conductive particles such as those subjected to surface treatment can be used.
[0108]
In this embodiment, the charge accelerating particles m (zinc oxide particles) externally added to the developer 31 of the developing device 3 have a positive charge polarity opposite to that of the developer 31 due to the friction with the developer 31. Added. That is, the charge accelerating particles m are charged with a polarity opposite to that of the developer for normal development (= charged with the same polarity as the DC charging polarity of the contact charging device).
[0109]
In this embodiment, as described above, the charge accelerating particles m have a positive charge due to the rubbing with the developer 31 in the developing device 3 and are developed on the photosensitive member 1 (= attached to the surface of the photosensitive member, and so on). ) That is, since the charge accelerating particles m have a polarity opposite to that of the developer 31, the charge accelerating particles m are developed in a region where the potential of the photosensitive member is on the negative side, that is, a region that is not charged.
[0110]
Here, the triboelectric charging characteristics between the charge promoting particles m and the developer 31 were measured as follows. That is, the charge-promoting particles m are put in a container coated with the developer 31 thermally melted on the inner surface, the container is shaken, and then the charge-promoting particles are sucked, and the amount of charge of the charge-promoting particles is measured. The charging characteristics were measured.
[0111]
(4) Injection charging
(1). By interposing the charge accelerating particles m in the charging nip a between the photosensitive member 1 as an image carrier and the charging roller 2 as a contact charging member, the frictional effect of the particles m increases the frictional resistance. Even a charging roller that has been difficult to contact with the body 1 with a speed difference is brought into contact with the surface of the photoreceptor 1 with a speed difference easily and effectively. In addition, the charging roller 2 comes into close contact with the surface of the photoconductor 1 through the particles m and comes into contact with the surface of the photoconductor 1 at a higher frequency.
[0112]
By providing a sufficient speed difference between the charging roller 2 and the photosensitive member 1, the chance of the charge accelerating particles m contacting the photosensitive member 1 at the charging nip portion between the charging roller 2 and the photosensitive member 1 is significantly increased. High contactability can be obtained, and the charge accelerating particles m existing in the charging nip portion a of the charging roller 2 and the photosensitive member 1 can slid the surface of the photosensitive member 1 without any gap so that charges can be directly injected into the photosensitive member 1. Thus, contact charging of the photoreceptor 1 by the charging roller 2 is dominated by the injection charging mechanism due to the presence of the charge accelerating particles m.
[0113]
As a configuration for providing a speed difference, the charging roller 2 is rotationally driven or fixed to provide a speed difference from the photosensitive drum 1. Preferably, in order to temporarily collect and level the transfer residual developer on the photosensitive member 1 carried to the charging nip part a by the charging roller 2, the charging roller 2 is driven to rotate, and the rotation direction of the photosensitive member 1 is the photosensitive member. It is desirable to configure to rotate in the direction opposite to the moving direction of one surface. That is, injection charging can be performed preferentially by once separating the residual developer on the photosensitive member 1 by reverse rotation and performing charging.
[0114]
Accordingly, high charging efficiency that cannot be obtained by conventional roller charging or the like can be obtained, and a charging potential almost equal to the voltage applied to the charging roller 2 can be applied to the photoreceptor 1. Thus, even when the charging roller 2 is used as the contact charging member, a voltage equivalent to the charging potential necessary for the photosensitive member 1 is sufficient as the bias applied to the charging roller 2 and stable and no discharge phenomenon is used. A safe contact charging method or apparatus can be realized.
[0115]
By previously supporting the charge accelerating particles m on the surface of the charging nip a or the charging roller 2, the direct charging performance can be exhibited without any problem from the very beginning of the use of the printer.
[0116]
(2). In the cleanerless image forming apparatus, the untransferred developer remaining on the surface of the photoreceptor 1 after the transfer is carried as it is to the charging nip portion a of the photoreceptor 1 and the charging roller 2 by the movement of the surface of the photoreceptor 1. .
[0117]
In this case, by bringing the charging roller 2 into contact with the photosensitive member 1 with a speed difference, the pattern of the residual transfer developer is disturbed and destroyed, and the previous image pattern portion appears as a ghost in the halftone image. Nothing will happen.
[0118]
(3). The untransferred developer carried to the charging nip a adheres to and mixes with the charging roller 2. Since the conventional developer is an insulator, the adhesion and mixing of the transfer residual developer to the charging roller 2 is a factor that causes a charging failure in charging the photosensitive member 1.
[0119]
However, even in this case, since the charge accelerating particles m are interposed in the charging nip portion a between the photosensitive member 1 and the charging roller 2, the close contact property and the contact resistance of the charging roller 2 to the photosensitive member 1 can be maintained. Regardless of contamination of the charging roller 2 by the residual transfer developer, ozone-less direct charging can be stably maintained over a long period of time with a low applied voltage, and uniform chargeability can be provided.
[0120]
(4). The transfer residual developer adhering to and mixed in the charging roller 2 is gradually discharged from the charging roller 2 onto the photosensitive member 1 to reach the developing portion b along with the movement of the surface of the photosensitive member 1, and in the developing device 3 simultaneous cleaning (collection) (Toner recycling)
[0121]
In this case, since the charge accelerating particles m are carried on the charging roller 2, the adhesion force between the charging roller 2 and the transfer residual developer adhering to and mixing with the charging roller 2 is reduced. To Developer discharge efficiency is improved.
As described above, the simultaneous development cleaning is performed in the image forming process in which the toner remaining on the photoreceptor 1 after the transfer is continued, that is, the photoreceptor is continuously charged and exposed to form a latent image, and the latent image is developed. At this time, the image is recovered by the fog removal bias of the developing device, that is, the fog removal potential difference Vback which is the potential difference between the DC voltage applied to the developing device and the surface potential of the photosensitive member. In the case of reversal development as in the printer in this embodiment, this simultaneous development cleaning is performed by attaching toner from the dark portion potential of the photosensitive member to the developing sleeve and from the developing sleeve to the bright portion potential of the photosensitive member. This is done by the action of an electric field.
[0122]
(5). Further, the presence of the charge accelerating particles m that are substantially adhered and held on the surface of the photosensitive member 1 also has an effect of improving the transfer efficiency of the developer from the photosensitive member 1 side to the transfer material P side.
[0123]
(5) Replenishment of the charge accelerating particles m to the charging nip a and the charging roller 2
First, even if a sufficient amount of the charge accelerating particles m are interposed in the charging nip portion a between the photoreceptor 1 and the charging roller 2, or a sufficient amount of the charge accelerating particles m are applied to the charging roller 2, As the apparatus is used, the charge accelerating particles m are decreased from the charging nip portion a and the charging roller 2 or the charge accelerating particles m are deteriorated.
[0124]
Therefore, when the charging property is lowered, it is necessary to replenish the charge accelerating particles m to the charging nip portion a and the charging roller 2.
[0125]
In this embodiment, when the charge accelerating particles m are reduced from the charging nip portion a or the charging roller 2 or the charge accelerating particles m are deteriorated, the charging property is lowered, and the developer of the developing device 3 is developed. The charge accelerating particles m mixed in 31 adhere to the surface of the photosensitive member 1 where the chargeability is lowered in the developing portion a, and are held in the charging nip portion a via the transfer portion c as the surface of the photosensitive member 1 moves. By being carried, it is automatically supplied to the charging roller 2 and the charging nip portion a, and good chargeability is maintained.
[0126]
The developer image on the photoconductor 1 is attracted and actively transferred to the recording medium side due to the influence of the transfer bias in the transfer portion c. However, since the charge promoting particles m on the photoconductor 1 have a low resistance value, the recording medium is used. It does not actively move to the side, but is substantially adhered and held on the photosensitive member 1 and remains and is carried to the charging nip portion a via the transfer portion c as the surface of the photosensitive member 1 moves.
[0127]
That is, in this embodiment, the charge promoting particles m are supplied by supplying the charge promoting particles m from the developing device 3. In the printer of this embodiment, regular development is used, and the charge accelerating particles m are frictionally charged with a polarity opposite to that of the developer 31 and have a positive charge. Therefore, development is performed on a region having a relatively negative potential on the photosensitive member 1, that is, a region that is not charged. Therefore, when the charge accelerating particles m are reduced or deteriorated from the charging nip part a or the charging roller 2 and a poorly charged part is generated, a large amount of charged accelerating particles are automatically replenished to the poorly charged part having a low potential. It becomes possible to do.
[0128]
As described above, in this embodiment, it becomes possible to automatically increase the replenishment amount for the portion where the charge promoting particles m are reduced or deteriorated.
[0129]
Thus, for a contact charging method, transfer method, and cleanerless image forming apparatus, ozoneless injection charging can be realized at a low applied voltage by using a simple member such as the charging roller 2 as a contact charging member, thereby enabling injection charging. Supply of the charge accelerating particles m to the charging nip part a and the charging roller 2 is automatically executed, and the developer that is a charging inhibiting factor is efficiently discharged from the charging roller 2 contaminated with the developer, Good chargeability can be stably maintained over a long period of time, injection charging and a toner recycling system can be executed without problems, and high-quality image formation can be maintained over a long period of time. Further, high-quality image formation can be maintained for a long time even after an image with a high image ratio is output.
[0130]
If the amount of the charge accelerating particles m intervened in the charging nip a between the photosensitive member 1 as the image bearing member and the charging roller 2 as the contact charging member is too small, a sufficient lubricating effect due to the particles cannot be obtained. The friction between the roller 2 and the photosensitive member 1 is large, and it is difficult to drive the charging roller 2 to the photosensitive member 1 with a speed difference. That is, the driving torque becomes excessive, and the surface of the charging roller 2 and the photosensitive member 1 is scraped if it is forcibly rotated. Furthermore, the effect of increasing the contact opportunity by the particles may not be obtained, and sufficient charging performance cannot be obtained. On the other hand, when the amount of the inclusion is too large, dropping of the charge accelerating particles from the charging roller 2 is remarkably increased, which adversely affects image formation.
According to experiments, the amount of intervention is 10 Three Piece / mm 2 The above is desirable. 10 Three Piece / mm 2 If it is lower, a sufficient lubrication effect and an effect of increasing the contact opportunity cannot be obtained, resulting in a decrease in charging performance.
More desirably 10 Three ~ 5x10 Five Piece / mm 2 This amount of inclusion is preferred. 5 × 10 Five Piece / mm 2 Exceeding this causes the particles to drop off to the photoconductor 1 significantly, resulting in insufficient exposure of the photoconductor 1 regardless of the light transmittance of the particles themselves. 5 × 10 Five Piece / mm 2 In the following, the amount of dropped particles can be kept low, and the adverse effect can be improved. When the abundance of particles dropped on the photoreceptor 1 in the intervening amount range is measured, 10 is obtained. 2 -10 Five Piece / mm 2 Therefore, the abundance that is not harmful to image formation is 10 Five Piece / mm 2 The following is desired:
[0131]
A method for measuring the intervening amount and the existing amount on the photoreceptor 1 will be described. It is desirable to directly measure the amount of intervening between the charging roller 2 and the charging nip portion a of the photosensitive member 1, but most of the particles existing on the photosensitive member 1 before contacting the charging roller 2 are moved in the opposite direction while contacting each other. In the present invention, the amount of particles on the surface of the charging roller 2 immediately before reaching the charging nip portion a is used as the amount of intervening. Specifically, rotation of the photosensitive drum 1 and the charging roller 2 is stopped in a state where no charging bias is applied, and the surfaces of the photosensitive member 1 and the charging roller 2 are video microscope (OLYMPUS OVM1000N) and a digital still recorder (manufactured by DELTAS). SR-3100). The charging roller 2 is in contact with the slide glass under the same conditions as the case where the charging roller 2 is in contact with the photosensitive member 1, and the contact surface of the charging roller 2 is 10 or more with a 1000 × objective lens from the back surface of the slide glass. I took a picture. In order to separate individual particles from the obtained digital image, binarization processing was performed with a certain threshold value, and the number of regions where particles exist was measured using desired image processing software. Further, the abundance on the photoconductor 1 was measured by photographing the photoconductor 1 with the same video microscope and performing the same processing.
In other words, the blending amount of the charge accelerating particles m with respect to the developer 31 of the developing device 3 is set so that the amount of the charge accelerating particles m in the charging nip portion a becomes such an intervening amount. Generally, the charge promoting particles m are 0.01 to 20 parts by weight with respect to 100 parts by weight of the developer (toner).
[0132]
(6) Comparative example
Comparative Example A: Printer using the printer of Example 1 having no charge as the charge promoting particles m
Comparative Example B: Printer using the printer of Example 1 having the same polarity as the developer 31 as the charge promoting particles m
In the printer of Comparative Example A, the charge accelerating particles m do not have a specific charge, and development is performed by charge injection from the developing sleeve 32 of the developing device 3. In this case, when the charge accelerating particles m are reduced or deteriorated from the charging nip portion a or the charging roller 2 and the chargeability is lowered, the development amount of the charge accelerating particles m is not particularly increased. .
[0133]
In the printer of Comparative Example B, when the chargeability decreases, the development amount of the charge accelerating particles also decreases, and the replenishment amount of the charge accelerating particles m to the charging nip portion a and the charging roller 2 decreases. Continued to decline.
[0134]
In contrast to these printers of Comparative Examples A and B, in the printer of Example 1, if a charging failure occurs due to the reduction or deterioration of the charge accelerating particles m in the charging nip part a or the charging roller 2, the development amount of the charge accelerating particles is reduced. The charge accelerating particles m to be supplied to the charging nip portion a and the charging roller 2 are increased, so that the chargeability is not lowered.
[0135]
<Example 2> (FIG. 2)
This embodiment is characterized in that, in an image forming apparatus using reversal development, the charge accelerating particles are charged in the same polarity as the developer in the developing device. As the charging means, the charge accelerating particles are charged by using an elastic blade for charging the developer.
[0136]
Specifically, for the printer of the first embodiment, as shown in FIG.
a. A negative photosensitive member was used as the image carrier 1,
b. A charging bias was applied to the charging roller 2 from the charging bias power source S1 so that the outer peripheral surface of the photosensitive member 1 was uniformly charged to approximately −700 V.
c. Image exposure on the photoreceptor 1 is scanning exposure L with a laser beam as in the printer of the first embodiment. However, in this embodiment, since the reversal development system is used, the exposed portion is an image portion and the non-exposed portion is a non-image. Part
d. The developing device 3 is a reversal developing device, and the developing bias voltage used was a superposition of a DC voltage of −400 V and a rectangular AC voltage with a frequency of 1800 V and a peak-to-peak voltage of 1600 V.
e. The specific resistance is 10 as the charge promoting particles m previously coated on the outer peripheral surface of the charging roller 2 and the charge promoting particles m externally added to the developer 31 of the developing device 3. 7 Using polyethylene dispersed in conductive zinc oxide particles having an Ω · cm average particle size of 1.5 μm, f. The developer 31 of the developing device 3 is externally added with 2 parts by weight of the charge accelerating particles m with respect to 100 parts by weight of the developer, and the charge accelerating particles m are rubbed against the elastic blade 34 to develop the developer. Similar to 31, having a negative charge (= charged to the same polarity as the DC charging polarity of the contact charging device),
g. The transfer bias was + 1800V.
[0137]
A printer other than the above a to g is the same as that of the first embodiment.
[0138]
Thus, in the printer of this embodiment, the externally added charge promoting particles m have a negative charge having the same polarity as that of the developer 31 due to the friction with the elastic blade 34 in the developer 31 of the developing device 3. For this reason, the photosensitive member 1 is developed in an incompletely charged portion (region where the potential is on the positive side).
[0139]
In this embodiment, the charge accelerating particles m are supplied by developing the charge accelerating particles m from the developing device 3. Since reversal development is used and the charge accelerating particles m are triboelectrically charged to the negative polarity of the same polarity as the developer 31, the charge accelerating particles m are more developed on the positive side.
[0140]
Therefore, when the charge accelerating particles m are reduced or deteriorated from the charging nip portion a or the charging roller 2 and a defective charging portion is generated, the charging accelerating particles are automatically applied to the charging defective portion having a positive potential. It becomes possible to replenish a lot.
[0141]
As described above, in this embodiment, it becomes possible to automatically increase the replenishment amount for the portion where the charge promoting particles m are reduced or deteriorated.
[0142]
<Others>
1) The charging roller 2 as a flexible contact charging member is not limited to the configuration of the charging roller of the embodiment.
[0143]
In addition to the charging roller, the flexible contact charging member may be a fur brush charger or the like. Materials and shapes such as felt and cloth can also be used. Moreover, these can be laminated | stacked and it can also obtain more suitable elasticity and electroconductivity.
[0144]
2) In the charging mechanism for contact charging, the contact property of the contact charging member to the member to be charged greatly affects the charging property. Therefore, the contact charging member is configured to be denser, has a large speed difference from the charged body, and is configured to contact the charged body at a higher frequency.
[0145]
Further, an injection charging mechanism in contact charging can be made dominant by providing a charge injection layer on the surface of the member to be charged and adjusting the resistance of the surface of the member to be charged.
[0146]
FIG. 3 is a layer configuration model diagram of the photosensitive member 1 having the charge injection layer 16 provided on the surface. That is, the photosensitive member 1 is generally coated on an aluminum drum substrate (Al drum substrate) 11 in the order of an undercoat layer 12, a positive charge injection preventing layer 13, a charge generation layer 14, and a charge transport layer 15. The charge performance is improved by applying the charge injection layer 16 to the organic photoreceptor.
[0147]
The charge injection layer 16 is made of SnO as conductive particles (conductive filler) on a photo-curable acrylic resin as a binder. 2 Ultrafine particles 16a (diameter is about 0.03 μm), a lubricant such as tetrafluoroethylene resin (trade name: Teflon), a polymerization initiator, and the like are mixed and dispersed, and after coating, a film is formed by a photocuring method.
[0148]
An important point as the charge injection layer 16 is the resistance of the surface layer. In the charging method by direct injection of charges, charges can be exchanged more efficiently by reducing the resistance on the charged object side. On the other hand, since the electrostatic latent image needs to be held for a certain time when used as a photoconductor, the volume resistance value of the charge injection layer 16 is 1 × 10 6. 9 ~ 1x10 14 A range of (Ω · cm) is appropriate.
[0149]
Even when the charge injection layer 16 is not used as in this configuration, for example, the same effect can be obtained when the charge transport layer 15 is within the above resistance range.
[0150]
Furthermore, the volume resistance of the surface layer is about 10 13 The same effect can be obtained by using an amorphous silicon photoreceptor having Ω · cm.
[0151]
3) As an AC voltage waveform when an AC voltage (alternating voltage) component is applied to the contact charging member or the developing device, a sine wave, a rectangular wave, a triangular wave, or the like can be used as appropriate. Further, it may be a rectangular wave formed by periodically turning on / off a DC power source. In this way, a bias that changes the voltage value periodically can be used as the waveform of the alternating voltage.
[0152]
4) The image exposure means for forming the electrostatic latent image is not limited to the laser scanning exposure means for forming a digital latent image as in the embodiment, but a normal analog image exposure or Other light emitting elements such as LEDs may be used, and any combination of a light emitting element such as a fluorescent lamp and a liquid crystal shutter may be used as long as it can form an electrostatic latent image corresponding to image information.
[0153]
The image carrier 1 may be an electrostatic recording dielectric or the like. In this case, the dielectric surface is uniformly primary-charged to a predetermined polarity and potential, and then selectively neutralized by a neutralizing means such as a static elimination needle head or an electron gun to write and form a target electrostatic latent image.
[0154]
5) Of course, the developing means 3 is not limited to the developing system and configuration of the developing means 3 as well.
[0155]
6) The image forming apparatus of the present invention may be provided with a cleaner that removes the transfer residual developer and paper dust from the surface of the image carrier after transfer.
[0156]
7) The recording medium that receives the developer image transferred from the image carrier 1 may be an intermediate transfer body such as a transfer drum.
[0157]
8) An example of a method for measuring the particle size of the developer (toner) 31 will be described. As a measuring device, a Coulter counter TA-2 type (manufactured by Coulter Inc.) was used, and an interface (manufactured by Nikka) and a CX-1 personal computer (manufactured by Canon) that output number average distribution and volume average distribution were connected, and electrolysis was performed. Prepare 1% NaCl aqueous solution using primary sodium chloride.
[0158]
As a measuring method, a surfactant, preferably 0.1 to 5 ml of alkylbenzene sulfonate, is added to 100 to 150 ml of the electrolytic aqueous solution, and 0.5 to 50 mg of a measurement sample is further added.
[0159]
The electrolyte in which the sample is suspended is subjected to a dispersion treatment for about 1 to 3 minutes with an ultrasonic disperser, and the particle size distribution of 2 to 40 μm particles is measured using the 100 μ aperture as the aperture by the Coulter Counter TA-2 type. Then, the volume average distribution is obtained. The volume average particle diameter is obtained from the obtained volume average distribution.
[0160]
【The invention's effect】
As described above, according to the present invention, a contact charging method, a transfer method, and a cleaner-less image forming apparatus are used as a contact charging member by using a simple member such as a charging roller or a fur brush at a low applied voltage. Injecting electrification can be realized, and charging acceleration particles that enable injecting electrification are automatically supplied to the charging portion and the contact charging member, and charged from the contact charging member contaminated by the developer (toner). The developer, which is an inhibitory factor, can be efficiently ejected, and good chargeability can be stably maintained over a long period of time. The injection charging mechanism and the toner recycling system can be executed without problems, and high-quality image formation can be achieved over a long period of time. Can be maintained across. Further, high-quality image formation can be maintained for a long time even after an image with a high image ratio is output.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an image forming apparatus according to a first embodiment.
FIG. 2 is a schematic configuration diagram of an image forming apparatus according to a second embodiment.
FIG. 3 is a model diagram of a layer structure of an example of a photoreceptor having a charge injection layer on the surface.
[Chart 4] Charging characteristic graph
[Explanation of symbols]
1 Photoconductor (image carrier, charged body)
2 Charging roller (contact charging member)
3 Development device (regular development device or reversal development device)
31 Developer (Toner)
m Charge accelerating particles
4 Transfer roller
5 Fixing device
P transfer material
C Process cartridge
S1 to S3 Bias applied power supply

Claims (10)

像担持体に、像担持体を帯電する帯電工程、像担持体の帯電面に静電潜像を形成する情報書き込み工程、その静電潜像を帯電した現像剤により現像する現像工程、像担持体上の現像剤像を記録媒体に転写する転写工程を含む作像プロセスを適用して画像形成を実行し、像担持体は繰り返して作像に供する画像形成装置において、
a.像担持体を帯電する帯電手段は、電圧が印加され、像担持体とニップ部を形成する可撓性の帯電部材により像担持体面を帯電する接触帯電装置であり、帯電部材は像担持体に対して速度差をもって移動し、少なくとも帯電部材と像担持体とのニップ部には帯電を促進させるための導電性を有する帯電促進粒子が介在していること、
b.現像手段の現像剤には帯電促進粒子を混入させ、該現像手段内において、該帯電促進粒子を接触帯電装置のDC帯電極性と同極性に帯電させること
を特徴とする画像形成装置。
A charging step for charging the image carrier on the image carrier, an information writing step for forming an electrostatic latent image on the charging surface of the image carrier, a development step for developing the electrostatic latent image with a charged developer, an image carrier In an image forming apparatus that executes image formation by applying an image forming process including a transfer step of transferring a developer image on a body to a recording medium, and the image carrier repeatedly provides images,
a. The charging means for charging the image carrier is a contact charging device in which a voltage is applied and the surface of the image carrier is charged by a flexible charging member that forms a nip portion with the image carrier. The charging member is attached to the image carrier. In contrast, the particles are moved with a speed difference, and at least in the nip portion between the charging member and the image carrier, the charge-promoting particles having conductivity for promoting charging are interposed,
b. An image forming apparatus, wherein charge-promoting particles are mixed in a developer of a developing unit, and the charge-promoting particles are charged in the developing unit with the same polarity as a DC charging polarity of a contact charging device.
像担持体に、像担持体を帯電する帯電工程、像担持体の帯電面に静電潜像を形成する情報書き込み工程、その静電潜像を帯電した現像剤により現像する現像工程、像担持体上の現像剤像を記録媒体に転写する転写工程を含む作像プロセスを適用して画像形成を実行し、像担持体は繰り返して作像に供する画像形成装置において、
a.像担持体を帯電する帯電手段は、電圧が印加され、像担持体とニップ部を形成する可撓性の帯電部材により像担持体面を帯電する接触帯電装置であり、帯電部材は像担持体に対して速度差をもって移動し、少なくとも帯電部材と像担持体とのニップ部には帯電を促進させるための導電性を有する帯電促進粒子が介在していること、
b.現像手段は正規現像手段であり、現像剤には帯電促進粒子を混入させ、該現像手段内において、該帯電促進粒子を現像剤と異極性に帯電させること
を特徴とする画像形成装置。
A charging step for charging the image carrier on the image carrier, an information writing step for forming an electrostatic latent image on the charging surface of the image carrier, a development step for developing the electrostatic latent image with a charged developer, an image carrier In an image forming apparatus that executes image formation by applying an image forming process including a transfer step of transferring a developer image on a body to a recording medium, and the image carrier repeatedly provides images,
a. The charging means for charging the image carrier is a contact charging device in which a voltage is applied and the surface of the image carrier is charged by a flexible charging member that forms a nip portion with the image carrier. The charging member is attached to the image carrier. In contrast, the particles are moved with a speed difference, and at least in the nip portion between the charging member and the image carrier, the charge-promoting particles having conductivity for promoting charging are interposed,
b. An image forming apparatus, wherein the developing means is a regular developing means, and charge-promoting particles are mixed in the developer, and the charge-promoting particles are charged in a polarity different from that of the developer in the developing means.
像担持体に、像担持体を帯電する帯電工程、像担持体の帯電面に静電潜像を形成する情報書き込み工程、その静電潜像を帯電した現像剤により現像する現像工程、像担持体上の現像剤像を記録媒体に転写する転写工程を含む作像プロセスを適用して画像形成を実行し、像担持体は繰り返して作像に供する画像形成装置において、
a.像担持体を帯電する帯電手段は、電圧が印加され、像担持体とニップ部を形成する可撓性の帯電部材により像担持体面を帯電する接触帯電装置であり、帯電部材は像担持体に対して速度差をもって移動し、少なくとも帯電部材と像担持体とのニップ部には帯電を促進させるための導電性を有する帯電促進粒子が介在していること、
b.現像手段は反転現像手段であり、現像剤には帯電促進粒子を混入させ、該現像手段内において、該帯電促進粒子を現像剤と同極性に帯電させること
を特徴とする画像形成装置。
A charging step for charging the image carrier on the image carrier, an information writing step for forming an electrostatic latent image on the charging surface of the image carrier, a development step for developing the electrostatic latent image with a charged developer, an image carrier In an image forming apparatus that executes image formation by applying an image forming process including a transfer step of transferring a developer image on a body to a recording medium, and the image carrier repeatedly provides images,
a. The charging means for charging the image carrier is a contact charging device in which a voltage is applied and the surface of the image carrier is charged by a flexible charging member that forms a nip portion with the image carrier. The charging member is attached to the image carrier. In contrast, the particles are moved with a speed difference, and at least in the nip portion between the charging member and the image carrier, the charge-promoting particles having conductivity for promoting charging are interposed,
b. An image forming apparatus, wherein the developing means is a reversal developing means, and the charge accelerating particles are mixed in the developer, and the charge accelerating particles are charged in the same polarity as the developer in the developing means.
現像手段が現像剤像を記録媒体に転写した後に像担持体上に残留した現像剤を回収するクリーニング手段を兼ねていることを特徴とする請求項1ないし3の何れか1つに記載の画像形成装置。4. The image according to claim 1, wherein the developing means also serves as a cleaning means for collecting the developer remaining on the image carrier after the developer image is transferred to the recording medium. Forming equipment. 帯電促進粒子が現像剤との摺擦によって摩擦帯電して電荷極性を持つことを特徴とする請求項1ないし4の何れか1つに記載の画像形成装置。The image forming apparatus according to claim 1, wherein the charge accelerating particles are triboelectrically charged by rubbing with a developer and have a charge polarity. 現像剤を摩擦帯電させる部材が、帯電促進粒子を帯電させる部材を兼ねることを特徴とする請求項1ないし4の何れか1つに記載の画像形成装置。5. The image forming apparatus according to claim 1, wherein the member for frictionally charging the developer also serves as a member for charging the charge accelerating particles. 帯電促進粒子は、その粒径が現像剤の1/2以下であり、抵抗値が1×1012(Ω・cm)以下であることを特徴とする請求項1ないし6の何れか1つに記載の画像形成装置。7. The charge promoting particle according to claim 1, wherein the particle size of the charge accelerating particle is 1/2 or less of that of the developer, and the resistance value is 1 × 10 12 (Ω · cm) or less. The image forming apparatus described. 帯電促進粒子は、その粒径が現像剤の1/2以下であり、抵抗値が1×1010(Ω・cm)以下であることを特徴とする請求項1ないし6の何れか1つに記載の画像形成装置。7. The charge promoting particle according to claim 1, wherein the particle size of the charge accelerating particle is 1/2 or less of that of the developer, and the resistance value is 1 × 10 10 (Ω · cm) or less. The image forming apparatus described. 帯電部材は像担持体の移動方向とは逆方向に速度差を保ちつつ駆動されることを特徴とする請求項1ないし8の何れか1つに記載の画像形成装置。The image forming apparatus according to claim 1, wherein the charging member is driven while maintaining a speed difference in a direction opposite to a moving direction of the image carrier. 像担持体の帯電面に静電潜像を形成する情報書き込み手段が像露光手段であることを特徴とする請求項1ないし9の何れか1つに記載の画像形成装置。10. The image forming apparatus according to claim 1, wherein the information writing means for forming an electrostatic latent image on the charging surface of the image carrier is an image exposure means.
JP15061998A 1997-10-21 1998-05-14 Image forming apparatus Expired - Fee Related JP3647265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15061998A JP3647265B2 (en) 1997-10-21 1998-05-14 Image forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-306506 1997-10-21
JP30650697 1997-10-21
JP15061998A JP3647265B2 (en) 1997-10-21 1998-05-14 Image forming apparatus

Publications (2)

Publication Number Publication Date
JPH11190930A JPH11190930A (en) 1999-07-13
JP3647265B2 true JP3647265B2 (en) 2005-05-11

Family

ID=26480164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15061998A Expired - Fee Related JP3647265B2 (en) 1997-10-21 1998-05-14 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP3647265B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312092A (en) * 2000-02-21 2001-11-09 Canon Inc Developer, image forming method using the developer, and process cartridge
JP3801173B2 (en) 2003-12-10 2006-07-26 コニカミノルタビジネステクノロジーズ株式会社 Contact charger and image forming apparatus

Also Published As

Publication number Publication date
JPH11190930A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
JP3652331B2 (en) Image forming apparatus
JP3715780B2 (en) Image forming apparatus
JP3435434B2 (en) Charging device, image forming apparatus and process cartridge
JP3292156B2 (en) Charging member, charging method, charging device, image forming apparatus, and process cartridge
JP3292155B2 (en) Image forming device
JP3647263B2 (en) Image recording device
JP3387815B2 (en) Charging device and image forming device
JPH10307458A (en) Image forming device
JP3332865B2 (en) Image forming device
JP3315645B2 (en) Charging method, charging device, and image recording apparatus using the charging device
JP3320356B2 (en) Image forming device
JP3647265B2 (en) Image forming apparatus
JP2000081766A (en) Electrifying method, electrifying device, image forming device and process cartridge
JP3647264B2 (en) Image forming apparatus
JP3352384B2 (en) Charging method, charging device, image forming apparatus, and process cartridge
JP3315642B2 (en) Image forming device
JP3376278B2 (en) Image forming device
JP3805113B2 (en) Charging method, charging device, and image recording apparatus using the charging device
JP3397700B2 (en) Charging member, charging method, charging device, image forming apparatus, and process cartridge
JP3805112B2 (en) Charging method, charging device, image forming apparatus, and process cartridge
JP3513502B2 (en) Image forming device
JP3253280B2 (en) Image forming device
JPH11153897A (en) Electrifying method, electrifying device, image forming device and process cartridge
JP3359285B2 (en) Charging method, charging device, and image recording apparatus using the charging device
JP2000081767A (en) Electrifying member, electrifying method, electrifying device, image forming device and process cartridge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees