JP4750287B2 - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP4750287B2
JP4750287B2 JP2001002606A JP2001002606A JP4750287B2 JP 4750287 B2 JP4750287 B2 JP 4750287B2 JP 2001002606 A JP2001002606 A JP 2001002606A JP 2001002606 A JP2001002606 A JP 2001002606A JP 4750287 B2 JP4750287 B2 JP 4750287B2
Authority
JP
Japan
Prior art keywords
charging member
developer
contact charging
image
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001002606A
Other languages
Japanese (ja)
Other versions
JP2002207354A (en
Inventor
純 平林
康則 児野
晴美 石山
憲生 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001002606A priority Critical patent/JP4750287B2/en
Publication of JP2002207354A publication Critical patent/JP2002207354A/en
Application granted granted Critical
Publication of JP4750287B2 publication Critical patent/JP4750287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、転写方式、クリーナレスで、像担持体を帯電する帯電工程手段が接触帯電装置である、電子写真方式や静電記録方式等の画像形成装置に関する。
【0002】
【従来の技術】
(a)接触帯電装置
従来、例えば、電子写真方式や静電記録方式等の画像形成装置において、電子写真感光体・静電記録誘電体等の像担持体を所要の極性・電位に一様に帯電処理(除電も含む)する帯電装置としてはコロナ帯電器(コロナ放電器)が使用されていた。
【0003】
コロナ帯電器は非接触型の帯電装置であり、例えば、ワイヤ電極等の放電電極と該放電電極を囲むシールド電極を備え、放電開口部を被帯電体に対向させて非接触に配設し、放電電極とシールド電極に高圧を印加することにより生じる放電電流(コロナシャワー)に被帯電体面をさらすことで被帯電体面を所定に帯電させるものである。
【0004】
接触帯電装置は、被帯電体に、ローラ型(帯電ローラ)、ファーブラシ型、磁気ブラシ型、ブレード型等の導電性の帯電部材を接触させ、この接触帯電部材に所定の帯電バイアスを印加して像担持体面を所定の極性・電位に帯電させるものである。
【0005】
接触帯電の帯電機構(帯電のメカニズム、帯電原理)には放電帯電機構と注入帯電機構(直接帯電機構)の2種類の帯電機構が混在しており、どちらが支配的であるかにより各々の特性が現れる。
【0006】
[放電帯電機構]
接触帯電部材と被帯電体との微小間隙に生じる放電現象により被帯電体表面が帯電する機構である。
【0007】
放電帯電機構は接触帯電部材と被帯電体の間に一定の放電しきい値を有するため、帯電電位より大きな電圧を接触帯電部材に印加する必要がある。また、コロナ帯電器に比べれば発生量は格段に少ないけれども放電生成物を生じることが原理的に避けられないため、オゾンなど活性イオンによる弊害は避けられない。
【0008】
[注入帯電機構]
接触帯電部材から被帯電体に直接電荷が注入されることで被帯電体表面が帯電する機構である。直接帯電とも称される。
【0009】
より詳しくは、中抵抗の接触帯電部材が被帯電体に接触して、放電現象を介さずに、つまり放電を基本的に用いないで被帯電体表面に直接電荷注入を行うものである。よって、接触帯電部材への印加電圧が放電しきい値以下の印加電圧であっても、被帯電体を印加電圧相当の電位に帯電することができる。この注入帯電機構はイオンの発生を伴わないため放電生成物による弊害は生じない。
【0010】
しかし、注入帯電であるため、接触帯電部材の被帯電体への接触性が帯電性に大きく効いてくる。そこで接触帯電部材はより密に構成し、また被帯電体との速度差を大きく持ち、より高い頻度で被帯電体に接触する構成をとる必要がある。
【0011】
磁気ブラシ帯電装置は注入帯電機構が支配的な帯電手段である。
【0012】
また、例えば特開平10−307454〜30759号公報等に開示の、非磁性・導電性微粒子(帯電粒子、帯電促進粒子)を介して接触帯電する粒子帯電装置も注入帯電機構が支配的帯電手段である。
【0013】
(b)クリーナレス(トナーリサイクルシステム)
従来の一般的な転写方式の画像形成装置においては、転写後の像担持体に残存する転写残現像剤(トナー)はクリーナ(クリーニング装置)によって像担持体面から除去されて廃トナーとなるが、この廃トナーは環境保護の面からも出ないことが望ましい。
【0014】
そこでクリーナをなくし、転写後の像担持体上の転写残現像剤は現像装置によって「現像同時クリーニング」で像担持体上から除去し現像装置に回収・再用する装置構成にしたクリーナレスの画像形成装置も出現している。
【0015】
現像同時クリーニングとは、転写後に像担持体上に残留した現像剤を次工程以降の現像時にかぶり取りバイアス(現像装置に印加する直流電圧と像担持体の表面電位間の電位差であるかぶり取り電位差Vback)によって回収する方法である。この方法によれば、転写残現像剤は現像装置に回収されて次工程以降に再用されるため、廃トナーをなくし、メンテナンスに手を煩わせることも少なくすることができる。またクリーナレスであることでスペース面での利点も大きく、画像形成装置を大幅に小型化できるようになる。
【0016】
(c)接触帯電方式・転写方式・クリーナレスの画像形成装置
転写方式・クリーナレスの画像形成装置において、像担持体の帯電手段として接触帯電装置を採択した場合、像担持体に接触の帯電部材による転写残現像剤の散らし効果により、現像装置での転写残現像剤回収不良によるポジゴーストを抑制できる。クリーナレスであるので像担持体面に接して摺擦するクリーニング部材による像担持体面ダメージがない等の利点がある。
【0017】
導電性磁性粒子を磁気拘束してブラシ状にした磁気ブラシ部を有する磁気ブラシ帯電部材を接触帯電部材として用いた磁気ブラシ帯電はクリーナレスプロセスに好適に用いられる。
【0018】
また、特開平10−307454〜30759号公報等に開示の、帯電促進粒子を介して接触帯電する粒子帯電方法では、現像装置の現像剤にあらかじめ帯電促進粒子を外添しておき、現像剤とともに現像(像担持体に対し付着)することによって接触帯電部材に帯電促進粒子を供給してクリーナレスプロセスを実現する方法も開示されている。
【0019】
【発明が解決しようとする課題】
接触帯電方式・転写方式・クリーナレスの画像形成装置においては、接触帯電部材に付着・混入(一時回収)した転写残現像剤は帯電極性が正規極性に整えられて接触帯電部材から像担持体に静電的に逐次に吐き出され、引き続く像担持体の回転により現像部へ持ち運ばれて現像装置により現像同時クリーニングで回収・再用される。
【0020】
しかし、接触帯電部材に付着・混入する転写残現像剤の量と、接触帯電部材から静電的に吐き出される現像剤の量との量的バランスの崩れにより、接触帯電部材に付着・混入する転写残現像剤が蓄積して接触帯電部材が許容外に現像剤汚染されると帯電性が低下してしまう。
【0021】
そのため、本出願人は先に、特開平11−149205号公報に記載のように、接触帯電部材表面に付着した転写残現像剤を積極的に清掃するために、5〜500Hzの交流電圧を印加する技術を提案している。この技術は低速印字タイプの装置には有効な技術であるが、長期間にわたる安定性を得るには不十分な場合もあり、高速印字を行う際には帯電性の低下が生じることがあった。
【0022】
本発明は、この技術の更なる改善に係るもので、接触帯電方式・転写方式・クリーナレスの画像形成装置として、長期間にわたる耐久においても、また高速印字タイプの装置の場合でも、転写残現像剤が接触帯電部材表面に許容外に蓄積しないようにすることで、良好な帯電性と画像性を持続させることが可能な画像形成装置を提供することを目的とするものである。
【0023】
【課題を解決するための手段】
上記目的を達成するため、本発明は以下の構成を特徴とする画像形成装置である。
【0024】
像担持体と、
前記像担持体に周速差を持って接触して前記像担持体を帯電する帯電部材と、
前記像担持体に形成された静電潜像を現像剤により現像する現像装置と、
を備える画像形成装置において、
前記帯電部材の表面には、非磁性の導電粒子が担持されており、前記導電粒子は、前記現像剤との摺擦により、前記現像剤の帯電極性とは逆極性に帯電し、
前記現像装置は、前記像担持体に残留した現像剤を回収可能であり、
非画像形成時に、前記帯電部材に、帯電部材を清掃するための交流バイアスを印加し、
前記交流バイアス周波数(Hz=cycle/s)を、
交流バイアス周波数(Hz=cycle/s)>([像担持体の周速(mm/s)]×[帯電部材周速(%)]×10(cycle))/([像担持体と帯電部材の接触部の長さ(mm)]×(100%+[帯電部材周速(%)]))とし、
且つ、前記交流バイアスは、前記現像剤の極性と同じ方向に大きくなる場合の単位時間あたりの電位の変化量が、前記現像剤の極性と逆方向に大きくなる場合の単位時間あたりの電位の変化量よりも大きくなるような波形であることを特徴とする画像形成装置。
【0025】
【0026】
【0027】
【0028】
【0029】
【0030】
【0031】
【0032】
【発明の実施の形態】
〈参考例1〉
図1は参考例の画像形成装置の概略構成模型図である。本例の画像形成装置は、転写式電子写真プロセス利用、帯電促進粒子を用いた注入帯電方式、レーザービーム走査露光方式、反転現像方式、クリーナレス、プロセスカートリッジ方式、の複写機或いはプリンタである。
【0033】
(1)画像形成装置の全体的概略構成説明
[像担持体]
1は像担持体としての回転ドラム型の電子写真感光体である。本例の画像形成装置は反転現像を用いており、ネガ感光体を用いている。
【0034】
本例の感光体1は直径30mmのOPC感光体であり、矢印の時計方向に200mm/secの周速度(=プロセススピード)をもって回転駆動される。
【0035】
[帯 電]
2は感光体1に当接させた接触帯電部材としての導電性弾性ローラである。この接触帯電部材2の表面には予め帯電促進粒子mがコートされている。感光体1と接触帯電部材2には周速差をもたせている。本例では、接触帯電部材2は感光体1との接触部である帯電部aにおいて感光体1の回転方向に対向方向(カウンター方向)に150%の周速で駆動されている。
【0036】
ここで、150%の周速で駆動とは、対向方向(カウンター方向)に300mm/secの周速度になる。ここでいう100%というのは「接触帯電部材2の表面の速さ」が「感光体1の表面の速さ」と同じ(ただし、向きは逆)ということを指す。なので、150%という場合には200mm/sec×150%で300mm/sとなる。
【0037】
接触帯電部材2には画像形成中に感光体1の外周面がほぼ−600Vに一様に帯電処理されるように、帯電バイアス電源S1から帯電バイアスとして−620Vの直流電圧を印加している。帯電機構は注入帯電機構が支配的である。
【0038】
また本例は、接触帯電部材2に対する印加電圧は、画像形成時と非画像形成時で印加バイアスを可変にしており、画像形成時は上記のように−620Vの直流電圧を印加しており、非画像形成時は周波数600Hz、ピーク間電圧が400V、DC成分が−620Vの矩形交流波を印加する。
【0039】
後述するように、帯電促進粒子mは現像装置3の現像剤31にも所定の配合割合で混入させてあり、この現像剤31に混入の帯電促進粒子mが現像時に感光体1面に付着し、帯電部aに持ち運ばれて供給される。
【0040】
[露 光]
この感光体1の帯電面に対して、露光部bにおいて、レーザーダイオードおよびポリゴンミラー等を含むレーザービームスキャナ10によるレーザービーム走査露光Lがなされる。
【0041】
レーザービームスキャナ10は目的の画像情報の時系列電気デジタル画素信号に対応して強度変調したレーザービームを出力して感光体1の帯電面を走査露光Lする。これにより、感光体1の外周面に対して目的の画像情報に対応した静電潜像が形成される。本例では画像解像度600dpiの静電潜像を形成している。
【0042】
[現 像]
その静電潜像は、現像剤31として負帯電性の平均粒径6μmの磁性1成分絶縁トナーを用いた、反転非接触現像装置3によりトナー画像として現像される。
【0043】
32はマグネット33を内包する直径16mmの非磁性現像スリーブであり、この現像スリーブ32に上記の現像剤31をコートし、感光体1表面との距離を500μmに固定した状態で、感光体1と等速で回転させ、現像スリーブ32に現像バイアス電源S2より現像バイアス電圧を印加する。現像剤31は現像弾性ブレード34との摺擦により、摩擦帯電し、電荷を持つ。現像スリーブ32に所定の現像バイアスを印加することにより、現像部cにおいて、現像スリーブ32と感光体1の間で1成分ジャンピング現像を行なわせる。
【0044】
現像バイアスは、周波数1.6kHz、ピーク間電圧が1.7kV、DC成分が−400Vの矩形交流波を印加する。
【0045】
[転 写]
一方、不図示の給紙部から記録材としての転写材Pが供給されて、感光体1と、これに所定の押圧力で当接させた接触転写手段としての、中抵抗の転写ローラ4との圧接接触部である転写部dに所定のタイミングにて導入される。
【0046】
転写ローラ4には転写バイアス印加電源S3から所定の転写バイアス電源が印加される。本例では転写ローラ4としてローラ抵抗値=5×10Ωのものを用い、+3000VのDC電圧を印加して転写を行なった。
【0047】
転写部dに導入された転写材Pはこの転写部dを挟持搬送されて、その表面側に感光体1の表面に形成担持されている現像剤像が順次に静電気力と押圧力にて転写されていく。
【0048】
[定 着]
現像剤像の転写を受けた転写材Pは感光体1の表面から分離されて熱定着方式等の定着装置5へ導入されて現像剤像の定着を受け、画像形成物(プリント、コピー)として装置外へ排出される。
【0049】
[クリーナレス]
転写材分離後の感光体1面に残留の転写残現像剤は、画像形成装置がクリーナレスであることで、専用のクリーニング装置(クリーナ)で感光体1面から除去されることなく、引き続く感光体1の回転で帯電部aに持ち運ばれて接触帯電部材2に付着・混入する(接触帯電部材による転写残現像剤の一時回収)。そして接触帯電部材2に付着・混入した転写残現像剤は帯電極性が正規極性に整えられて接触帯電部材2から感光体1に静電的に逐次に吐き出され、引き続く感光体1の回転により現像部cへ持ち運ばれて現像装置3により現像同時クリーニングで回収・再用される。
【0050】
[カートリッジ]
本例の画像形成装置は、感光体1、接触帯電部材2、現像装置3の3つのプロセス機器をカートリッジCに包含させて画像形成装置本体に対して一括して着脱交換自在のカートリッジ方式の装置であるが、これに限るものではない。9・9は画像形成装置側のプロセスカートリッジ着脱案内・保持部材の一部を示す。
【0051】
ここで、プロセスカートリッジとは、帯電手段、現像手段またはクリーニング手段と像担持体とを一体的にカートリッジ化し、そのカートリッジを画像形成装置本体に対して着脱可能とするものである。及び帯電手段、現像手段、クリーニング手段の少なくとも一つと像担持体とを一体的にカートリッジ化し、そのカートリッジを画像形成装置本体に対して着脱可能とするものである。更に少なくとも現像手段像担持体とを一体的にカートリッジ化し、そのカートリッジを画像形成装置本体に対して着脱可能とするものである。
【0052】
(2)画像形成装置の動作シーケンス
図2は上記画像形成装置の動作シーケンス図である。
【0053】
1)前多回転工程:画像形成装置の始動動作期間(起動動作期間、ウォーミング期間)である。メイン電源スイッチ−オンにより、装置のメインモータを駆動させて感光体を回転駆動させ、所定のプロセス機器の準備動作を実行させる。
【0054】
2)前回転工程:プリント前動作を実行させる期間である。この前回転工程は前多回転工程中にプリント信号が入力したときには前多回転工程に引き続いて実行される。プリント信号の入力がないときには前多回転工程の終了後にメインモータの駆動が一旦停止されて感光体の回転駆動が停止され、装置はプリント信号が入力されるまでスタンバイ(待機)状態に保たれる。プリント信号が入力すると、前回転工程が実行される。
【0055】
3)印字工程(画像形成工程、作像工程):所定の前回転工程が終了すると、引き続いて回転感光体に対する作像プロセスが実行され、回転感光体面に形成された現像剤像の転写材への転写、定着手段による現像剤像の定着処理がなされて画像形成物がプリントアウトされる。
【0056】
連続印字(連続プリント)モードの場合は上記の印字工程が所定の設定プリント枚数分繰り返して実行される。
【0057】
4)紙間工程:連続印字モードにおいて一の転写材の後端部が転写部を通過した後、次の転写材の先端部が転写部に到達するまでの間の、転写部における転写材の非通紙状態期間である。
【0058】
5)後回転工程:最後の転写材の印字工程が終了した後もしばらくの間メインモータの駆動を継続させて感光ドラムを回転駆動させ、所定の後動作を実行させる期間である。
【0059】
6)スタンバイ:所定の後回転工程が終了すると、メインモータの駆動が停止され感光体の回転駆動が停止され、装置は次のプリントスタート信号が入力するまでスタンバイ状態に保たれる。
【0060】
1枚だけのプリントの場合は、そのプリント終了後、装置は後回転工程を経てスタンバイ状態になる。
【0061】
スタンバイ状態においてプリントスタート信号が入力すると、装置は前回転工程に移行する。
【0062】
3)の印字工程時が画像形成時であり、1)の前多回転工程、2)の前回転工程、4)の紙間工程、5)の後回転工程が非画像形成時(非作像時)になる。
【0063】
図1において、100は画像形成装置の全ての動作制御を司る制御回路部である。
【0064】
(3)接触帯電部材2
本例における接触帯電部材としての導電性弾性ローラ2は、芯金21上にゴムあるいは発泡体の中抵抗層22を形成することにより作成される。中抵抗層22は樹脂(本例ではウレタン)、導電性粒子(例えばカーボンブラック)、硫化剤、発泡剤等により処方され、芯金21の上にローラ状に形成した。その後、表面を研磨した。
【0065】
この接触帯電部材2の抵抗値は以下のように測定した。即ち、画像形成装置の感光体1をアルミ製のドラムと入れ替える。その後に、アルミドラムと接触帯電部材2の間に100Vの電圧をかけ、その時に流れる電流値を測定することにより、接触帯電部材2の抵抗値を求めた。
【0066】
本例で用いた接触帯電部材2の抵抗値は5×10Ωであった。本測定は温度25℃、湿度60%の環境下で行った。この測定環境については、本例及び他の参考例2、実施例中における他の測定も同様である。
【0067】
接触帯電部材2の表面における平均セル径は抵抗値それぞれにつき、20μmのものを用いた。平均セル径は光学顕微鏡による観察をもって測定した。
【0068】
(4)帯電促進粒子m
本例では、帯電促進粒子mとして、比抵抗が10Ω・cm、平均粒径1μmの導電性酸化亜鉛粒子を用いた。
【0069】
粒径は粒子が凝集体として構成されている場合は、その凝集体としての平均粒径として定義した。粒径の測定には、光学あるいは電子顕微鏡による観察から、100個以上抽出し、水平方向最大弦長をもって体積粒度分布を算出し、その50%平均粒径をもって決定した。
【0070】
抵抗測定は錠剤法により測定し正規化して求めた。底面積2.26cmの円筒内に、約0.5gの粉体試料を入れ、上下電極に147N(15kg)の加圧を行うと同時に100Vの電圧を印加し抵抗値を計測し、その後正規化して比抵抗を算出した。
【0071】
本例で用いた帯電促進粒子mは、潜像露光時に妨げにならないよう、無色あるいは白色の粒子が適切である。また、粒径も現像剤(トナー)31の粒径に対して、1/2以下程度でないと画像露光を遮ることがあった。そのため、これより小さい必要がある
帯電促進粒子mの材料として、本例では導電性酸化亜鉛粒子を用いたが、これに限るものでなく、粒子の材料としては、他の金属酸化物などの導電性無機粒子や有機物との混合物など各種導電粒子が使用可能である。
【0072】
(5)現像剤31
本例で用いた現像剤31は、スチレン−アクリル共重合体を主成分とする結着樹脂に、マグネタイトを60重量%、負性電荷制御材としてモノアゾ染料の金属錯塩を1重量%含有した、体積抵抗率が約1013Ω・cmの磁性1成分絶縁トナーに、流動性を付与するために疎水化したシリカ微粒子を現像剤重量部に対して0.8%外添したものを用いた。
【0073】
また、後述する比較例において、現像剤Aが上で説明した現像剤であり、現像剤Bは現像剤Aとほぼ同じであるが負性電荷制御材であるモノアゾ染料の金属錯塩を1.1重量%に変化させたもの、また現像剤Cは同様に0.9重量%に変化させたものである。
【0074】
現像剤であるトナー31には帯電促進粒子mを混合してあり、混合量は現像剤100重量部に対して帯電促進粒子2重量部である。ただし、混合量はこの量に限るものではない。
【0075】
本例では帯電促進粒子mを予め接触帯電部材2にコートしておくことで装置の使用初期時の帯電性を確保するとともに、上記のように帯電促進粒子mを現像装置の現像剤31に混入しておき、現像装置3から帯電促進粒子mを感光体表面を介して、接触帯電部材2に供給するようにしている。
【0076】
即ち現像装置3内の現像剤31に混入させた帯電促進粒子mは現像剤31に付着して静電潜像の現像時に感光体1面側に移行付着する。また現像剤31には負性帯電制御剤が添加されているため、帯電促進粒子mはそれに対して摩擦帯電し、逆極性の正の電荷を持つ。そのため現像スリーブ32上の現像剤31中の帯電促進粒子mは、現像スリーブ32と感光体1表面間の電位差により、現像スリーブ32上から感光体1表面に供給される。
【0077】
帯電促進粒子mは現像剤31とは逆極性の電荷を持っているために、転写部dにおいて転写材Pには実質的に転写されず、帯電部aに持ち運ばれ、結果として、接触帯電部材2に供給、コートされる。このように帯電促進粒子mが接触帯電部材2に供給、コートされることにより、帯電部aに帯電促進粒子mが常時介在している状態が維持されて良好な帯電性を得ることができる。
【0078】
(6)接触帯電部材2に対する清掃バイアス印加シーケンス
本例は、非画像形成時に接触帯電部材2に対して接触帯電部材表面を清掃するための交流バイアスを含む清掃バイアスを印加し、その清掃バイアス周波数(Hz=cycle/s)を、
清掃バイアス周波数(Hz=cycle/s)>([プロセススピード(mm/s)]×[接触帯電部材周速(%)]×10(cycle))/([像担持体と接触帯電部材の接触部の長さ(mm)]×(100%+[接触帯電部材周速(%)]))
となるように設定することを特徴とする。
【0079】
上記の接触帯電部材2に対する清掃バイアス印加シーケンスは、前記(2)項で説明した画像形成装置の動作シーケンスにおける1)・2)・4)・5)の全ての非画像形成時に実行させなくてもよく、そのうちの一つ或いは複数の非画像形成時に実行させてもよいし、また一つ或いは複数の非画像形成時内の少なくとも所定時間実行させる設定にすることもできる。
【0080】
本例は、転写工程後の感光体1表面に残る転写残現像剤を清掃する工程を含まないクリーナレスプロセスを用いている。そのため、転写残現像剤は帯電工程において接触帯電部材2表面に付着してしまう。そのため、前述したように、特開平11−149205号公報のような、非画像形成時に接触帯電部材表面の清掃を行うために、5〜500Hzの交流電圧を印加する従来技術がある。しかし、この技術を用いても、高速印字あるいは長期間の印字を行った際には接触帯電部材表面の清掃は十分に行われず、帯電性の低下が生じる場合があった。
【0081】
帯電性の低下が生じた理由として、この従来技術は低速印字の場合しか考えられておらず、高速印字を行った際には接触帯電部材表面の清掃ムラが顕著に発生することがある、という点が挙げられる。
【0082】
具体的には、本例のようなプロセススピードが200mm/s程度の機器において、500Hz程度の接触帯電部材表面に対する清掃バイアスを印加した場合には、接触帯電部材表面は「その周波数に応じた清掃ムラ」が生じ、それが感光体1表面の帯電電位に影響を与えてしまう。
【0083】
接触帯電部材2は感光体1表面に対して、ある程度の長さ(周方向長さ:ニップ幅)nの接触部aを形成している。その接触部aの長さnに対して、「接触帯電部材表面の清掃ムラの大きさ」が十分短ければ、感光体表面上に帯電電位ムラは生じない。しかし、接触帯電部材2と感光体1表面の接触部aの長さnに対して、「接触帯電部材表面の清掃ムラの大きさ」が無視できない長さになった場合には、接触帯電部材2による感光体1表面上の帯電性能にムラが生じてしまい、結果として感光体1表面上に帯電ムラが生じてしまう。
【0084】
例えば、プロセススピードが200mm/sである本例において、清掃バイアスとして200Hzの交流電圧を用いた場合には、接触帯電部材表面でのムラは
200(mm/s)[プロセススピード]×150%[接触帯電部材周速]/200
(Hz=cycle/s)≒1.5(mm/cycle)
となる。
【0085】
本例では、接触帯電部材2と感光体1表面の接触部aの長さnは2mm程であり、この接触部aを感光体1表面が通過する間に、擦れ違う接触帯電部材2の長さは、
2(mm)[接触部aの長さn]×(100%+150%[接触帯電部材周速])
≒5mm
となる。
【0086】
この場合、接触帯電部材表面の清掃ムラの大きさである1.5mmに対して、感光体1表面が擦れ違う接触帯電部材長は5mmに過ぎず、高々3倍強程度である。そのため、感光体1表面を帯電する際に接触帯電部材表面の清掃ムラを無視できず、均一な帯電性が得られなくなってしまう。
【0087】
本例の画像形成装置を用いて、清掃バイアスの周波数を変化させて比較を行った実験の結果、「接触帯電部材表面の清掃ムラの大きさ」が「感光体1表面が擦れ違う接触帯電部材長」に対して、1/10を越えてしまうと帯電性のムラが生じてしまった。
【0088】
すなわち、
「接触帯電部材表面の清掃ムラの大きさ」=200(mm/s)[プロセススピード]×150%[接触帯電部材周速]/200(Hz=cycle/s)
が、
「感光体1表面が擦れ違う接触帯電部材長」=2(mm)[接触部の長さ]×(100%+150%[接触帯電部材周速])/10(cycle/s)
より小さいことが必要である。これを一般的に書けば、
[接触部の長さ](mm)×(100%+[接触帯電部材周速](%))/10(cycle/s)>[プロセススピード](mm/s)×[接触帯電部材周速](%)/[清掃バイアス周波数](Hz=cycle/s)
であるから、
清掃バイアス周波数(Hz=cycle/s)>([プロセススピード(mm/s)]×[接触帯電部材周速(%)]×10(cycle))/([像担持体と接触帯電部材の接触部の長さ(mm)]×(100%+[接触帯電部材周速(%)]))
であれば、接触帯電部材表面の清掃ムラが帯電性に影響を与えなかった。
【0089】
本例で言うならば、
200(mm/s)×150%×10(cycle)/(2(mm)×(100+150)(%))=600(Hz=cycle/s)
であるので、接触帯電部材2のクリーニングバイアスとして、600Hz以上の周波数を印加すれば、帯電ムラのない良好な画像が得られた。
【0090】
このように、本例は接触帯電部材表面の清掃バイアスの周波数として、
清掃バイアス周波数(Hz=cycle/s)>([プロセススピード(mm/s)]×[接触帯電部材周速(%)]×10(cycle))/([像担持体と接触帯電部材の接触部の長さ(mm)]×(100%+[接触帯電部材周速(%)]))
となるように設定することで、清掃バイアスの周波数による接触帯電部材表面の清掃ムラが帯電性に影響を及ぼさずに、良好な帯電性を得ることが可能となった。
【0091】
なお、本例では接触帯電部材2に印加する清掃バイアスのDC値などは変化させなかったが、これに限るものでなく、より清掃を強く行うために清掃バイアス時にDC値を変化させても構わない。
【0092】
〈参考例2〉
本参考例参考例1の特徴に加えて、接触帯電部材2への清掃シーケンスを行うのに合わせて、現像バイアスを変化させることにより、現像バイアスの電位よりも接触帯電部材2に印加する接触帯電部材清掃バイアス電位が帯電電位方向に対して低くならないようにすることを特徴としている。
【0093】
それにより、接触帯電部材2から排出した転写残現像剤を現像装置3内に回収しやすくすると同時に、接触帯電部材清掃バイアス印加時に現像装置3から感光体表面に現像剤が現像(付着)されてしまうのを防ぐことが可能である。
【0094】
なお、本例で用いた画像形成装置は例1とほぼ同じであるが、非画像形成時に接触帯電部材2への清掃シーケンスを行う際の現像バイアスのみが異なる。
【0095】
即ち、現像バイアスを画像形成時と非画像形成時で変化させ、画像形成時は周波数1.6kHz、ピーク間電圧が1.7kV、DC成分が−450Vの矩形交流波を印加する。また、非画像形成時は周波数1.6kHz、ピーク間電圧が1.7kV、DC成分が−300Vの矩形交流波を印加する。
【0096】
本例では、接触帯電部材表面の清掃を目的として、非画像形成時に接触帯電部材2に対して−620Vの直流電圧に周波数600Hz、ピーク間電圧が400V、DC成分が−620Vの矩形交流波を重畳している。本例は注入帯電機構を用いているため、感光体表面上はほぼ接触帯電部材2に印加する電位に等しくなる。そのため、接触帯電部材2に本例の清掃バイアスのような交流電圧を印加した場合には、その交流電圧に応じた電位ムラが感光体表面に生じてしまう。
【0097】
例えば、本例では−620Vを中心としてプラス・マイナス200Vの微少な領域毎の電位ムラが生じてしまう。すなわち、接触帯電部材清掃バイアスを印加中の感光体表面電位は−420〜820Vの範囲の電位ムラを持っていることになる。
【0098】
そのため、本例の画像形成時における現像バイアスのような周波数1.6kHz、ピーク間電圧が1.7kV、DC成分が−450Vの矩形交流波を非画像形成時にも印加してしまうと、図3に示したように、現像バイアスが−450Vであるのに対して、感光体1表面電位が部分的に−420Vになっているために、感光体表面の一部に対して現像装置3から現像剤が現像(付着)されてしま
【0099】
そのため、本例では非画像形成時に接触帯電部材清掃バイアス印加中に現像バイアスを変化させて、現像バイアスを周波数1.6kHz、ピーク間電圧が1.7kV、DC成分が−300Vの矩形交流波にしてやることで、現像装置3から感光体表面への不要な現像剤の現像を防止することができる。
【0100】
また、それとともに、現像バイアスのバック・コントラスト電位(感光体表面電位と現像バイアスのDC値の差)を大きくしてやることで、接触帯電部材表面から感光体1表面に排出された転写残現像剤の現像装置への回収を促進する電位差を大きくして、回収効率を高くすることができる。
【0101】
これらの特徴により、本例では接触帯電部材表面の清掃を行った際に、転写残現像剤を効率良く回収すると共に、現像装置から現像剤が不要に現像されてしまうのを防ぐことが可能となる。
【0102】
〈実施例〉
本実施例は、接触帯電部材2に非画像形成時に印加する清掃バイアスとして、帯電電位方向に鋭いエッジを持つのこぎり波を用いることを特徴としている。
【0103】
それにより、接触帯電部材表面から転写残現像剤を清掃する際に帯電促進粒子mが過剰に排出されるのを防ぐことが可能となる。
【0104】
なお、本実施例で用いた画像形成装置は参考例2とほぼ同様であり、接触帯電部材の清掃バイアスのみが異なる。
【0105】
本実施例は、画像形成時と非画像形成時で印加バイアスを可変にしており、画像形成時は−620Vの直流電圧を印加し、非画像形成時は接触帯電部材に対して周波数600Hz、ピーク間電圧が400V、DC成分が−620Vで、帯電電位方向に鋭いエッジを持つのこぎり交流波を印加する。
【0106】
接触帯電部材表面に付着している転写残現像剤は帯電促進粒子mとの摺擦により、本来の電荷極性であるマイナスに帯電している。従って、接触帯電部材2の電位が感光体1表面の電位に対して帯電電位極性方向に大きい場合に、転写残現像剤は接触帯電部材表面から感光体1表面に排出されやすくなる。すなわち、接触帯電部材2の清掃バイアスが帯電電位方向に鋭いエッジを持つ場合には、接触帯電部材表面からの転写残現像剤の排出を有効に行うことができる。
【0107】
一方、帯電促進粒子mは転写残現像剤に対して反対の電荷極性であるプラスに帯電しているため、接触帯電部材2の電位が感光体1表面の電位に対して帯電電位極性方向に小さい場合に排出されやすくなってしまう。すなわち、接触帯電部2の清掃バイアスが帯電電位方向と逆方向に鋭いエッジを持つ場合には、接触帯電部材表面から帯電促進粒子mが排出されやすくなってしまう。
【0108】
帯電促進粒子mが接触帯電部材表面から過剰に排出された場合には、帯電性の低下が生じてしまい好ましくない。そのため、本実施例では接触帯電部材2の清掃バイアスとして、接触帯電部材2の清掃バイアスが帯電電位方向に鋭いエッジを持ち、接触帯電部材の清掃バイアスが帯電電位方向と逆方向に鋭いエッジを持たない、ような鋸波を用いる。
【0109】
この接触帯電部材の清掃バイアスを図4に示す。図4に示したように、このような波形を用いることで、接触帯電部材表面の転写残現像剤の効果的な排出を行うとともに、その際に帯電促進粒子mが過剰に排出されてしまうのを防ぐことが可能となる。
【0110】
なお、本実施例では接触帯電部材2の清掃バイアスとしてのこぎり波を用いたが、これに限るものではなく、先の二つの条件を満たす波形であれば、他の波形例えば、Dutyの異なる正弦波等を用いても良い。
【0111】
〈その他〉
1)像担持体は、コロナ帯電性が支配的なものでも、注入帯電性が支配的なものでも、どちらでもよい。
【0112】
表面に10〜1014Ω・cmの材料からなる層を具備させることで接触注入帯電性を支配的にしたものとすることができる。例えば、感光層、および表面層を有し、その表面層をSnO等の導電微粒子を分散させた樹脂層(電荷注入層)とした像担持体である。電荷注入層を用いない場合でも、例えば感光体の電荷輸送層が上記の抵抗範囲にある場合にも接触注入帯電性を支配的にしたものとすることができる。表層の体積抵抗が約1013(Ω・cm)であるアモルファスシリコン感光体などを用いても同等の効果が得られる。
【0113】
2)像担持体は感光体に限られず、静電記録誘電体等であってもよい。この場合は、一様に帯電した実施例の磁気ブラシ接触帯電装置や像担持体面を除電針アレイ、電子銃等の除電手段により選択的に除電して静電潜像を形成する。
【0114】
3)上記実施例において、像担持体の接触帯電装置は、非磁性・導電性微粉体である帯電促進粒子を用いた注入帯電装置である。
【0115】
4)現像装置の現像方式も任意である。一般的に、静電潜像の現像方法は、非磁性トナーについてはこれをブレード等でスリーブ等の現像剤担持搬送部材上にコーティングし、磁性トナーについてはこれを現像剤担持搬送部材上に磁気力によってコーティングして搬送して像担持体に対して非接触状態で適用し静電潜像を現像する方法(一成分非接触現像)と、上記のように現像剤担持搬送部材上にコーティングしたトナーを像担持体に対して接触状態で適用し静電潜像を現像する方法(一成分接触現像)と、トナー粒子に対して磁性のキャリアを混合したものを現像剤(二成分現像剤)として用いて磁気力によって搬送して像担持体に対して接触状態で適用し静電潜像を現像する方法(二成分接触現像)と、上記現像剤を像担持体に対して非接触状態で適用し静電潜像を現像する方法(二成分非接触現像)との4種類に大別される。
【0116】
5)転写手段4はローラ転写に限られず、ベルト転写やコロナ放電転写、圧力転写など任意である。
【0117】
6)転写ドラムや転写ベルト等の中間転写手段を用い、単色画像ばかりでなく、多重転写等により多色やフルカラー画像を形成する画像形成装置であってもよい。
【0118】
【発明の効果】
以上説明したように発明によれば、接触帯電方式、転写方式、トナーリサイクルシステムの画像形成装置について、転写残現像剤により汚染された帯電部材から帯電の阻害因子であるトナーを効率良く吐き出させ、良好な帯電性を長期にわたり安定に維持させることができ、直接帯電とトナーリサイクルシステムを問題なく実行でき、高品位な画像形成を長期にわたり維持させることができる。また、帯電部材表面から転写残現像剤を清掃する際に帯電促進粒子mが過剰に排出されるのを防ぐことが可能となる。
【図面の簡単な説明】
【図1】 参考例1の画像形成装置の概略構成模型図
【図2】 画像形成装置の動作シーケンス
【図3】 参考例2における、接触帯電部材清掃バイアスと現像バイアスの説明グラフ
【図4】 実施例における、接触帯電部材清掃バイアスの説明グラフ
【符号の説明】
1・・像担持体(感光体)、2・・接触帯電部材、m・・帯電促進粒子、3・・現像装置、31・・現像剤、4・・転写ローラ、5・・定着装置、C・・プロセスカートリッジ、10・・レーザースキャナ、100・・制御回路部
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an image forming apparatus such as an electrophotographic system or an electrostatic recording system, in which a charging process means for charging an image bearing member is a contact charging apparatus, which is a transfer system and cleanerless.
[0002]
[Prior art]
  (A) Contact charging device
  Conventionally, for example, in an image forming apparatus such as an electrophotographic system or an electrostatic recording system, an image carrier such as an electrophotographic photosensitive member or an electrostatic recording dielectric is uniformly charged to a required polarity and potential (including static elimination). The corona charger (corona discharger) was used as the charging device.
[0003]
  The corona charger is a non-contact type charging device, for example, includes a discharge electrode such as a wire electrode and a shield electrode surrounding the discharge electrode, and is disposed in a non-contact manner with the discharge opening facing the object to be charged. The surface of the object to be charged is charged to a predetermined level by exposing the surface of the object to be charged to a discharge current (corona shower) generated by applying a high voltage to the discharge electrode and the shield electrode.
[0004]
  In the contact charging device, a conductive charging member such as a roller type (charging roller), a fur brush type, a magnetic brush type, a blade type or the like is brought into contact with an object to be charged, and a predetermined charging bias is applied to the contact charging member. Thus, the surface of the image carrier is charged to a predetermined polarity and potential.
[0005]
  The contact charging mechanism (charging mechanism, charging principle) has two types of charging mechanisms: a discharge charging mechanism and an injection charging mechanism (direct charging mechanism), and each characteristic depends on which is dominant. appear.
[0006]
  [Discharge charging mechanism]
  This is a mechanism for charging the surface of the member to be charged by a discharge phenomenon that occurs in a minute gap between the contact charging member and the member to be charged.
[0007]
  Since the discharge charging mechanism has a certain discharge threshold between the contact charging member and the member to be charged, it is necessary to apply a voltage larger than the charging potential to the contact charging member. Further, although the generation amount is remarkably smaller than that of the corona charger, it is unavoidable that a discharge product is generated in principle, and thus harmful effects due to active ions such as ozone are unavoidable.
[0008]
  [Injection charging mechanism]
  This is a mechanism for charging the surface of the member to be charged by directly injecting the charge from the contact charging member to the member to be charged. Also called direct charging.
[0009]
  More specifically, a medium-resistance contact charging member comes into contact with the member to be charged, and charges are directly injected into the surface of the member to be charged without going through a discharge phenomenon, that is, basically without using discharge. Therefore, even if the applied voltage to the contact charging member is an applied voltage that is equal to or lower than the discharge threshold, the object to be charged can be charged to a potential corresponding to the applied voltage. Since this injection charging mechanism does not involve the generation of ions, there is no adverse effect caused by the discharge product.
[0010]
  However, since the charging is injection charging, the contact property of the contact charging member to the member to be charged greatly affects the charging property. Therefore, the contact charging member needs to be configured more densely, have a large speed difference from the object to be charged, and must be configured to contact the object to be charged more frequently.
[0011]
  The magnetic brush charging device is a charging means in which the injection charging mechanism is dominant.
[0012]
  In addition, the injection charging mechanism is dominant in the particle charging device disclosed in, for example, Japanese Patent Application Laid-Open No. 10-307454-30759, etc., which is contact-charged through non-magnetic / conductive fine particles (charged particles, charge promoting particles)NaIt is a charging means.
[0013]
  (B) Cleanerless (toner recycling system)
  In a conventional general transfer type image forming apparatus, a transfer residual developer (toner) remaining on an image carrier after transfer is removed from the image carrier surface by a cleaner (cleaning device) to become waste toner. It is desirable that this waste toner does not come out from the viewpoint of environmental protection.
[0014]
  Therefore, the cleaner is eliminated, and the transfer residual developer on the image carrier after transfer is removed from the image carrier by “development simultaneous cleaning” by the developing device, and the cleaner-less image is collected and reused in the developing device. A forming device has also appeared.
[0015]
  Simultaneous development cleaning is a fog removal bias (a difference in fog removal potential, which is the difference between the DC voltage applied to the developing device and the surface potential of the image carrier) when developing on the image carrier after the transfer. Vback). According to this method, the untransferred developer is collected by the developing device and reused in the subsequent steps, so that waste toner can be eliminated and maintenance work can be reduced. Further, the cleanerless has a great advantage in terms of space, and the image forming apparatus can be greatly downsized.
[0016]
  (C) Contact charging, transfer, and cleanerless image forming apparatus
  In a transfer type / cleanerless image forming apparatus, when a contact charging device is adopted as the charging means for the image carrier, the transfer residual in the developing device is caused by the scattering effect of the transfer residual developer by the charging member in contact with the image carrier. Positive ghosts due to poor developer recovery can be suppressed. Since it is cleanerless, there is an advantage that there is no damage to the surface of the image carrier due to the cleaning member that is in contact with and rubs against the surface of the image carrier.
[0017]
  Magnetic brush charging using, as a contact charging member, a magnetic brush charging member having a magnetic brush portion in which conductive magnetic particles are magnetically constrained into a brush shape is preferably used in a cleanerless process.
[0018]
  Further, in the particle charging method disclosed in Japanese Patent Application Laid-Open No. 10-307454-30759 and the like, in which contact charging is performed via charge accelerating particles, the charge accelerating particles are externally added to the developer of the developing device in advance, together with the developer. There is also disclosed a method for realizing a cleanerless process by supplying charging promoting particles to a contact charging member by developing (attaching to an image carrier).
[0019]
[Problems to be solved by the invention]
  In an image forming apparatus of contact charging type / transfer type / cleanerless, the transfer residual developer adhering / mixing (temporarily recovered) to the contact charging member is adjusted to the normal polarity and the contact charging member is changed to the image carrier. The toner is sequentially discharged electrostatically, is carried to the developing unit by the subsequent rotation of the image carrier, and is collected and reused by the developing device through the simultaneous development cleaning.
[0020]
  However, transfer that adheres to and mixes with the contact charging member due to a loss of quantitative balance between the amount of residual developer that adheres to and mixes with the contact charging member and the amount of developer that is electrostatically discharged from the contact charging member. If the remaining developer accumulates and the contact charging member is unacceptably contaminated with the developer, the chargeability is lowered.
[0021]
  Therefore, the applicant previously applied an AC voltage of 5 to 500 Hz in order to positively clean the transfer residual developer adhering to the surface of the contact charging member as described in JP-A-11-149205. The technology to do is proposed. This technology is effective for low-speed printing type devices, but it may not be sufficient for long-term stability, and charging performance may be reduced when performing high-speed printing. .
[0022]
  The present invention relates to a further improvement of this technology, and as a contact charging system, transfer system, and cleanerless image forming apparatus, even if it is durable over a long period of time or in the case of a high-speed printing type apparatus, it is a transfer residual development. It is an object of the present invention to provide an image forming apparatus capable of maintaining good chargeability and image quality by preventing the agent from accumulating unacceptably on the surface of the contact charging member.
[0023]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention is an image forming apparatus having the following configuration.
[0024]
    An image carrier;
  A charging member that contacts the image carrier with a peripheral speed difference to charge the image carrier;
  A developing device for developing the electrostatic latent image formed on the image carrier with a developer;
In an image forming apparatus comprising:
  Non-magnetic conductive particles are carried on the surface of the charging member, and the conductive particles are charged to a polarity opposite to the charging polarity of the developer by rubbing with the developer,
  The developing device can collect the developer remaining on the image carrier,
  During non-image formationThe aboveFor charging member, Charging memberAC bias for cleaningApplied,
  The exchangebiasofThe frequency (Hz = cycle / s),
  Alternating currentBias frequency (Hz = cycle / s)> ([Peripheral speed of image carrier(Mm / s)] ×[bandElectric member peripheral speed (%)] × 10 (cycle)) / ([length of contact portion between image carrier and charging member (mm)] × (100% +[bandElectrical member peripheral speed (%)]))age,
  In addition, the change in potential per unit time when the AC bias increases in the same direction as the polarity of the developer increases in potential per unit time when the amount of change in potential increases in the direction opposite to the polarity of the developer. The waveform is larger than the amountAn image forming apparatus.
[0025]
[0026]
[0027]
[0028]
[0029]
[0030]
[0031]
[0032]
DETAILED DESCRIPTION OF THE INVENTION
  <Reference Example 1>
  Figure 1Reference example2 is a schematic configuration model diagram of the image forming apparatus of FIG.This exampleThe image forming apparatus is a copier or a printer using a transfer type electrophotographic process, an injection charging method using charge accelerating particles, a laser beam scanning exposure method, a reversal development method, a cleanerless process cartridge method.
[0033]
  (1) Description of overall schematic configuration of image forming apparatus
  [Image carrier]
  Reference numeral 1 denotes a rotating drum type electrophotographic photosensitive member as an image carrier.This exampleThe image forming apparatus uses reversal development and uses a negative photosensitive member.
[0034]
  This exampleThe photosensitive member 1 is an OPC photosensitive member having a diameter of 30 mm, and is driven to rotate at a peripheral speed (= process speed) of 200 mm / sec in the clockwise direction of an arrow.
[0035]
  [Charge]
  Reference numeral 2 denotes a conductive elastic roller as a contact charging member brought into contact with the photoreceptor 1. The surface of the contact charging member 2 is coated with the charge accelerating particles m in advance. The photoreceptor 1 and the contact charging member 2 have a peripheral speed difference.This exampleThen, the contact charging member 2 is driven at a peripheral speed of 150% in the opposite direction (counter direction) to the rotation direction of the photosensitive member 1 in the charging portion a which is a contact portion with the photosensitive member 1.
[0036]
  Here, driving at a peripheral speed of 150% is a peripheral speed of 300 mm / sec in the facing direction (counter direction). 100% here means that “the speed of the surface of the contact charging member 2” is the same as the “speed of the surface of the photoreceptor 1” (however, the direction is opposite). Therefore, in the case of 150%, it is 300 mm / s at 200 mm / sec × 150%.
[0037]
  A DC voltage of −620 V is applied as a charging bias from the charging bias power source S1 to the contact charging member 2 so that the outer peripheral surface of the photoreceptor 1 is uniformly charged to approximately −600 V during image formation. The charging mechanism is dominated by the injection charging mechanism.
[0038]
  AlsoThis exampleThe applied voltage to the contact charging member 2 is variable between the image forming time and the non-image forming time, and the DC voltage of −620 V is applied as described above during the image forming time. At that time, a rectangular AC wave having a frequency of 600 Hz, a peak-to-peak voltage of 400 V, and a DC component of -620 V is applied.
[0039]
  As will be described later, the charge accelerating particles m are also mixed in the developer 31 of the developing device 3 at a predetermined mixing ratio, and the charge accelerating particles m mixed in the developer 31 adhere to the surface of the photoreceptor 1 during development. Then, it is carried to the charging unit a and supplied.
[0040]
  [Exposure]
  Laser beam scanning exposure L by a laser beam scanner 10 including a laser diode, a polygon mirror, and the like is performed on the charged surface of the photosensitive member 1 in the exposure unit b.
[0041]
  The laser beam scanner 10 outputs a laser beam whose intensity is modulated in accordance with the time-series electric digital pixel signal of the target image information, and performs scanning exposure L on the charged surface of the photoreceptor 1. Thereby, an electrostatic latent image corresponding to the target image information is formed on the outer peripheral surface of the photoreceptor 1.This exampleThen, an electrostatic latent image having an image resolution of 600 dpi is formed.
[0042]
  [Current image]
  The electrostatic latent image is developed as a toner image by the reversing non-contact developing device 3 using a negatively chargeable magnetic one-component insulating toner having an average particle diameter of 6 μm as the developer 31.
[0043]
  Reference numeral 32 denotes a non-magnetic developing sleeve having a diameter of 16 mm containing a magnet 33. The developing sleeve 32 is coated with the developer 31 and the distance from the surface of the photosensitive member 1 is fixed to 500 μm. The developing bias voltage is applied to the developing sleeve 32 from the developing bias power source S2 by rotating at a constant speed. The developer 31 is triboelectrically charged by sliding with the developing elastic blade 34 and has a charge. By applying a predetermined developing bias to the developing sleeve 32, one-component jumping development is performed between the developing sleeve 32 and the photoreceptor 1 in the developing portion c.
[0044]
  As the developing bias, a rectangular AC wave having a frequency of 1.6 kHz, a peak-to-peak voltage of 1.7 kV, and a DC component of −400 V is applied.
[0045]
  [Transfer]
  On the other hand, a transfer material P as a recording material is supplied from a paper supply unit (not shown), and the photosensitive member 1 and a transfer roller 4 with medium resistance as contact transfer means brought into contact with the photoconductor 1 with a predetermined pressing force. Are introduced at a predetermined timing into the transfer part d which is the pressure contact part.
[0046]
  A predetermined transfer bias power source is applied to the transfer roller 4 from a transfer bias application power source S3.This exampleThen, as the transfer roller 4, the roller resistance value = 5 × 108Transferring was performed by applying a DC voltage of +3000 V using an Ω.
[0047]
  The transfer material P introduced into the transfer portion d is transferred to the transfer portion d.PinchingThe developer image formed and supported on the surface of the photosensitive member 1 is transferred onto the surface side in succession by the electrostatic force and the pressing force.
[0048]
  [Fixed]
  The transfer material P that has received the transfer of the developer image is separated from the surface of the photoreceptor 1 and is introduced into a fixing device 5 such as a heat fixing system, where the developer image is fixed, and as an image formed product (print, copy). It is discharged out of the device.
[0049]
  [Cleanerless]
  The transfer residual developer remaining on the surface of the photoconductor 1 after the transfer material is separated is not removed from the surface of the photoconductor 1 by a dedicated cleaning device (cleaner) because the image forming apparatus is cleanerless. As the body 1 rotates, it is carried to the charging part a and adheres to and mixes with the contact charging member 2 (temporary recovery of the transfer residual developer by the contact charging member). Then, the transfer residual developer adhering to and mixed in the contact charging member 2 is adjusted to the normal polarity, and is discharged electrostatically and sequentially from the contact charging member 2 to the photosensitive member 1, and developed by the subsequent rotation of the photosensitive member 1. It is carried to the part c and is collected and reused by the developing device 3 by the simultaneous development cleaning.
[0050]
  [cartridge]
  This exampleThe image forming apparatus is a cartridge-type apparatus in which three process devices including a photosensitive member 1, a contact charging member 2, and a developing device 3 are included in a cartridge C and can be attached to and detached from the main body of the image forming apparatus. However, it is not limited to this. Reference numerals 9 and 9 denote part of the process cartridge attachment / detachment guide / holding member on the image forming apparatus side.
[0051]
  Here, the process cartridge is a cartridge in which a charging unit, a developing unit or a cleaning unit and an image carrier are integrally formed, and the cartridge can be attached to and detached from the image forming apparatus main body. In addition, at least one of the charging unit, the developing unit, and the cleaning unit and the image carrier are integrally formed into a cartridge, and the cartridge can be attached to and detached from the image forming apparatus main body. Further, at least the developing means image carrier is integrally formed into a cartridge, and the cartridge can be attached to and detached from the image forming apparatus main body.
[0052]
  (2) Operation sequence of image forming apparatus
  FIG. 2 is an operation sequence diagram of the image forming apparatus.
[0053]
  1)Pre-multi-rotation process: a starting operation period (starting operation period, warming period) of the image forming apparatus. When the main power switch is turned on, the main motor of the apparatus is driven to rotationally drive the photosensitive member to execute a preparatory operation for a predetermined process device.
[0054]
  2)Pre-rotation step: This is a period during which the pre-printing operation is executed. This pre-rotation process is executed subsequent to the pre-multi-rotation process when a print signal is input during the pre-multi-rotation process. When no print signal is input, the main motor is temporarily stopped after completion of the previous multi-rotation process, and the rotation of the photosensitive member is stopped. The apparatus is kept in a standby state until a print signal is input. . When the print signal is input, the pre-rotation process is executed.
[0055]
  3)Printing process (image forming process, image forming process): When a predetermined pre-rotation process is completed, an image forming process for the rotating photoconductor is subsequently executed, and a developer image formed on the surface of the rotating photoconductor is transferred to a transfer material. Then, the developer image is fixed by the fixing means, and the image formed product is printed out.
[0056]
  In the case of the continuous printing (continuous printing) mode, the above printing process is repeated for a predetermined set number of prints.
[0057]
  4)Inter-sheet process: In the continuous print mode, after the trailing edge of one transfer material passes through the transfer portion, the transfer material is not allowed to pass through the transfer portion until the leading edge of the next transfer material reaches the transfer portion. It is a paper state period.
[0058]
  5)Post-rotation process: This is a period during which a predetermined post-operation is executed by continuing to drive the main motor for a while even after the last transfer material printing process is completed to rotate the photosensitive drum.
[0059]
  6)Standby: When the predetermined post-rotation process is completed, the drive of the main motor is stopped, the rotation of the photosensitive member is stopped, and the apparatus is kept in a standby state until the next print start signal is input.
[0060]
  In the case of printing only one sheet, after the printing is completed, the apparatus goes into a standby state through a post-rotation process.
[0061]
  When a print start signal is input in the standby state, the apparatus shifts to a pre-rotation process.
[0062]
  3)The printing process is the time of image formation,1)Before multi-rotation process,2)Pre-rotation process,4)Inter-paper process,5)The post-rotation process is during non-image formation (non-image formation).
[0063]
  In FIG. 1, reference numeral 100 denotes a control circuit unit that controls all operations of the image forming apparatus.
[0064]
  (3) Contact charging member 2
  This exampleThe conductive elastic roller 2 as a contact charging member is formed by forming a middle resistance layer 22 of rubber or foam on a cored bar 21. The middle resistance layer 22 is made of resin (This exampleAnd urethane), conductive particles (for example, carbon black), a sulfurizing agent, a foaming agent, and the like, and formed on the core metal 21 in a roller shape. Thereafter, the surface was polished.
[0065]
  The resistance value of the contact charging member 2 was measured as follows. That is, the photoreceptor 1 of the image forming apparatus is replaced with an aluminum drum. Thereafter, a voltage of 100 V was applied between the aluminum drum and the contact charging member 2, and the resistance value of the contact charging member 2 was obtained by measuring the current value flowing at that time.
[0066]
  This exampleThe resistance value of the contact charging member 2 used in FIG.6Ω. This measurement was performed in an environment of a temperature of 25 ° C. and a humidity of 60%. About this measurement environment,This exampleAnd otherReference Example 2,The same applies to other measurements in the examples.
[0067]
  The average cell diameter on the surface of the contact charging member 2 was 20 μm for each resistance value. The average cell diameter was measured by observation with an optical microscope.
[0068]
  (4) Charge promoting particles m
  This exampleThen, the specific resistance is 10 as the charge promoting particles m.7Conductive zinc oxide particles having an Ω · cm and an average particle diameter of 1 μm were used.
[0069]
  The particle size was defined as the average particle size of the aggregates when the particles were configured as aggregates. For the measurement of the particle size, 100 or more samples were extracted from observation with an optical or electron microscope, the volume particle size distribution was calculated with the maximum horizontal chord length, and the 50% average particle size was determined.
[0070]
  Resistance was measured by the tablet method and normalized. Bottom area 2.26cm2A powder sample of about 0.5 g is placed in the cylinder, and 147 N (15 kg) is applied to the upper and lower electrodes. At the same time, a voltage of 100 V is applied to measure the resistance value, and then normalized to calculate the specific resistance. did.
[0071]
  This exampleThe charge-promoting particles m used in 1) are suitably colorless or white particles so as not to interfere with the latent image exposure. Further, the image exposure may be blocked unless the particle size is about ½ or less of the particle size of the developer (toner) 31. So it needs to be smaller.
  As a material for the charge promoting particles m,This exampleIn this example, conductive zinc oxide particles are used. However, the present invention is not limited to this, and various conductive particles such as conductive inorganic particles such as other metal oxides and mixtures with organic substances can be used as the material of the particles.
[0072]
  (5) Developer 31
  This exampleThe developer 31 used in Example 1 contained a binder resin mainly composed of a styrene-acrylic copolymer, 60% by weight of magnetite, and 1% by weight of a metal complex salt of a monoazo dye as a negative charge control material. The rate is about 1013An Ω · cm magnetic one-component insulating toner obtained by adding 0.8% of silica fine particles hydrophobized to impart fluidity to the developer by weight is used.
[0073]
  Further, in a comparative example described later, developer A is the developer described above, and developer B is substantially the same as developer A, but the metal complex salt of a monoazo dye that is a negative charge control material is 1.1. The developer was changed to wt%, and the developer C was similarly changed to 0.9 wt%.
[0074]
  The toner 31 as a developer is mixed with the charge promoting particles m, and the amount of the mixing is 2 parts by weight of the charge promoting particles with respect to 100 parts by weight of the developer. However, the mixing amount is not limited to this amount.
[0075]
  This exampleThen, by charging the charge electrifying particles m on the contact charging member 2 in advance, the charging property at the initial stage of use of the apparatus is secured, and the charge promoting particles m are mixed into the developer 31 of the developing device as described above. In addition, the charge accelerating particles m are supplied from the developing device 3 to the contact charging member 2 through the surface of the photoreceptor.
[0076]
  That is, the charge accelerating particles m mixed in the developer 31 in the developing device 3 adhere to the developer 31 and migrate and adhere to the surface of the photoreceptor 1 when developing the electrostatic latent image. In addition, since a negative charge control agent is added to the developer 31, the charge accelerating particles m are frictionally charged against the positive charge and have a positive charge of opposite polarity. Therefore, the charge accelerating particles m in the developer 31 on the developing sleeve 32 are supplied from the developing sleeve 32 to the surface of the photoreceptor 1 due to a potential difference between the developing sleeve 32 and the surface of the photoreceptor 1.
[0077]
  Since the charge accelerating particles m have a charge with a polarity opposite to that of the developer 31, they are not substantially transferred to the transfer material P in the transfer portion d and are carried to the charging portion a, resulting in contact charging. The material 2 is supplied and coated. By supplying and coating the charge accelerating particles m to the contact charging member 2 in this manner, the state where the charge accelerating particles m are always interposed in the charging portion a is maintained, and good chargeability can be obtained.
[0078]
  (6) Cleaning bias application sequence for the contact charging member 2
  This exampleApplies a cleaning bias including an AC bias for cleaning the surface of the contact charging member 2 to the contact charging member 2 during non-image formation, and the cleaning bias frequency (Hz = cycle / s) is
  Cleaning bias frequency (Hz = cycle / s)> ([process speed (mm / s)] × [contact charging member peripheral speed (%)] × 10 (cycle)) / ([contact between image carrier and contact charging member] Part length (mm)] × (100% + [contact charging member peripheral speed (%)]))
  It sets so that it may become.
[0079]
  The cleaning bias application sequence for the contact charging member 2 is the same as the operation sequence of the image forming apparatus described in the item (2).1) ・ 2) ・ 4) ・ 5)It is not necessary to execute at the time of all non-image formation, or at the time of forming one or a plurality of non-images, or at least a predetermined time within one or a plurality of non-image formation It can also be.
[0080]
  This exampleUses a cleaner-less process that does not include a step of cleaning a residual transfer developer remaining on the surface of the photoreceptor 1 after the transfer step. Therefore, the transfer residual developer adheres to the surface of the contact charging member 2 in the charging step. Therefore, as described above, there is a conventional technique in which an AC voltage of 5 to 500 Hz is applied in order to clean the surface of the contact charging member during non-image formation as described in JP-A-11-149205. However, even when this technique is used, the surface of the contact charging member is not sufficiently cleaned when high-speed printing or long-term printing is performed, and the chargeability may be deteriorated.
[0081]
  The reason why the charging property is lowered is that this conventional technique is considered only for low-speed printing, and when high-speed printing is performed, uneven cleaning on the surface of the contact charging member may occur remarkably. A point is mentioned.
[0082]
  In particular,This exampleIn a device having a process speed of about 200 mm / s, when a cleaning bias is applied to the surface of the contact charging member at about 500 Hz, the surface of the contact charging member has “cleaning unevenness corresponding to its frequency”. The charged potential on the surface of the photoreceptor 1 is affected.
[0083]
  The contact charging member 2 forms a contact portion a having a certain length (circumferential length: nip width) n with respect to the surface of the photoreceptor 1. If the “size of cleaning unevenness on the surface of the contact charging member” is sufficiently short with respect to the length n of the contact portion a, charging potential unevenness does not occur on the surface of the photoreceptor. However, when the length of the contact portion a between the contact charging member 2 and the surface of the photoreceptor 1 is not negligible, the contact charging member 2 causes unevenness in the charging performance on the surface of the photosensitive member 1, and as a result, uneven charging occurs on the surface of the photosensitive member 1.
[0084]
  For example, the process speed is 200 mm / sThis exampleIn the case where an AC voltage of 200 Hz is used as the cleaning bias, unevenness on the surface of the contact charging member is
  200 (mm / s) [process speed] × 150% [contact charging member peripheral speed] / 200
(Hz = cycle / s) ≈1.5 (mm / cycle)
It becomes.
[0085]
  This exampleThen, the length n of the contact portion a between the contact charging member 2 and the surface of the photoreceptor 1 is about 2 mm, and the length of the contact charging member 2 that rubs while the surface of the photoreceptor 1 passes through the contact portion a is
  2 (mm) [length n of contact part a] × (100% + 150% [contact charging member peripheral speed])
≒ 5mm
It becomes.
[0086]
  In this case, the length of the contact charging member on which the surface of the photosensitive member 1 rubs is only 5 mm, which is about three times as high as 1.5 mm, which is the size of the cleaning unevenness on the surface of the contact charging member. For this reason, when the surface of the photosensitive member 1 is charged, uneven cleaning on the surface of the contact charging member cannot be ignored, and uniform chargeability cannot be obtained.
[0087]
  This exampleAs a result of an experiment in which the frequency of the cleaning bias was changed using the image forming apparatus, the “size of uneven cleaning on the surface of the contact charging member” was changed to “the length of the contact charging member on which the surface of the photosensitive member 1 rubs”. On the other hand, if the ratio exceeds 1/10, uneven charging occurs.
[0088]
  That is,
  “Size of cleaning unevenness of contact charging member surface” = 200 (mm / s) [process speed] × 150% [contact charging member peripheral speed] / 200 (Hz = cycle / s)
But,
  “Contact charging member length with which the surface of photoconductor 1 rubs” = 2 (mm) [length of contact portion] × (100% + 150% [contact charging member peripheral speed]) / 10 (cycle / s)
It is necessary to be smaller. If you write this in general,
  [Length of contact portion] (mm) × (100% + [contact charging member peripheral speed] (%)) / 10 (cycle / s)> [process speed] (mm / s) × [contact charging member peripheral speed ] (%) / [Cleaning bias frequency] (Hz = cycle / s)
  Because
  Cleaning bias frequency (Hz = cycle / s)> ([process speed (mm / s)] × [contact charging member peripheral speed (%)] × 10 (cycle)) / ([contact between image carrier and contact charging member] Part length (mm)] × (100% + [contact charging member peripheral speed (%)]))
If so, cleaning unevenness on the surface of the contact charging member did not affect the chargeability.
[0089]
  This exampleIf you say
  200 (mm / s) × 150% × 10 (cycle) / (2 (mm) × (100 + 150) (%)) = 600 (Hz = cycle / s)
Therefore, when a frequency of 600 Hz or more was applied as a cleaning bias for the contact charging member 2, a good image without charging unevenness was obtained.
[0090]
  in this way,This exampleIs the frequency of the cleaning bias on the surface of the contact charging member,
  Cleaning bias frequency (Hz = cycle / s)> ([process speed (mm / s)] × [contact charging member peripheral speed (%)] × 10 (cycle)) / ([contact between image carrier and contact charging member] Part length (mm)] × (100% + [contact charging member peripheral speed (%)]))
By setting so as to be, it becomes possible to obtain good chargeability without the cleaning unevenness of the surface of the contact charging member due to the frequency of the cleaning bias affecting the chargeability.
[0091]
  In addition,This exampleThen, the DC value or the like of the cleaning bias applied to the contact charging member 2 is not changed, but the present invention is not limited to this, and the DC value may be changed at the time of the cleaning bias in order to perform stronger cleaning.
[0092]
  <Reference Example 2>
  This reference exampleIsReference example 1In addition to the above characteristics, by changing the development bias in accordance with the cleaning sequence for the contact charging member 2, the contact charging member cleaning bias potential applied to the contact charging member 2 is charged rather than the potential of the development bias. It is characterized by not being lowered with respect to the potential direction.
[0093]
  As a result, the residual transfer developer discharged from the contact charging member 2 can be easily collected in the developing device 3, and at the same time, the developer is developed (attached) from the developing device 3 to the surface of the photosensitive member when the contact charging member cleaning bias is applied. Can be prevented.
[0094]
  In addition,This exampleThe image forming apparatus used in 1 is almost the same as in Example 1, but only the developing bias when performing the cleaning sequence for the contact charging member 2 during non-image formation is different.
[0095]
  That is, the developing bias is changed between image formation and non-image formation, and a rectangular alternating wave having a frequency of 1.6 kHz, a peak-to-peak voltage of 1.7 kV, and a DC component of −450 V is applied during image formation. In non-image formation, a rectangular AC wave having a frequency of 1.6 kHz, a peak-to-peak voltage of 1.7 kV, and a DC component of −300 V is applied.
[0096]
  This exampleThen, for the purpose of cleaning the surface of the contact charging member, a rectangular AC wave having a frequency of 600 Hz, a peak-to-peak voltage of 400 V, and a DC component of −620 V is superimposed on a DC voltage of −620 V with respect to the contact charging member 2 during non-image formation. ing.This exampleSince the injection charging mechanism is used, the surface of the photosensitive member is substantially equal to the potential applied to the contact charging member 2. Therefore, the contact charging member 2This exampleWhen an AC voltage such as a cleaning bias is applied, potential unevenness corresponding to the AC voltage occurs on the surface of the photoreceptor.
[0097]
  For example,This exampleThen, the potential unevenness in each minute region of plus / minus 200V around −620V occurs. That is, the photosensitive member surface potential during application of the contact charging member cleaning bias has potential unevenness in the range of −420 to 820V.
[0098]
  for that reason,This exampleAs shown in FIG. 3, if a rectangular AC wave having a frequency of 1.6 kHz, a peak-to-peak voltage of 1.7 kV, and a DC component of −450 V is applied even during non-image formation, like the developing bias during image formation of Furthermore, since the developing bias is −450 V, the surface potential of the photoconductor 1 is partially −420 V, so that the developer is developed from the developing device 3 on a part of the surface of the photoconductor (see FIG. Have been attached)
[0099]
  for that reason,This exampleThen, by changing the developing bias during application of the contact charging member cleaning bias during non-image formation, the developing bias is changed to a rectangular AC wave having a frequency of 1.6 kHz, a peak-to-peak voltage of 1.7 kV, and a DC component of −300 V. Unnecessary development of the developer from the developing device 3 onto the surface of the photoreceptor can be prevented.
[0100]
  At the same time, by increasing the back contrast potential of the developing bias (difference between the DC value of the photosensitive member surface potential and the developing bias), the transfer residual developer discharged from the contact charging member surface to the photosensitive member 1 surface is increased. Recovery potential can be increased by increasing the potential difference that promotes recovery to the developing device.
[0101]
  With these features, in this example, when the surface of the contact charging member is cleaned, it is possible to efficiently collect the transfer residual developer and prevent the developer from being unnecessarily developed from the developing device. Become.
[0102]
  <Example>
  This embodiment is characterized in that a sawtooth wave having a sharp edge in the charging potential direction is used as a cleaning bias applied to the contact charging member 2 during non-image formation.
[0103]
  Thereby, it is possible to prevent the charge promoting particles m from being excessively discharged when the transfer residual developer is cleaned from the surface of the contact charging member.
[0104]
  The image forming apparatus used in this example isReference example 2And the cleaning bias of the contact charging member is different.
[0105]
  In this embodiment, the applied bias is variable during image formation and non-image formation, a DC voltage of -620 V is applied during image formation, and a frequency of 600 Hz and peak is applied to the contact charging member during non-image formation. A sawtooth alternating current wave having a sharp edge in the charging potential direction with an inter-voltage of 400 V and a DC component of −620 V is applied.
[0106]
  The residual transfer developer adhering to the surface of the contact charging member is negatively charged as the original charge polarity by rubbing against the charge accelerating particles m. Therefore, when the potential of the contact charging member 2 is larger in the charging potential polarity direction than the potential of the surface of the photoreceptor 1, the residual transfer developer is easily discharged from the surface of the contact charging member to the surface of the photoreceptor 1. That is, when the cleaning bias of the contact charging member 2 has a sharp edge in the charging potential direction, the transfer residual developer can be effectively discharged from the surface of the contact charging member.
[0107]
  On the other hand, since the charge accelerating particles m are positively charged with the opposite charge polarity to the residual transfer developer, the potential of the contact charging member 2 is smaller in the direction of the charged potential polarity than the potential of the surface of the photoreceptor 1. It becomes easy to be discharged in case. That is, when the cleaning bias of the contact charging unit 2 has a sharp edge in the direction opposite to the charging potential direction, the charge accelerating particles m are easily discharged from the surface of the contact charging member.
[0108]
  If the charge accelerating particles m are excessively discharged from the surface of the contact charging member, the chargeability is lowered, which is not preferable. Therefore, in this embodiment, as the cleaning bias of the contact charging member 2, the cleaning bias of the contact charging member 2 has a sharp edge in the charging potential direction, and the cleaning bias of the contact charging member has a sharp edge in the direction opposite to the charging potential direction. No sawtooth wave is used.
[0109]
  FIG. 4 shows the cleaning bias of the contact charging member. As shown in FIG. 4, by using such a waveform, the transfer residual developer on the surface of the contact charging member is effectively discharged, and at the same time, the charge promoting particles m are excessively discharged. Can be prevented.
[0110]
  In the present embodiment, the sawtooth wave is used as the cleaning bias of the contact charging member 2, but the present invention is not limited to this, and any other waveform, for example, a sine wave having a different duty, may be used as long as the above two conditions are satisfied. Etc. may be used.
[0111]
  <Others>
  1) The image carrier may be either one having a dominant corona chargeability or one having a dominant injection chargeability.
[0112]
  10 on the surface9-1014By providing a layer made of a material of Ω · cm, the contact injection charging property can be made dominant. For example, it has a photosensitive layer and a surface layer, and the surface layer is SnO.2And a resin layer (charge injection layer) in which conductive fine particles are dispersed. Even when the charge injection layer is not used, for example, even when the charge transport layer of the photoreceptor is in the above resistance range, the contact injection charging property can be made dominant. The volume resistance of the surface layer is about 1013The same effect can be obtained even if an amorphous silicon photoconductor (Ω · cm) is used.
[0113]
  2) The image carrier is not limited to a photoconductor, and may be an electrostatic recording dielectric or the like. In this case, an electrostatic latent image is formed by selectively discharging the uniformly charged magnetic brush contact charging device of the embodiment or the surface of the image carrier by a discharging means such as a discharging needle array or an electron gun.
[0114]
  3)In the above embodiment,Image carrier contact charging device, NonInjection charging device using electrification promoting particles that are magnetic and conductive fine powderIt is.
[0115]
  4) The developing system of the developing device is also arbitrary. In general, the electrostatic latent image is developed by coating a non-magnetic toner on a developer carrying member such as a sleeve with a blade or the like, and magnetic toner on a developer carrying member. A method of developing an electrostatic latent image by coating and transporting by force and applying it in a non-contact state to the image carrier (one-component non-contact development), and coating on the developer carrying member as described above A method of developing an electrostatic latent image by applying toner in contact with an image carrier (one-component contact development) and a developer obtained by mixing a magnetic carrier with toner particles (two-component developer) And a method of developing the electrostatic latent image by conveying it by magnetic force and applying it in contact with the image carrier (two-component contact development), and the developer in a non-contact state with respect to the image carrier. Apply and develop electrostatic latent image It is roughly divided into four types of modulo (two component non-contact development).
[0116]
  5) The transfer unit 4 is not limited to roller transfer, and may be any transfer such as belt transfer, corona discharge transfer, or pressure transfer.
[0117]
  6) An image forming apparatus that uses an intermediate transfer means such as a transfer drum or a transfer belt to form not only a single color image but also a multicolor or full color image by multiple transfer or the like may be used.
[0118]
【The invention's effect】
  As described above, according to the invention, the image forming apparatus of the contact charging system, the transfer system, and the toner recycling system is contaminated by the residual transfer developer.StripEfficiently discharges toner, which is a charging inhibiting factor, from electric members, can maintain good chargeability stably over a long period of time, can execute direct charging and toner recycling system without any problems, and achieve high-quality image formation for a long time Can be maintained over time.In addition, it is possible to prevent the charge accelerating particles m from being excessively discharged when the transfer residual developer is cleaned from the surface of the charging member.
[Brief description of the drawings]
[Figure 1]Reference example 1Schematic model diagram of image forming apparatus
FIG. 2 is an operation sequence of the image forming apparatus.
[Fig. 3]Reference example 2Explanation of contact charging member cleaning bias and development bias
[Fig. 4]ExampleExplanation of contact charging member cleaning bias
[Explanation of symbols]
  1 .... Image carrier (photoconductor) 2..Contact charging member, m..Charge accelerating particles 3 .... developing device 31, ... developer, 4 .... transfer roller, 5 .... fixing device, C・ ・ Process cartridge, 10 ・ ・ Laser scanner, 100 ・ ・ Control circuit

Claims (1)

像担持体と、
前記像担持体に周速差を持って接触して前記像担持体を帯電する帯電部材と、
前記像担持体に形成された静電潜像を現像剤により現像する現像装置と、
を備える画像形成装置において、
前記帯電部材の表面には、非磁性の導電粒子が担持されており、前記導電粒子は、前記現像剤との摺擦により、前記現像剤の帯電極性とは逆極性に帯電し、
前記現像装置は、前記像担持体に残留した現像剤を回収可能であり、
非画像形成時に、前記帯電部材に、帯電部材を清掃するための交流バイアスを印加し、
前記交流バイアス周波数(Hz=cycle/s)を、
交流バイアス周波数(Hz=cycle/s)>([像担持体の周速(mm/s)]×[帯電部材周速(%)]×10(cycle))/([像担持体と帯電部材の接触部の長さ(mm)]×(100%+[帯電部材周速(%)]))とし、
且つ、前記交流バイアスは、前記現像剤の極性と同じ方向に大きくなる場合の単位時間あたりの電位の変化量が、前記現像剤の極性と逆方向に大きくなる場合の単位時間あたりの電位の変化量よりも大きくなるような波形であることを特徴とする画像形成装置。
An image carrier;
A charging member that contacts the image carrier with a peripheral speed difference to charge the image carrier;
A developing device for developing the electrostatic latent image formed on the image carrier with a developer;
In an image forming apparatus comprising:
Non-magnetic conductive particles are carried on the surface of the charging member, and the conductive particles are charged to a polarity opposite to the charging polarity of the developer by rubbing with the developer,
The developing device can collect the developer remaining on the image carrier,
During non-image formation , an AC bias for cleaning the charging member is applied to the charging member ,
The frequency of the AC bias (Hz = cycle / s)
AC bias frequency (Hz = cycle / s)> ([ peripheral speed of the image carrier (mm / s)] × [a static-member peripheral speed (%)] × 10 (cycle )) / ([ the image bearing member charging length of the contact portion of the member (mm)] × (100% + [belt conductive member peripheral speed (%)]) and),
In addition, the change in potential per unit time when the AC bias increases in the same direction as the polarity of the developer increases in potential per unit time when the amount of change in potential increases in the direction opposite to the polarity of the developer. An image forming apparatus having a waveform that is larger than a quantity .
JP2001002606A 2001-01-10 2001-01-10 Image forming apparatus Expired - Fee Related JP4750287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002606A JP4750287B2 (en) 2001-01-10 2001-01-10 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002606A JP4750287B2 (en) 2001-01-10 2001-01-10 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2002207354A JP2002207354A (en) 2002-07-26
JP4750287B2 true JP4750287B2 (en) 2011-08-17

Family

ID=18871087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002606A Expired - Fee Related JP4750287B2 (en) 2001-01-10 2001-01-10 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP4750287B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971737B2 (en) * 2006-09-27 2012-07-11 キヤノン株式会社 Image forming apparatus
JP5109494B2 (en) * 2007-06-20 2012-12-26 コニカミノルタビジネステクノロジーズ株式会社 Image forming apparatus
JP6632292B2 (en) * 2015-09-25 2020-01-22 キヤノン株式会社 Image forming device
JP6862117B2 (en) 2016-07-22 2021-04-21 キヤノン株式会社 Image forming device
JP2020148840A (en) * 2019-03-11 2020-09-17 キヤノン株式会社 Image forming device
JP2020148839A (en) * 2019-03-11 2020-09-17 キヤノン株式会社 Image forming apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968849A (en) * 1995-08-30 1997-03-11 Canon Inc Electrifier
JP3715779B2 (en) * 1997-03-05 2005-11-16 キヤノン株式会社 Image forming apparatus
JP3435434B2 (en) * 1997-03-05 2003-08-11 キヤノン株式会社 Charging device, image forming apparatus and process cartridge
JP3315642B2 (en) * 1997-06-12 2002-08-19 キヤノン株式会社 Image forming device
JP3647263B2 (en) * 1997-09-11 2005-05-11 キヤノン株式会社 Image recording device
JP2000338750A (en) * 1999-05-25 2000-12-08 Canon Inc Image forming device
JP2000352855A (en) * 1999-06-10 2000-12-19 Canon Inc Magnetic particle dispersed composite particles for electrification, electrifying member using the same, electrifying device, electrophotographic device and process cartridge

Also Published As

Publication number Publication date
JP2002207354A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
JP3780136B2 (en) Image forming apparatus
JP3768800B2 (en) Image forming apparatus
JPH1172995A (en) Image forming device
JP2001242684A (en) Image forming device and process cartridge
JPH09325578A (en) Image forming device
JP4438031B2 (en) Image forming apparatus
JP2000081752A (en) Electrifying member, electrifying method, electrifying device, image forming device and process cartridge
JP3292155B2 (en) Image forming device
JP3332865B2 (en) Image forming device
JP4750287B2 (en) Image forming apparatus
JPH11109719A (en) Image forming device
US20020076239A1 (en) Image forming apparatus
JP2004045570A (en) Image forming apparatus
JP2000284570A (en) Image forming device
JPH11149197A (en) Electrifying member, method and device, for electrifying image forming device and process cartridge
JP2003043822A (en) Image forming device
US6907211B2 (en) Image forming apparatus
JP2003043786A (en) Image forming device
JPH07281508A (en) Image-forming device
JPH08240991A (en) Electrophotographic method and device
JPH11153897A (en) Electrifying method, electrifying device, image forming device and process cartridge
JP3302276B2 (en) Image forming device
JP2001350323A (en) Image forming device
JP2000075602A (en) Image forming device
JP2004077971A (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees