JP3651696B2 - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator Download PDF

Info

Publication number
JP3651696B2
JP3651696B2 JP07568595A JP7568595A JP3651696B2 JP 3651696 B2 JP3651696 B2 JP 3651696B2 JP 07568595 A JP07568595 A JP 07568595A JP 7568595 A JP7568595 A JP 7568595A JP 3651696 B2 JP3651696 B2 JP 3651696B2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
heat
heat transfer
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07568595A
Other languages
Japanese (ja)
Other versions
JPH08271071A (en
Inventor
隆行 松井
龍夫 井上
博康 野町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP07568595A priority Critical patent/JP3651696B2/en
Publication of JPH08271071A publication Critical patent/JPH08271071A/en
Application granted granted Critical
Publication of JP3651696B2 publication Critical patent/JP3651696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1411Pulse-tube cycles characterised by control details, e.g. tuning, phase shifting or general control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1422Pulse tubes with basic schematic including a counter flow heat exchanger instead of a regenerative heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【産業上の利用分野】
本発明はパルス管を用いて冷凍性能を向上させたパルス管冷凍機に関する。本発明は極低温装置に適用できる。
【0002】
【従来の技術】
従来より、蓄冷器をもつ冷凍機が開発されている。この冷凍機は、そのブロック図を図4に示す様に、ガス状の冷媒の圧力を振動させる圧力振動源100と、圧力振動源100に放熱器通路103を介して接続され冷媒の熱を放熱する放熱器200と、放熱器200を介して圧力振動源100に接続された蓄冷機能をもつ蓄冷器300と、蓄冷器300に接続されたコールドヘッドとも呼ばれる吸熱器400と、冷媒の圧力変動と位置変動の位相差を調整するための位相調整器500とを備えている。
【0003】
この冷凍機によれば、圧力振動源100によりガス状の冷媒(通常、ヘリウム)の圧力が振動すると、吸熱器400で吸熱され極低温の冷凍が生成する。
冷凍が生成する理由は必ずしも明らかではないが、有力な説によれば、次の様に考えられている。即ち圧力振動源100の増圧作用によりガス状の冷媒の圧力が増加すると、冷媒は放熱器200、蓄冷器300等のそれぞれの位置で振動しながら熱を吐き出す。また圧力振動源100の減圧作用によりガス状の冷媒の圧力が減少すると、冷媒は放熱器200、蓄冷器300等のそれぞれの位置で振動しながら熱を吸い込む。ここで、位相調整器500により冷媒の圧力変動と位置変動の位相差を調整することで、主に蓄冷器300内の冷媒が現在の位置から動いた所で、その位置に存在する蓄冷器300の蓄冷材から熱を吸い、他方に動いてその位置に存在する蓄冷材に熱を吐く。これにより蓄冷器300の内部を低温側から高温側へと、あたかもバケツリレーのごとく熱はくみあげられていく。その結果、吸熱器400の温度が下がって冷凍が生成されると共に、高熱側である放熱器200に熱が輸送される。
【0004】
更にこの蓄冷型冷凍機を技術的に進めたものとして、近年、図5示す様に、吸熱器4と位相調整器6との間に、中空状のパルス管5を介在させたパルス管冷凍機が開発されている。パルス管冷凍機の冷凍理論は、現在のところ解析中であるが、有力な説によれば、パルス管5により、吸熱器4よりも位相調整器5をかなり離した位置に、つまり高温側の領域(例えば常温領域)に配置できることによると推察されている。
【0005】
【発明が解決しようとする課題】
ところでこのパルス管冷凍機によれば、パルス管6のうち吸熱器4と反対側の端で発熱(例えば320〜380K程度)する不具合がある。これをパルス管5の温端部と呼ぶ。この温端部の熱生成を抑えれば、パルス管冷凍機において更に極低温の冷凍を発生するのに有利となることが、本発明者により実験で確認されている。その理由は、パルス管5は中空状であり、熱に対する遮蔽物が基本的には存在しないため、パルス管5の温端部の熱が吸熱器4に伝熱され易く、これが冷凍性能の限界の要因を形成しているためと、推察されている。
【0006】
そこで近年、本発明者はパルス管600の温端部に冷却風や冷却水を強制的に接触させて強制冷却することにしている。しかしながらこの場合にはパルス管冷凍機とは別系統の冷却風送給装置や冷却水送給装置を必要とする不具合がある。また近年、本出願人により図6に示すパルス管冷凍機が開発されている。この冷凍機によれば、冷媒通路の開閉を切り替える弁を駆動するモータ703をハウジング700の冷媒室701に配設すると共に、冷媒室701にパルス管5の温端部5xをシールしつつ直接挿入し、冷媒室700の冷媒によりモータ703及びパルス管5の温端部5xを直接冷却することにしている。しかしこのものでは冷凍性能の向上には限界がある。図6に示す方式では、温端部5xがハウジング700の冷媒室701に挿入されている関係上、温端部5xを位相調整器に接続するのが困難となり易く、位相調整器による低温改善効果が得られにくいからである。
【0007】
更にハウジング700の冷媒室701にパルス管5の温端部5xを必ず挿入する構造であるため、ハウジング700と温端部5xとを構造的に必ず接近させねばならず、設計上の自由度が制約される。
本発明は上記した実情に鑑みなされたものであり、その目的は、パルス管の温端部の冷媒が流れる第1伝熱管を温端部に別部材として接続し、この第1伝熱管の冷媒を熱交換して冷却する方式を採用することにより、温端部の抜熱に貢献でき、冷凍性能を一層向上させ得るのに有利なパルス管冷凍機を提供することにある。
【0008】
【課題を解決するための手段】
○請求項1に係るパルス管冷凍機は、ガス状の冷媒の圧力を振動させる圧力源本体をもつ圧力振動源と、圧力振動源に一体にまたは別体として接続され冷媒の熱を放熱する放熱器と、蓄冷機能をもつ蓄冷器と、蓄冷器に接続された吸熱器と、冷媒の圧力変動と位置変動の位相差を調整する位相調整器とをもつ冷却系と、
位相調整器と吸熱器との間に配置され吸熱器から離れた位置に温端部をもつパルス管とを備え、
圧力振動源は、高圧口及び低圧口をもつ圧力源本体と、圧力源本体の高圧口から吐出された高圧の冷媒が流れる高圧冷媒通路と、圧力源本体の低圧口に冷媒を戻す低圧冷媒通路と、高圧冷媒通路が蓄冷器に連通する第1形態と低圧冷媒通路が蓄冷器に連通する第2形態とを切り替える主切替弁とをもち、
吸熱器で冷凍を生成するパルス管冷凍機であって、
パルス管の温端部側に温端部側から冷媒が流れる管体状の第1伝熱管を別部材として接続し、第1伝熱管の冷媒を冷凍系の冷媒で熱交換して冷却することを特徴とするものである。
【0009】
○請求項2に係るパルス管冷凍機は、請求項1において、第1伝熱管を放熱器に熱的に接近させ、第1伝熱管の冷媒と放熱器の冷媒とを熱交換して第1伝熱管の冷媒を冷却することを特徴とするものである。
【0010】
○請求項3に係るパルス管冷凍機は、請求項1において、圧力振動源は、パルス管の温端部側に接続する第1伝熱管が高圧冷媒通路に連通する第3形態と第1伝熱管が低圧冷媒通路に連通する第4形態とを切り替える位相調整用切替弁をもち、
位置調整用切替弁が位相調整器を構成することを特徴とするものである。
【0011】
○請求項4に係るパルス管冷凍機によれば、請求項1において、低圧冷媒通路に第2伝熱管が設けられており、第2伝熱管を第1伝熱管に熱的に接近させ、第2伝熱管の冷媒と第1伝熱管の冷媒とを熱交換して第1伝熱管の冷媒を冷却することを特徴とするものである。
【0012】
【作用】
本発明によれば従来のパルス管冷凍機と同様に、圧力振動源によりガス状の冷媒の圧力が振動すると、吸熱器で吸熱されて冷凍が生成する。
請求項1によれば、パルス管の温端部側の冷媒が流れる第1伝熱管を温端部に別部材として接続し、第1伝熱管を冷凍系の冷媒で熱交換して冷却する。そのためパルス管の発熱を伴う温端部側が冷却される。
【0013】
請求項2によれば、パルス管の温端部側に冷媒が流れる第1伝熱管を別部材として設け、第1伝熱管の冷媒と放熱器の冷媒とを熱交換する。そのため放熱器を流れる冷媒により、パルス管の発熱を伴う温端部側が冷却される。
請求項3によれば、主切替弁が第1形態に切り替わると、高圧冷媒通路が蓄冷器に連通する。主切替弁が第2形態に切り替わると、低圧冷媒通路が蓄冷器に連通する。この様にして蓄冷器の冷媒の圧力が振動する。
【0014】
位相調整用切替弁が第3形態に切り替わると、パルス管の温端部側に接続する第1伝熱管が高圧冷媒通路に連通して高圧となる。また位相調整用切替弁が第4形態に切り替わると、第1伝熱管が低圧冷媒通路に連通して低圧となる。この様にして位相調整用切替弁の切替により、パスル管側の冷媒圧力の位相調整は達成される。
【0015】
請求項4によれば、圧力振動源の低圧冷媒通路に第2伝熱管が設けられており、この第2伝熱管の冷媒と第1伝熱管の冷媒とを熱交換する。そのため第2伝熱管を流れる冷媒により、第1伝熱管ひいてはパルス管の温端部側が冷却される。
【0016】
【実施例】
以下、本発明の実施例を図面を参照して具体的に説明する。
(実施例1)
この例は中空長尺状のパルス管を用いる極低温用パルス管冷凍機に適用した場合である。
【0017】
このパルス管冷凍機の基本的構成は、図5にブロック図として示した従来技術と同様である。
即ち、図1においてこのパルス管冷凍機は、ガス状の冷媒(ヘリウム)の圧力を振動させる圧力振動源1と、圧力振動源1に放熱器通路12を介して接続され冷媒の熱を放熱する放熱器2と、金属網等の蓄冷材が密に保持されかつ放熱器2を介して圧力振動源1に接続された蓄冷器3と、蓄冷器3に接続されたコールドヘッドとも呼ばれる冷凍を取り出す吸熱器4と、吸熱器4に接続された中空長尺状をなす金属製のパルス管5とを備えている。吸熱器4では冷凍(例えば、数K〜数10K程度)が生成される。
【0018】
放熱器2は、熱交換のため表面積が大きくされている。
さてパルス管5のうち吸熱器4と反対側の部位は、発熱現象を伴う温端部5cとされている。温端部5cから金属製の管体状の第1伝熱管16が別部材として接続されている。第1伝熱管16は、熱交換作用を奏する金属製であり、熱交換の効率向上のために表面積が大きくされている。
【0019】
実施例1における圧力振動源1は、冷媒圧縮機能及び冷媒吸込機能をもつ圧力源本体として機能するコンプレッサ8と、コンプレッサ8の吐出口とも呼ばれる高圧口としての高圧ポート8aにつながる高圧冷媒通路9と、コンプレッサ8の吸込口とも呼ばれる低圧口としての低圧ポート8bにつながる低圧冷媒通路10と、回転弁方式の主切替弁11とを備えている。
【0020】
コンプレッサ8に冷却部8rが一体的にまたは別体として装備されている。冷却部8rは、冷媒の熱を放出つまり放熱させる機能をもつ。即ち、冷却部8rは、風や冷却水を送給して強制空冷や強制水冷により、コンプレッサ8自体、あるいはコンプレッサ8を流れる冷媒の熱を放出して冷媒を冷却するものである。
図1から理解できる様に主切替弁11は、高圧冷媒通路9と、低圧冷媒通路10と、放熱器2に連通する放熱器通路12との間に配置されている。
【0021】
主切替弁11は第1形態と第2形態とに切り替えられる。主切替弁11が第1形態に切り替わると、高圧冷媒通路9が放熱器通路12や放熱器2を介して蓄冷器3に連通して、高圧冷媒通路9の高圧が放熱器2ひいては蓄冷器3に送給され、放熱器2や蓄冷器4の内部の冷媒は高圧(ゲージ圧で通常20気圧)となる。この様な第1形態では、低圧冷媒通路10は放熱器2や蓄冷器3に連通しない。
【0022】
また主切替弁11が第2形態に切り替わると、低圧冷媒通路10が放熱器2や蓄冷器3に連通するので、放熱器2や蓄冷器3の内部は低圧(ゲージ圧で通常10気圧)となる。この様な第2形態では、高圧冷媒通路9は放熱器2や蓄冷器3に連通しない。この様に主切替弁11が第1形態と第2形態に切り替わると、蓄冷器3の内部の冷媒は、所定の時間的間隔をもって交互に高圧状態と低圧状態とになる。
【0023】
位相調整器として機能するものは位相調整用切替弁6及び流量調整手段22である。位相調整用切替弁6は、高圧冷媒通路9と低圧冷媒通路10との間に配置されている。位相調整用切替弁6は回転弁方式であり、第1伝熱管16と高圧冷媒通路9と低圧冷媒通路10とに接続されている。この位相調整用切替弁6は第3形態と第4形態とに切り替えられる。
【0024】
この位相調整用切替弁6が第3形態に切り替わると、パルス管5の温端部5c側の第1伝熱管16が高圧冷媒通路9に連通して、高圧冷媒通路9の高圧が第1伝熱管16を介してパルス管5に送給され、パルス管5の内部は高圧とされる。この様な第3形態では、第1伝熱管16は低圧冷媒通路10に連通しない。
また位相調整用切替弁6が第4形態に切り替わると、第1伝熱管16が低圧冷媒通路10に連通して、パルス管5の内部の冷媒の圧力が低圧となる。
【0025】
この様に位相調整用切替弁6が第3形態と第4形態とに切り替わることにより、パルス管5の内部のガス状の冷媒は、蓄冷器3の冷媒の圧力とは位相がずれた状態で、所定の時間的間隔をもって交互に高圧と低圧とになる。以て位相調整用切替弁6による位相調整機能が達成される。
位相調整用切替弁6および主切替弁11は、図略の制御装置により開閉制御される。
【0026】
図2は、主切替弁11の開閉動作と位相調整用切替弁6の開閉動作とのタイミングチャートを示す。図2(A)においてHは蓄冷器3につながる主切替弁11のポート11hの高圧状態を意味し、Lは蓄冷器3につながる主切替弁11のポート11hの低圧状態を意味する。また図2(B)においてHはパルス管5につながる位相調整用切替弁6のポート6pの高圧状態を意味し、Lはパルス管5につながる位相調整用切替弁6のポート6pの低圧状態を意味する。
【0027】
図2から理解できる様に主切替弁11の作動により、蓄冷器3につながるポート11hは、時刻t1で低圧であるが時刻t2で高圧となり、時刻t4で低圧となり、時刻t6で高圧となるのが基本的切替形態である。
一方、位相調整用切替弁6の作動により、パルス管5につながるポート6pは、時刻t1で高圧であるが時刻t3で低圧となり、時刻t5で高圧となる。図2から理解できる様に蓄冷器3につながるポート11hの冷媒の圧力と、パルス管5につながるポート6pの冷媒の圧力とは、θぶん位相がずれている。なおθは冷凍機の種類等に応じて適宜選択できるが、一般的には10〜70度程度である。
【0028】
図2では圧力の応答形態がステップ的であるが、これを経時的になだらかな圧力変動とした形態、例えばサインカーブ的形態としても良い。
この例では図1に示す様に、位相調整用切替弁6は、パルス管5および第1伝熱管16によって吸熱器4に対して離遠した位置に配置されており、圧力振動源1に組み込まれているので、位相調整用切替弁6は常温領域に配置されている。
【0029】
パルス管5の温端部5cと第1伝熱管16との間には流量調整手段22が設けられている。流量調整手段22は、パルス管5から位相調整用切替弁6に流れる冷媒の流量を絞って規制するためのものであり、オリフィスや流量絞り弁で構成できる。位相調整用切替弁6は、パルス管5側の冷媒の圧力の位相を変化させるためのものであるから、多量の冷媒流量を冷凍生成のために必要とする蓄冷器3とは異なり、冷媒流量はあまり必要としないからである。
【0030】
この例によれば図1から理解できる様に、パルス管5の温端部5cにつながる第1伝熱管16は放熱器2に熱的に接近して配置されており、従って両者で熱交換器Aを構成している。ここで温端部5cの熱影響を受ける第1伝熱管16は、放熱器2よりも高温となる。故に温端部5cや第1伝熱管16の冷媒は、第1伝熱管16を往復する際に、放熱器2の冷媒と熱交換されて冷却されるので、パルス管5の温端部5cの過熱が防止される。これによりパルス管冷凍機の冷凍性能は向上する。これは試験で確認されている。
【0031】
なお第1伝熱管16を往復する冷媒量は、流量調整手段22により絞られており、放熱器2や蓄冷器3を往復する冷媒に比較して少量(蓄冷器3を往復する冷媒に対して例えば1/10程度)であるため、第1伝熱管16の冷媒の熱は、放熱器2の冷媒と効果的に熱交換される。
更にこの例によれば、パルス管5の温端部5cから別部材として導出した第1伝熱管16を熱交換する構成であるため、図6に示す従来例とは異なり、パルス管5の温端部5cを冷媒室に直接挿入する構造を採用する必要がなく、設計の自由度が増すと共に、温端部5cと圧力振動源1とを離すのに有利であるという利点が得られる。
(実施例2)
この例も前記した実施例1と同様に、中空状のパルス管5を用いるパルス管冷凍機に適用した場合である。実施例2は実施例1と基本的には同様の構成であり、同一の機能を奏する部位には同一の符号を付する。
【0032】
即ち図3に示す様に、このパルス管冷凍機は、ガス状の冷媒(ヘリウム)の圧力を振動させる圧力振動源1と、金属網等の蓄冷材が密に保持された蓄冷器3と、蓄冷器3に接続されたコールドヘッドとも呼ばれる冷凍を取り出す吸熱器4と、吸熱器4に接続された中空状のパルス管5とを備えている。
パルス管5の温端部5cには、熱交換作用を奏する第1伝熱管16が流量調整手段22を介して接続されている。圧力振動源1は、実施例1と同様に、圧力源本体として機能するコンプレッサ8と、コンプレッサ8の高圧口としての高圧ポート8aにつながる高圧冷媒通路9と、コンプレッサ8の低圧口としての低圧ポート8bにつながる低圧冷媒通路10と、回転弁方式の主切替弁11とを備えている。
【0033】
図3に示す様に、主切替弁11は高圧冷媒通路9と、低圧冷媒通路10と、放熱器2に連通する放熱器通路12との間に配置されている。低圧冷媒通路10には、熱交換器機能を奏する金属製の管体状の第2伝熱管19が配置されている。
第2伝熱管19と第1伝熱管16とは熱的に接近して配置されており、両者で熱交換器Bが構成されている。
【0034】
実施例1と同様に、主切替弁11は第1形態と第2形態とに切り替わる。主切替弁11が第1形態に切り替わると、高圧冷媒通路9が放熱器通路12や放熱器2を介して蓄冷器3に連通して、高圧冷媒通路9の高圧が放熱器通路12や放熱器2を介して蓄冷器3に送給され、放熱器2や蓄冷器3の冷媒は高圧となる。
また主切替弁11が第2形態に切り替わると、低圧冷媒通路10が放熱器通路12を介して放熱器2や蓄冷器3に連通するので、放熱器2や蓄冷器3の内部の冷媒は低圧となる。
【0035】
実施例2においても、実施例1と同様に、位相調整用切替弁6が高圧冷媒通路9と低圧冷媒通路10との間に配置されている。位相調整用切替弁6は低圧冷媒通路10の第2伝熱管19に接続されている。
この位相調整用切替弁6は第3形態と第4形態とを切り替える。位相調整用切替弁6が第3形態に切り替わると、パルス管5の温端部5c側の第1伝熱管16が高圧冷媒通路9に連通して、高圧冷媒通路9の高圧がパルス管5に送給され、パルス管5の内部が高圧となる。
【0036】
また位相調整用切替弁6が第4形態に切り替わると、第1伝熱管16が低圧冷媒通路10に連通して、パルス管5の冷媒の圧力が低圧となる。この様に位相調整用切替弁6が第3形態と第4形態とに切り替わることにより、パルス管5の内部のガス状の冷媒は、蓄冷器3とは冷媒の圧力の位相がずれた状態で、交互に高圧と低圧とになる。以て位相調整用切替弁6による位相調整機能が達成される。
【0037】
図3に示す例によれば、前述した様にコンプレッサ8に放熱器としての冷却部8rが一体的にまたは別体として装備されている。冷却部8rは風や冷却水を送給してコンプレッサ8自体、あるいはコンプレッサ8を流れる冷媒を冷却するものである。従ってこの冷却部8rが図1に示す例にかかる放熱器2と同様に冷媒の熱を放出して冷媒を冷やす役割を果たす。即ちコンプレッサ8の冷却部8rは冷媒の熱を放出する放熱器として機能できる。
【0038】
この例においても、第2伝熱管19と第1伝熱管16とは熱的に接近して配置されており、両者で熱交換器Bが構成されている。ここで温端部5cの熱影響を受ける第1伝熱管16は、第2伝熱管19よりも高温となる。故に、温端部5cや第1伝熱管16の冷媒は、第1伝熱管16を往復する際に、第2伝熱管19の冷媒で冷却される。これにより第1伝熱管16や温端部5cの過熱を軽減、回避できる。なお、第1伝熱管16から第2伝熱管19に付与された熱は、低圧冷媒通路10を経てコンプレッサ8の低圧ポート8bに吸い込まれる。ここで、空冷機構または水冷機構を備えた冷却部8rにより、コンプレッサ8の冷媒は冷却されるため、その冷媒の熱は外部に放出される。
【0039】
更に実施例2においても実施例1と同様に、パルス管5の温端部5cから導出した別部材としての第1伝熱管16を熱交換して冷却する構成であるため、図6に示す従来例とは異なり、パルス管5の温端部5cを冷媒室に直接挿入する構造を採用する必要がなく、設計の自由度が増す利点が得られる。
なお実施例2においても、第1伝熱管16を往復する冷媒量は、流量調整手段22により絞られており、低圧冷媒通路10における第2伝熱管19を往復する冷媒に比較して少量(蓄冷器3を往復する冷媒に対して例えば1/10程度)であるため、第1伝熱管16の冷媒の熱は、放熱器2の冷媒と効果的に熱交換される。
【0040】
【発明の効果】
各請求項によれば、パルス管の温端部側の第1伝熱管の冷媒が熱交換されて冷却されるので、温端部における過熱は抑止される。よって冷凍性能が一層向上したパルス管冷凍機が得られる。
更に各請求項によれば、パルス管の温端部から導出した第1伝熱管を熱交換する構成であるため、図6に示す従来例とは異なり、パルス管の温端部を冷媒室に直接挿入する構造を採用する必要がなく、設計の自由度が増す利点が得られる。
【図面の簡単な説明】
【図1】実施例1に係るパルス管冷凍機の構成図である。
【図2】圧力形態を示すタイミングチャートである。
【図3】実施例2に係るパルス管冷凍機の構成図である。
【図4】蓄冷器をもつ従来例に係る蓄冷型冷凍機のブロック図である。
【図5】従来例に係るパルス管冷凍機のブロック図である。
【図6】従来例に係るパルス管冷凍機の要部を示す断面図である。
【符号の説明】
図中、1は圧力振動源、2は放熱器、3は蓄冷器、4は吸熱器、5はパルス管、5cは温端部、6は位相調整用切替弁、8はコンプレッサ(圧力源本体)、8aは高圧ポート(高圧口)、8bは低圧ポート(低圧口)、9は高圧冷媒通路、10は低圧冷媒通路、11は主切替弁、12は放熱器通路、16は第1伝熱管、19は第2伝熱管を示す。
[0001]
[Industrial application fields]
The present invention relates to a pulse tube refrigerator having improved refrigeration performance using a pulse tube. The present invention can be applied to a cryogenic apparatus.
[0002]
[Prior art]
Conventionally, refrigerators having a regenerator have been developed. As shown in the block diagram of FIG. 4, this refrigerator is connected to a pressure vibration source 100 that vibrates the pressure of a gaseous refrigerant, and to the pressure vibration source 100 via a radiator passage 103 to dissipate the heat of the refrigerant. Radiator 200, a regenerator 300 having a regenerator function connected to the pressure vibration source 100 via the radiator 200, a heat absorber 400 also called a cold head connected to the regenerator 300, and a refrigerant pressure fluctuation And a phase adjuster 500 for adjusting the phase difference of the position variation.
[0003]
According to this refrigerator, when the pressure of the gaseous refrigerant (usually helium) is vibrated by the pressure vibration source 100, the heat absorber 400 absorbs heat to generate cryogenic refrigeration.
The reason why refrigeration is generated is not necessarily clear, but according to a promising theory, it is considered as follows. That is, when the pressure of the gaseous refrigerant increases due to the pressure increasing action of the pressure vibration source 100, the refrigerant discharges heat while vibrating at the positions of the radiator 200, the regenerator 300, and the like. Further, when the pressure of the gaseous refrigerant is reduced by the pressure reducing action of the pressure vibration source 100, the refrigerant sucks heat while vibrating at the respective positions of the radiator 200, the regenerator 300, and the like. Here, by adjusting the phase difference between the pressure fluctuation and the position fluctuation of the refrigerant by the phase adjuster 500, the refrigerant in the regenerator 300 mainly moves from the current position, and the regenerator 300 existing at that position. Sucks heat from the regenerator material, moves to the other, and exhales heat to the regenerator material present at that position. As a result, heat is pumped up inside the regenerator 300 from the low temperature side to the high temperature side as if it were a bucket relay. As a result, the temperature of the heat absorber 400 decreases to generate refrigeration, and heat is transported to the radiator 200 on the high heat side.
[0004]
Further, as a technical advance of this regenerator type refrigerator, in recent years, as shown in FIG. 5, a pulse tube refrigerator in which a hollow pulse tube 5 is interposed between a heat absorber 4 and a phase adjuster 6. Has been developed. The refrigeration theory of the pulse tube refrigerator is currently being analyzed, but according to a promising theory, the pulse tube 5 causes the phase adjuster 5 to be located far away from the heat absorber 4, that is, on the high temperature side. It is presumed that it can be arranged in a region (for example, a normal temperature region).
[0005]
[Problems to be solved by the invention]
By the way, according to this pulse tube refrigerator, there is a problem that heat is generated (for example, about 320 to 380 K) at the end of the pulse tube 6 opposite to the heat absorber 4. This is called the warm end of the pulse tube 5. It has been experimentally confirmed by the present inventor that if the heat generation at the warm end is suppressed, it is advantageous to generate cryogenic refrigeration in the pulse tube refrigerator. The reason is that since the pulse tube 5 is hollow and there is basically no shielding against heat, the heat at the warm end of the pulse tube 5 is easily transferred to the heat absorber 4, which is the limit of the refrigerating performance. It is speculated that this is the reason for this.
[0006]
Therefore, in recent years, the present inventor has decided to forcibly cool the pulse tube 600 by forcibly bringing cooling air or cooling water into contact with the warm end portion. However, in this case, there is a problem that a cooling air feeding device and a cooling water feeding device which are different from the pulse tube refrigerator are required. In recent years, a pulse tube refrigerator shown in FIG. 6 has been developed by the present applicant. According to this refrigerator, a motor 703 for driving a valve for switching opening and closing of the refrigerant passage is disposed in the refrigerant chamber 701 of the housing 700 and is directly inserted into the refrigerant chamber 701 while sealing the warm end portion 5x of the pulse tube 5. Then, the motor 703 and the warm end portion 5x of the pulse tube 5 are directly cooled by the refrigerant in the refrigerant chamber 700. However, there is a limit to improving the refrigeration performance with this product. In the system shown in FIG. 6, it is difficult to connect the warm end portion 5x to the phase adjuster because the warm end portion 5x is inserted into the refrigerant chamber 701 of the housing 700. This is because it is difficult to obtain.
[0007]
Further, since the warm end portion 5x of the pulse tube 5 is necessarily inserted into the refrigerant chamber 701 of the housing 700, the housing 700 and the warm end portion 5x must be structurally close to each other. Be constrained.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to connect a first heat transfer tube through which a refrigerant at a warm end of a pulse tube flows as a separate member to the warm end, and the refrigerant of the first heat transfer tube. It is an object of the present invention to provide a pulse tube refrigerator that can contribute to heat removal at the warm end by adopting a method of cooling by exchanging the heat and can further improve the refrigeration performance.
[0008]
[Means for Solving the Problems]
The pulse tube refrigerator according to claim 1 has a pressure vibration source having a pressure source body that vibrates the pressure of the gaseous refrigerant, and heat dissipation that dissipates the heat of the refrigerant connected to the pressure vibration source integrally or separately. A cooling system having a condenser, a regenerator having a regenerator function, a heat absorber connected to the regenerator, and a phase adjuster for adjusting a phase difference between the pressure fluctuation and the position fluctuation of the refrigerant,
A pulse tube disposed between the phase adjuster and the heat absorber and having a warm end at a position away from the heat absorber;
The pressure vibration source includes a pressure source body having a high-pressure port and a low-pressure port, a high-pressure refrigerant passage through which high-pressure refrigerant discharged from the high-pressure port of the pressure source body flows, and a low-pressure refrigerant passage that returns the refrigerant to the low-pressure port of the pressure source body And a main switching valve that switches between a first form in which the high-pressure refrigerant passage communicates with the regenerator and a second form in which the low-pressure refrigerant passage communicates with the regenerator,
A pulse tube refrigerator that generates refrigeration with a heat absorber,
A tubular first heat transfer tube in which refrigerant flows from the warm end side to the warm end side of the pulse tube is connected as a separate member, and the refrigerant in the first heat transfer tube is heat-exchanged with the refrigerant of the refrigeration system and cooled. It is characterized by.
[0009]
The pulse tube refrigerator according to claim 2 is the first in claim 1, wherein the first heat transfer tube is brought into thermal proximity to the radiator to exchange heat between the refrigerant in the first heat transfer tube and the refrigerant in the radiator. The refrigerant of the heat transfer tube is cooled.
[0010]
○ pulse tube refrigerator according to claim 3, Te claim 1 smell, pressure vibration source includes a third mode in which the first heat exchanger tube to be connected to the warm end side of the pulse tube communicates with the high-pressure refrigerant passage first 1 having a switching valve for phase adjustment for switching between a heat transfer tube and a fourth mode communicating with the low-pressure refrigerant passage;
The position adjustment switching valve constitutes a phase adjuster.
[0011]
According ○ pulse tube refrigerator according to claim 4, Te claim 1 smell, and the second heat transfer tube provided in the low pressure refrigerant passage, thermally to approximate second heat transfer tube into the first heat transfer pipe The refrigerant of the first heat transfer tube is cooled by exchanging heat between the refrigerant of the second heat transfer tube and the refrigerant of the first heat transfer tube.
[0012]
[Action]
According to the present invention, similarly to the conventional pulse tube refrigerator, when the pressure of the gaseous refrigerant is vibrated by the pressure vibration source, the heat is absorbed by the heat absorber and refrigeration is generated.
According to the first aspect, the first heat transfer tube through which the refrigerant on the warm end portion side of the pulse tube flows is connected to the warm end portion as a separate member, and the first heat transfer tube is cooled by exchanging heat with the refrigerant of the refrigeration system. Therefore, the warm end side accompanying the heat generation of the pulse tube is cooled.
[0013]
According to the second aspect, the first heat transfer tube through which the refrigerant flows is provided as a separate member on the warm end portion side of the pulse tube, and heat is exchanged between the refrigerant in the first heat transfer tube and the refrigerant in the radiator. Therefore, the warm end side accompanied by heat generation of the pulse tube is cooled by the refrigerant flowing through the radiator.
According to claim 3, when the main switching valve is switched to the first form, the high-pressure refrigerant passage communicates with the regenerator. When the main switching valve is switched to the second configuration, the low-pressure refrigerant passage communicates with the regenerator. In this way, the refrigerant pressure in the regenerator vibrates.
[0014]
When the phase adjustment switching valve is switched to the third mode, the first heat transfer tube connected to the warm end side of the pulse tube communicates with the high-pressure refrigerant passage and becomes high pressure. When the phase adjustment switching valve is switched to the fourth mode, the first heat transfer pipe communicates with the low-pressure refrigerant passage and becomes a low pressure. In this way, the phase adjustment of the refrigerant pressure on the side of the pulse tube is achieved by switching the phase adjustment switching valve.
[0015]
According to the fourth aspect, the second heat transfer tube is provided in the low-pressure refrigerant passage of the pressure vibration source, and heat is exchanged between the refrigerant in the second heat transfer tube and the refrigerant in the first heat transfer tube. Therefore, the refrigerant flowing through the second heat transfer tube cools the first heat transfer tube and thus the warm end side of the pulse tube.
[0016]
【Example】
Embodiments of the present invention will be specifically described below with reference to the drawings.
(Example 1)
In this example, the present invention is applied to a cryogenic pulse tube refrigerator using a hollow long pulse tube.
[0017]
The basic configuration of this pulse tube refrigerator is the same as that of the prior art shown as a block diagram in FIG.
That is, in FIG. 1, this pulse tube refrigerator is connected to a pressure vibration source 1 that vibrates the pressure of a gaseous refrigerant (helium) and the pressure vibration source 1 via a radiator passage 12, and dissipates heat of the refrigerant. A radiator 2, a cold storage 3 in which a cold storage material such as a metal net is held tightly and connected to the pressure vibration source 1 via the radiator 2, and a refrigeration called a cold head connected to the cold storage 3 are taken out. The heat absorber 4 and the metal pulse tube 5 having a hollow shape connected to the heat absorber 4 are provided. In the heat absorber 4, refrigeration (for example, about several K to several 10K) is generated.
[0018]
The radiator 2 has a large surface area for heat exchange.
Now, the part of the pulse tube 5 opposite to the heat absorber 4 is a warm end part 5c accompanied by a heat generation phenomenon. A metal tubular first heat transfer tube 16 is connected as a separate member from the warm end 5c. The first heat transfer tube 16 is made of metal having a heat exchange effect, and has a large surface area for improving the efficiency of heat exchange.
[0019]
The pressure vibration source 1 according to the first embodiment includes a compressor 8 that functions as a pressure source body having a refrigerant compression function and a refrigerant suction function, and a high-pressure refrigerant passage 9 that is connected to a high-pressure port 8 a that is also called a discharge port of the compressor 8. A low-pressure refrigerant passage 10 connected to a low-pressure port 8b as a low-pressure port, also called a suction port of the compressor 8, and a rotary valve type main switching valve 11 are provided.
[0020]
The compressor 8 is equipped with a cooling unit 8r integrally or separately. The cooling unit 8r has a function of releasing the heat of the refrigerant, that is, releasing the heat. That is, the cooling unit 8r cools the refrigerant by supplying wind or cooling water and releasing heat of the compressor 8 itself or the refrigerant flowing through the compressor 8 by forced air cooling or forced water cooling.
As can be understood from FIG. 1, the main switching valve 11 is disposed between the high-pressure refrigerant passage 9, the low-pressure refrigerant passage 10, and the radiator passage 12 communicating with the radiator 2.
[0021]
The main switching valve 11 is switched between the first form and the second form. When the main switching valve 11 is switched to the first configuration, the high-pressure refrigerant passage 9 communicates with the regenerator 3 via the radiator passage 12 and the radiator 2, and the high pressure of the high-pressure refrigerant passage 9 is increased by the radiator 2 and thus the regenerator 3. The refrigerant in the radiator 2 and the regenerator 4 is at a high pressure (usually 20 atm as gauge pressure). In such a first form, the low-pressure refrigerant passage 10 does not communicate with the radiator 2 or the regenerator 3.
[0022]
When the main switching valve 11 is switched to the second configuration, the low-pressure refrigerant passage 10 communicates with the radiator 2 and the regenerator 3, so that the inside of the radiator 2 and the regenerator 3 has a low pressure (usually 10 atm as gauge pressure). Become. In such a second form, the high-pressure refrigerant passage 9 does not communicate with the radiator 2 or the regenerator 3. When the main switching valve 11 is switched between the first form and the second form in this way, the refrigerant inside the regenerator 3 alternately enters a high pressure state and a low pressure state at a predetermined time interval.
[0023]
What functions as the phase adjuster is the phase adjustment switching valve 6 and the flow rate adjusting means 22. The phase adjustment switching valve 6 is disposed between the high-pressure refrigerant passage 9 and the low-pressure refrigerant passage 10. The phase adjustment switching valve 6 is a rotary valve type, and is connected to the first heat transfer pipe 16, the high-pressure refrigerant passage 9, and the low-pressure refrigerant passage 10. The phase adjustment switching valve 6 is switched between the third mode and the fourth mode.
[0024]
When the phase adjustment switching valve 6 is switched to the third configuration, the first heat transfer tube 16 on the warm end 5c side of the pulse tube 5 communicates with the high pressure refrigerant passage 9, and the high pressure in the high pressure refrigerant passage 9 is the first transmission. The heat is supplied to the pulse tube 5 through the heat tube 16, and the inside of the pulse tube 5 is set to a high pressure. In such a third embodiment, the first heat transfer tube 16 does not communicate with the low-pressure refrigerant passage 10.
When the phase adjustment switching valve 6 is switched to the fourth configuration, the first heat transfer tube 16 communicates with the low-pressure refrigerant passage 10 and the pressure of the refrigerant inside the pulse tube 5 becomes low.
[0025]
As described above, the phase adjustment switching valve 6 is switched between the third mode and the fourth mode, so that the gaseous refrigerant in the pulse tube 5 is out of phase with the refrigerant pressure in the regenerator 3. The high pressure and the low pressure are alternately changed at predetermined time intervals. Thus, the phase adjustment function by the phase adjustment switching valve 6 is achieved.
The phase adjustment switching valve 6 and the main switching valve 11 are controlled to be opened and closed by a control device (not shown).
[0026]
FIG. 2 shows a timing chart of the opening / closing operation of the main switching valve 11 and the opening / closing operation of the phase adjustment switching valve 6. In FIG. 2A, H means the high pressure state of the port 11 h of the main switching valve 11 connected to the regenerator 3, and L means the low pressure state of the port 11 h of the main switching valve 11 connected to the regenerator 3. In FIG. 2B, H means the high pressure state of the port 6p of the phase adjustment switching valve 6 connected to the pulse tube 5, and L denotes the low pressure state of the port 6p of the phase adjustment switching valve 6 connected to the pulse tube 5. means.
[0027]
As can be understood from FIG. 2, the operation of the main switching valve 11 causes the port 11h connected to the regenerator 3 to be at a low pressure at time t1, to become high at time t2, to become low at time t4, and to become high at time t6. Is the basic switching mode.
On the other hand, due to the operation of the phase adjustment switching valve 6, the port 6p connected to the pulse tube 5 is at a high pressure at time t1, but becomes a low pressure at time t3, and becomes a high pressure at time t5. As can be understood from FIG. 2, the refrigerant pressure at the port 11 h connected to the regenerator 3 and the refrigerant pressure at the port 6 p connected to the pulse tube 5 are shifted in phase by θ. In addition, although (theta) can be suitably selected according to the kind etc. of refrigerator, generally it is about 10-70 degree | times.
[0028]
In FIG. 2, the pressure response form is stepwise, but it may be a form in which the pressure changes gradually over time, for example, a sine curve form.
In this example, as shown in FIG. 1, the phase adjustment switching valve 6 is disposed at a position separated from the heat absorber 4 by the pulse tube 5 and the first heat transfer tube 16, and is incorporated in the pressure vibration source 1. Therefore, the phase adjustment switching valve 6 is disposed in the normal temperature region.
[0029]
A flow rate adjusting means 22 is provided between the warm end portion 5 c of the pulse tube 5 and the first heat transfer tube 16. The flow rate adjusting means 22 is for restricting the flow rate of the refrigerant flowing from the pulse tube 5 to the phase adjustment switching valve 6 and can be constituted by an orifice or a flow rate throttle valve. Since the phase adjustment switching valve 6 is for changing the phase of the refrigerant pressure on the pulse tube 5 side, the refrigerant flow rate is different from that of the regenerator 3 which requires a large amount of refrigerant flow for refrigeration generation. Is not necessary.
[0030]
According to this example, as can be understood from FIG. 1, the first heat transfer tube 16 connected to the warm end portion 5 c of the pulse tube 5 is disposed in thermal proximity to the radiator 2. A is configured. Here, the first heat transfer tube 16 that is affected by the heat of the warm end portion 5 c is hotter than the radiator 2. Therefore, the refrigerant of the warm end portion 5c and the first heat transfer tube 16 is cooled by exchanging heat with the refrigerant of the radiator 2 when reciprocating the first heat transfer tube 16, so that the warm end portion 5c of the pulse tube 5 Overheating is prevented. This improves the refrigeration performance of the pulse tube refrigerator. This has been confirmed by testing.
[0031]
Note that the amount of refrigerant that reciprocates through the first heat transfer tube 16 is reduced by the flow rate adjusting means 22, and is smaller than the refrigerant that reciprocates through the radiator 2 and the regenerator 3 (with respect to the refrigerant that reciprocates through the regenerator 3. For example, the heat of the refrigerant in the first heat transfer tube 16 is effectively exchanged with the refrigerant in the radiator 2.
Furthermore, according to this example, since the first heat transfer tube 16 led out as a separate member from the warm end portion 5c of the pulse tube 5 is configured to exchange heat, the temperature of the pulse tube 5 is different from the conventional example shown in FIG. There is no need to adopt a structure in which the end portion 5c is directly inserted into the refrigerant chamber. This increases the degree of freedom in design and is advantageous in separating the warm end portion 5c and the pressure vibration source 1 from each other.
(Example 2)
This example is also a case where the present invention is applied to a pulse tube refrigerator using a hollow pulse tube 5 as in the first embodiment. The second embodiment basically has the same configuration as that of the first embodiment, and parts having the same functions are denoted by the same reference numerals.
[0032]
That is, as shown in FIG. 3, the pulse tube refrigerator includes a pressure vibration source 1 that vibrates the pressure of a gaseous refrigerant (helium), a regenerator 3 in which a regenerator material such as a metal net is held tightly, A heat absorber 4 for extracting refrigeration, also called a cold head, connected to the regenerator 3, and a hollow pulse tube 5 connected to the heat absorber 4 are provided.
A first heat transfer tube 16 having a heat exchange action is connected to the warm end portion 5 c of the pulse tube 5 via a flow rate adjusting means 22. As in the first embodiment, the pressure vibration source 1 includes a compressor 8 that functions as a pressure source body, a high-pressure refrigerant passage 9 that leads to a high-pressure port 8 a as a high-pressure port of the compressor 8, and a low-pressure port as a low-pressure port of the compressor 8 The low-pressure refrigerant passage 10 connected to 8b and a rotary valve type main switching valve 11 are provided.
[0033]
As shown in FIG. 3, the main switching valve 11 is disposed between the high-pressure refrigerant passage 9, the low-pressure refrigerant passage 10, and the radiator passage 12 communicating with the radiator 2. In the low-pressure refrigerant passage 10, a metal tube-shaped second heat transfer tube 19 having a heat exchanger function is disposed.
The 2nd heat exchanger tube 19 and the 1st heat exchanger tube 16 are arranged in thermal proximity, and heat exchanger B is constituted by both.
[0034]
Similar to the first embodiment, the main switching valve 11 is switched between the first form and the second form. When the main switching valve 11 is switched to the first mode, the high-pressure refrigerant passage 9 communicates with the regenerator 3 via the radiator passage 12 and the radiator 2, and the high pressure of the high-pressure refrigerant passage 9 is changed to the radiator passage 12 and the radiator. The refrigerant of the radiator 2 and the regenerator 3 becomes high pressure.
When the main switching valve 11 is switched to the second configuration, the low-pressure refrigerant passage 10 communicates with the radiator 2 and the regenerator 3 via the radiator passage 12, so that the refrigerant inside the radiator 2 and the regenerator 3 is low in pressure. It becomes.
[0035]
Also in the second embodiment, similarly to the first embodiment, the phase adjustment switching valve 6 is disposed between the high-pressure refrigerant passage 9 and the low-pressure refrigerant passage 10. The phase adjustment switching valve 6 is connected to the second heat transfer pipe 19 of the low-pressure refrigerant passage 10.
The phase adjustment switching valve 6 switches between the third mode and the fourth mode. When the phase adjustment switching valve 6 is switched to the third configuration, the first heat transfer tube 16 on the warm end 5c side of the pulse tube 5 communicates with the high-pressure refrigerant passage 9, and the high pressure in the high-pressure refrigerant passage 9 is transferred to the pulse tube 5. The inside of the pulse tube 5 becomes high pressure.
[0036]
When the phase adjustment switching valve 6 is switched to the fourth mode, the first heat transfer tube 16 communicates with the low-pressure refrigerant passage 10 and the pressure of the refrigerant in the pulse tube 5 becomes low. As described above, the phase adjusting switching valve 6 is switched between the third mode and the fourth mode, so that the gaseous refrigerant inside the pulse tube 5 is out of phase with the regenerator 3 in the refrigerant pressure phase. Alternately, high pressure and low pressure. Thus, the phase adjustment function by the phase adjustment switching valve 6 is achieved.
[0037]
According to the example shown in FIG. 3, as described above, the compressor 8 is equipped with the cooling unit 8 r as a heat radiator integrally or separately. The cooling unit 8r supplies wind or cooling water to cool the compressor 8 itself or the refrigerant flowing through the compressor 8. Therefore, the cooling unit 8r serves to cool the refrigerant by releasing the heat of the refrigerant as in the case of the radiator 2 according to the example shown in FIG. That is, the cooling unit 8r of the compressor 8 can function as a radiator that releases the heat of the refrigerant.
[0038]
Also in this example, the 2nd heat exchanger tube 19 and the 1st heat exchanger tube 16 are arranged in thermal proximity, and heat exchanger B is constituted by both. Here, the first heat transfer tube 16 that is affected by the heat of the warm end portion 5 c has a higher temperature than the second heat transfer tube 19. Therefore, the refrigerant of the warm end portion 5 c and the first heat transfer tube 16 is cooled by the refrigerant of the second heat transfer tube 19 when reciprocating the first heat transfer tube 16. Thereby, the overheating of the 1st heat exchanger tube 16 and the warm end part 5c can be reduced and avoided. The heat applied from the first heat transfer tube 16 to the second heat transfer tube 19 is sucked into the low pressure port 8 b of the compressor 8 through the low pressure refrigerant passage 10. Here, since the refrigerant of the compressor 8 is cooled by the cooling unit 8r having the air cooling mechanism or the water cooling mechanism, the heat of the refrigerant is released to the outside.
[0039]
Further, in the second embodiment, similarly to the first embodiment, the first heat transfer tube 16 as a separate member derived from the warm end portion 5c of the pulse tube 5 is cooled by exchanging heat. Unlike the example, there is no need to adopt a structure in which the warm end portion 5c of the pulse tube 5 is directly inserted into the refrigerant chamber, and an advantage of increasing the degree of freedom in design can be obtained.
In the second embodiment as well, the amount of refrigerant that reciprocates through the first heat transfer tube 16 is reduced by the flow rate adjusting means 22, and is smaller than the refrigerant that reciprocates through the second heat transfer tube 19 in the low-pressure refrigerant passage 10 (cool storage). Therefore, the heat of the refrigerant in the first heat transfer tube 16 is effectively exchanged with the refrigerant in the radiator 2.
[0040]
【The invention's effect】
According to each claim, since the refrigerant in the first heat transfer tube on the warm end side of the pulse tube is cooled by heat exchange, overheating in the warm end portion is suppressed. Therefore, a pulse tube refrigerator having further improved refrigeration performance can be obtained.
Furthermore, according to each claim, since it is the structure which heat-exchanges the 1st heat exchanger tube derived | led-out from the warm end part of the pulse tube, unlike the prior art example shown in FIG. There is no need to adopt a structure for direct insertion, and there is an advantage that the degree of freedom in design is increased.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a pulse tube refrigerator according to a first embodiment.
FIG. 2 is a timing chart showing a pressure form.
FIG. 3 is a configuration diagram of a pulse tube refrigerator according to a second embodiment.
FIG. 4 is a block diagram of a cold storage type refrigerator according to a conventional example having a cold storage device.
FIG. 5 is a block diagram of a conventional pulse tube refrigerator.
FIG. 6 is a cross-sectional view showing a main part of a conventional pulse tube refrigerator.
[Explanation of symbols]
In the figure, 1 is a pressure vibration source, 2 is a radiator, 3 is a regenerator, 4 is a heat absorber, 5 is a pulse tube, 5c is a warm end, 6 is a phase adjustment switching valve, and 8 is a compressor (pressure source body). 8a is a high pressure port (high pressure port), 8b is a low pressure port (low pressure port), 9 is a high pressure refrigerant passage, 10 is a low pressure refrigerant passage, 11 is a main switching valve, 12 is a radiator passage, and 16 is a first heat transfer tube. , 19 indicates a second heat transfer tube.

Claims (4)

ガス状の冷媒の圧力を振動させる圧力源本体をもつ圧力振動源と、該圧力振動源に一体にまたは別体として接続され冷媒の熱を放熱する放熱器と、蓄冷機能をもつ蓄冷器と、該蓄冷器に接続された吸熱器と、冷媒の圧力変動と位置変動の位相差を調整する位相調整器とをもつ冷凍系と、
該位相調整器と該吸熱器との間に配置され該吸熱器から離れた位置に発熱を伴う温端部をもつパルス管とを備え、
前記圧力振動源は、高圧口及び低圧口をもつ圧力源本体と、該圧力源本体の高圧口から吐出された高圧の冷媒が流れる高圧冷媒通路と、該圧力源本体の低圧口に冷媒を戻す低圧冷媒通路と、該高圧冷媒通路が該蓄冷器に連通する第1形態と該低圧冷媒通路が該蓄冷器に連通する第2形態とを切り替える主切替弁とをもち、
該吸熱器で冷凍を生成するパルス管冷凍機であって、
該パルス管の温端部側に該温端部側の冷媒が流れる管体状の第1伝熱管を別部材として接続し、該第1伝熱管の冷媒を該冷凍系の冷媒で熱交換して冷却することを特徴とするパルス管冷凍機。
A pressure vibration source having a pressure source body that vibrates the pressure of the gaseous refrigerant, a radiator that is connected to the pressure vibration source integrally or as a separate body, and dissipates heat of the refrigerant, a regenerator having a cold storage function, A refrigerating system having a heat absorber connected to the regenerator and a phase adjuster for adjusting a phase difference between the pressure fluctuation and the position fluctuation of the refrigerant;
A pulse tube disposed between the phase adjuster and the heat absorber and having a warm end with heat generation at a position away from the heat absorber;
The pressure vibration source includes a pressure source body having a high-pressure port and a low-pressure port, a high-pressure refrigerant passage through which high-pressure refrigerant discharged from the high-pressure port of the pressure source body flows, and returns the refrigerant to the low-pressure port of the pressure source body A main switching valve that switches between a low pressure refrigerant passage, a first form in which the high pressure refrigerant passage communicates with the regenerator, and a second form in which the low pressure refrigerant passage communicates with the regenerator;
A pulse tube refrigerator that generates refrigeration with the heat absorber,
A tubular first heat transfer tube through which the refrigerant on the warm end side flows is connected as a separate member to the warm end side of the pulse tube, and heat is exchanged between the refrigerant in the first heat transfer tube and the refrigerant of the refrigeration system. A pulse tube refrigerator characterized by cooling.
前記第1伝熱管を該放熱器に熱的に接近させ、該第1伝熱管の冷媒と該放熱器の冷媒とを熱交換して該第1伝熱管を冷却することを特徴とする請求項1に記載のパルス管冷凍機。 Claims, characterized in that cooling the first heat transfer pipe thermally moved closer to the heat radiating unit, said first heat transfer tube and the refrigerant in the refrigerant and the heat dissipating device of the first heat transfer tube and heat exchanger 2. The pulse tube refrigerator according to 1 . 圧力振動源は、該パルス管の温端部側に接続された第1伝熱管が該高圧冷媒通路に連通する第3形態と第1伝熱管が該低圧冷媒通路に連通する第4形態とを切り替える位相調整用切替弁をもち、
該位相調整用切替弁が位相調整器を構成することを特徴とする請求項1に記載のパルス管冷凍機。
The pressure oscillation source includes a fourth embodiment in which the third embodiment and the first heat transfer tube first heat transfer tube connected to the warm end side of the pulse tube is communicated with the high-pressure refrigerant passage communicates with the low-pressure refrigerant passage With a phase adjustment switching valve
The pulse tube refrigerator according to claim 1, wherein the phase adjustment switching valve constitutes a phase adjuster.
低圧冷媒通路にこれの冷媒が流れる管体状の第2伝熱管が設けられており、該第2伝熱管を該第1伝熱管に熱的に接近させ、該第2伝熱管の冷媒と該第1伝熱管の冷媒とを熱交換して該第1伝熱管を冷却することを特徴とする請求項1に記載のパルス管冷凍機。 A tube-shaped second heat transfer tube through which the refrigerant flows is provided in the low-pressure refrigerant passage. The second heat transfer tube is brought into thermal proximity to the first heat transfer tube, and the refrigerant of the second heat transfer tube The pulse tube refrigerator according to claim 1, wherein the first heat transfer tube is cooled by exchanging heat with the refrigerant of the first heat transfer tube.
JP07568595A 1995-03-31 1995-03-31 Pulse tube refrigerator Expired - Fee Related JP3651696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07568595A JP3651696B2 (en) 1995-03-31 1995-03-31 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07568595A JP3651696B2 (en) 1995-03-31 1995-03-31 Pulse tube refrigerator

Publications (2)

Publication Number Publication Date
JPH08271071A JPH08271071A (en) 1996-10-18
JP3651696B2 true JP3651696B2 (en) 2005-05-25

Family

ID=13583303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07568595A Expired - Fee Related JP3651696B2 (en) 1995-03-31 1995-03-31 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP3651696B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766800B2 (en) * 2001-08-30 2011-09-07 アイシン精機株式会社 Pulse tube refrigerator
JP2010230308A (en) * 2010-07-19 2010-10-14 Aisin Seiki Co Ltd Pulse tube refrigerating machine
CN106091463A (en) * 2016-05-09 2016-11-09 南京航空航天大学 4K thermal coupling regenerating type low-temperature refrigerator based on controlled heat pipe and refrigerating method thereof
JP6781651B2 (en) * 2017-03-13 2020-11-04 住友重機械工業株式会社 Rotary valve unit and rotary valve for cryogenic refrigerators and cryogenic refrigerators

Also Published As

Publication number Publication date
JPH08271071A (en) 1996-10-18

Similar Documents

Publication Publication Date Title
JP3949135B2 (en) Piezoelectric pump and Stirling refrigerator
US6389819B1 (en) Pulse tube refrigerator
WO2005008160A1 (en) Loop type thermo syphone, heat radiation system, heat exchange system, and stirling cooling chamber
JP2839141B1 (en) Stirling refrigerator
JP2006292135A (en) Gas bearing structure, stirling engine and stirling cooling storage
JP3651696B2 (en) Pulse tube refrigerator
US7047749B2 (en) Regenerative refrigerating apparatus
JP3593713B2 (en) Pulse tube refrigerator
JP3605878B2 (en) Pulse tube refrigerator
JP2006084135A (en) Heat radiating system and stirling refrigerator
RU2273808C2 (en) Refrigeration machine with pulsating pipe
JP2006226654A (en) Stirling cooler
JP2008231949A (en) Stirling engine and stirling engine-mounting device
JP3741300B2 (en) Pulse tube refrigerator
JPH08271069A (en) Pulse tube refrigerator
JPH09178279A (en) Pulse tube type refrigerator
KR100596576B1 (en) Refrigerator
JP2006144690A (en) Piezo-electric pump and sterling refrigerator/freezer
JP2005345073A (en) Stirling engine, its manufacturing method, and stirling refrigerator
JP2006308135A (en) Stirling engine and stirling cooling storage
KR940009228B1 (en) Refrigerator
JP2007064506A (en) Cooler
JPH08271073A (en) Pulse tube refrigerator
JP2000018742A (en) Cooling device
JP3635904B2 (en) Gas cycle engine refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees