JP3650366B2 - Organic light emitting device sealed with inorganic material - Google Patents

Organic light emitting device sealed with inorganic material Download PDF

Info

Publication number
JP3650366B2
JP3650366B2 JP2002063270A JP2002063270A JP3650366B2 JP 3650366 B2 JP3650366 B2 JP 3650366B2 JP 2002063270 A JP2002063270 A JP 2002063270A JP 2002063270 A JP2002063270 A JP 2002063270A JP 3650366 B2 JP3650366 B2 JP 3650366B2
Authority
JP
Japan
Prior art keywords
organic light
layer
inorganic material
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002063270A
Other languages
Japanese (ja)
Other versions
JP2003264062A (en
Inventor
弘 高橋
Original Assignee
株式会社エイコー・エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エイコー・エンジニアリング filed Critical 株式会社エイコー・エンジニアリング
Priority to JP2002063270A priority Critical patent/JP3650366B2/en
Publication of JP2003264062A publication Critical patent/JP2003264062A/en
Application granted granted Critical
Publication of JP3650366B2 publication Critical patent/JP3650366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機エレクトロルミネッセンス発光素子等の有機発光素子を気密に封止してなる有機発光装置に関し、特に石英ガラスとマグネシアとの複合層からなる無機封止層を備える無機材料封止された有機発光装置に関する。
【0002】
【従来の技術】
近年、ディスプレイや光通信等の分野で、有機エレクトロルミネッセンス素子(有機EL素子)の研究、開発が進められている。この有機EL素子は、EL発光能を有する有機低分子または低分子系有機材料で発光層を形成した素子であり、自己発光型の素子としてその特性が注目されている。例えばその基本的な構造は、ホール注入電極上にトリフェニルジアミン(TPD)等のホール輸送材料の膜を形成し、この上にアルミキノリノール錯体(Alq3) 等の蛍光物質を発光層として積層し、さらにMg、Li、Ca等の仕事関数の小さな金属電極を電子注入電極として形成したものである。
【0003】
このような有機エレクトロルミネッセンス発光素子のような低分子系有機材料は、水分や外気に対して弱く、大気に触れただけですぐにダークスッポトと呼ばれる非表示欠陥個所が生じ、その欠陥が次第に成長してしまう。そこで、このような有機発光装置においては、有機発光素子を気密に封止することが必要となる。
【0004】
ICチップなどの半導体素子においても、その外界雰囲気からの保護、電気的絶縁等の目的で気密に封止される。従来において、このような目的による半導体素子の封止には、安価で作業性のよいプラスチック封止がよく利用されている。例えば、ポリイミド樹脂等を使用して気密封止を行う。
しかし、プラスチックによる封止は安価で作業性がよく、しかも自由度が他の封止方法に比べて高い反面、水分の侵入などによる耐湿性が劣るという欠点があった。そのため前記のような有機発光素子の封止には適さない。
【0005】
そこで有機発光装置においては、前記のような樹脂封止を使用せず、金属缶状の封止キャップを使用し、これで有機発光素子を覆い、封止キャップを紫外線硬化性樹脂で基板や陰極上に気密に接着することが行われている。特に、基板上に有機発光素子を形成した後、この有機発光素子を大気にさらすことなく、真空中或いは窒素ガス雰囲気中等で前記の封止キャップで気密に覆ってしまうという手段が採用されている。
【0006】
【発明が解決しようとしている課題】
しかしながら、前記従来の封止キャップによる有機発光素子の封止手段では、キャップ状のものを使用していることにより、装置全体の容積が大きくなる。特に、厚さを薄くできないという課題がある。さらに、マニプレータ等による真空中や窒素ガス雰囲気中での封止キャップの基板上への装着、さらに真空中での紫外線硬化性樹脂への紫外線照射等の工程が必要である。このため、封止工程が複雑であり、製造に手数がかかるという課題がある。
【0007】
本発明は、前記従来の有機発光素子の封止手段における課題に鑑み、簡単な工程で有機発光素子の気密封止をすることが出来ると共に、小型化が図れ、なお且つ機密性と耐久性の高い気密状態が得られる封止された有機発光装置を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
前記の目的を達成するため、本発明では、樹脂封止や封止キャップによる封止手段をとらず、石英ガラスの蒸着膜等の無機封止層による気密封止を採用したものである。さらに、石英ガラス膜9からなる封止手段の機械的な脆さを改善するため、石英ガラス層9とマグネシア層10との複合膜からなる無機材料封止層3を採用したものである。
【0009】
すなわち、本発明による無機材料封止された有機発光装置は、有機発光素子2の表面を気密に封止してなるものであって、有機発光素子2の表面を石英ガラス層9とマグネシア層10とが交互に積層された無機材料封止層3で気密に覆って封止したものである。
【0010】
このような無機材料封止層3は蒸着膜により形成することが出きる。例えば、真空蒸着により、石英ガラス層9とマグネシア層10とをそれぞれ数十nm〜数百nmずつ交互に積層して無機材料封止層3を形成する。
【0011】
石英ガラス層9を有する無機材料封止層3は、ポリイミド樹脂等を使用した樹脂封止に比べ、気密性に優れており、水分子の浸入を確実に防止出来る。しかし一方で、石英ガラス層9単独で無機材料封止層3を形成した場合、石英ガラス層9は脆いため、少しの衝撃でも細かいクラックが入り、気密性を失いやすい。
【0012】
そこで本件発明者が、検討を行った結果、無機材料封止層3を石英ガラス層9の単独層とせず、石英ガラス層9とマグネシア層10との複合層とすることで、石英ガラス固有の脆さが改善できることに着目した。すなわち、このような複合層とすることで、衝撃により無機材料封止層3が容易に破損しなくなる。
【0013】
その理由ないしは原因については必ずしも明らかではないが、石英ガラス層9は非晶質であるのに対し、真空蒸着により形成されるマグネシア層10は立方晶系の結晶を有している。これが石英ガラス層9に対して緩衝作用をなすものと推定される。
【0014】
【発明の実施の形態】
次に、図面を参照しながら、本発明の実施の形態について、具体的且つ詳細に説明する。
図1は、本発明による無機材料封止された有機発光装置の一実施形態を示す概略断面図であり、図2はそのA部拡大図である。
【0015】
ガラス基板等の透光性基板1の上に有機発光素子2が形成されている。この有機発光素子2について、簡単に説明する。
まず、透光性基板1の上にホール注入電極としての陽極4が形成されている。この陽極4は、透明で仕事関数が大きい導体膜からなり、例えば酸化インジウム錫(ITO)やポリアニン等の膜からなる。
【0016】
この陽極4の上に、アミン(m−MTDATA)や銅フタロシアニン(CuPc)等のバッファ層5が形成されている。
このバッファ層5の上には、トリフェニルジアミン(TPD)等のホール輸送材料からなるホール輸送層6が形成されている。さらにこのホール輸送層6の上には、有機エレクトロルミネッセンス等からなる有機発光層7が形成されている。例えばこの有機発光層7は、8−キノリノール・アルミニウム錯体(Aiq3)等の発光材料とトリスアルミニウム等の電子輸送材料等からなっている。
【0017】
さらにこの有機発光層7の上には、マグネシウム・銀合金(Mg−Ag)、フッ化リチウム(LiF)或いはアルミニウム(Al)等の仕事関数が低い導体からなる陰極8が形成されている。この陰極8は、必要に応じてパターニングされており、例えば有機エレクトロルミネッセンスディスプレイ等の場合には、その画素毎にパターニングされた陰極8が設けられる。
【0018】
本発明では、このような有機発光素子2を気密に覆うよう無機材料封止層3を形成する。この無機材料封止層3は、石英ガラス層9とマグネシア層10とを交互に成膜して重ねた複合層からなっている。まず、前記有機発光素子2を覆うように、透光性基板1の上に石英ガラス層9を形成し、その上にマグネシア層3を形成し、以下、石英ガラス層9とマグネシア層3を交互に成膜し、最後に石英ガラス層9を成膜し、無機材料封止層3とする。
【0019】
石英ガラス層9とマグネシア層10の膜厚は、それぞれ数十nm〜数百nm程度とし、合計5〜9層程積層する。無機材料封止層3の全体としては、1〜2μm程度の膜厚とする。
この石英ガラス層9とマグネシア層10との複合層からなる無機材料封止層3は、真空チャンバ内で真空蒸着により形成する。例えば、真空チャンバ内で真空蒸着により透光性基板1上に前述のような有機発光素子2を形成した後、透光性基板1を大気中に取り出さず、そのまま真空チャンバ内で無機材料封止層3を形成する。
【0020】
図3は、真空チャンバ内で真空蒸着により無機材料封止層3を形成する状態を示す概略図である。基板ホルダ16に有機発光素子2を設けた透光性基板1を装着する。坩堝11内に収納した石英ガラス(SiO2)12とマグネシア(MgO)13にフォーカスド電子線ガン14、15から電子線を収束して交互に照射し、石英ガラス12とマグネシア13を交互に蒸発させ、その分子を前記透光性基板1とその上に有機発光素子2の上に堆積させる。これにより、図1と図2に示すような無機材料封止層3が形成される。
【0021】
このように、無機材料封止層3を石英ガラス層9とマグネシア層10との複合層とすることで、石英ガラス固有の脆さが改善できる。すなわち、衝撃により無機材料封止層3が容易に破損しなくなる。これは前述したように、マグネシア層10の蒸着膜の結晶構造から得られる緩衝作用によるものと推定される。
なお、無機材料封止層3を透明とすることにより、透光性基板1側からでなく、無機材料封止層3側から光を発射する形式の有機発光装置とすることが出来る。
【0022】
次に、本発明の具体的な実施例について説明する。
(実施例1)
ガラス基板からなる透光性基板1上に前述のようにして有機発光素子2を形成した後、透光性基板1を真空チャンバ内で図3に示すような基板ホルダ16まで移動して装着した。そして同図に示すような真空蒸着装置により、石英ガラス12とマグネシア13とを交互に蒸発し、これを前記透光性基板1とその上の有機発光素子2の上に堆積させ、それぞれ膜厚約100nmの石英ガラス層9とマグネシア層10とを交互に成膜し、積層した。これにより、石英ガラス層9とマグネシア層10の合計9層からなる無機材料封止層3を形成した。
【0023】
その後、出来上がった有機発光装置を真空チャンバから取り出した。無機材料封止層3は透明であり、透光性基板1を指先で軽く叩いて衝撃を与えても、クラックによる筋や白濁は生じなかった。さらに、この有機発光装置を温度80℃、相対湿度90%の環境下に48時間置いた後、無機材料封止層3の内部を観察したところ、水分の浸入は認められなかった。
【0024】
(実施例2)
前記実施例1において、石英ガラス層9とマグネシア層10の膜厚を約200nmとし、石英ガラス層9とマグネシア層10の合計5層からなる無機材料封止層3を形成したこと以外は、同実施例1と同様にして無機材料封止層3を有する有機発光装置を製作した。
【0025】
その後、出来上がった有機発光装置を真空チャンバから取り出した。無機材料封止層3は透明であり、透光性基板1を指先で軽く叩いて衝撃を与えても、クラックによる筋や白濁は生じなかった。さらに、この有機発光装置を温度80℃、相対湿度90%の環境下に48時間置いた後、無機材料封止層3の内部を観察したところ、水分の浸入は認められなかった。
【0026】
(比較例)
前記実施例1において、無機材料封止層3を石英ガラス層9とマグネシア層10の複合層とせず、膜厚約を1μmの石英ガラス層のみによって無機材料封止層を形成したこと以外は、同実施例1と同様にして無機材料封止層を有する有機発光装置を製作した。
【0027】
その後、出来上がった有機発光装置を真空チャンバから取り出した。石英ガラスからなる無機材料封止層は透明であったが、透光性基板を指先で軽く叩いて衝撃を与えたところ、クラックによる筋や白濁が生じた。さらに、この有機発光装置を温度80℃、相対湿度90%の環境下に48時間置いた後、無機材料封止層3の内部を観察したところ、クラックからの水分の浸入が認められた。
【0028】
【発明の効果】
以上説明した通り、本発明による無機材料封止された有機発光装置では、真空蒸着という簡単な工程で有機発光素子の気密封止をすることが出来る。また、無機材料封止層3は、1〜2μmと薄いため、金属缶状の封止キャップを使用したものに比べて小型化が図れる。さらに、石英ガラス層9とマグネシア層10とにより高い機密性が得られると同時に、マグネシア層10の存在により石英ガラス層9特有の脆さが改善され、耐久性の高い気密封止が得られる。
【図面の簡単な説明】
【図1】本発明による無機材料封止された有機発光装置の一実施形態を示す概略縦断側面図である。
【図2】図1のA部拡大図である。
【図3】本発明による無機材料封止された有機発光装置の無機材料封止層3を形成する装置示す概略側面図である。
【符号の説明】
1 透光性基板
2 有機発光素子
3 無機材料封止層
9 石英ガラス層
10 マグネシア層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic light-emitting device in which an organic light-emitting element such as an organic electroluminescence light-emitting element is hermetically sealed, and in particular, an inorganic material sealed with an inorganic sealing layer composed of a composite layer of quartz glass and magnesia is sealed. The present invention relates to an organic light emitting device.
[0002]
[Prior art]
In recent years, research and development of organic electroluminescence elements (organic EL elements) have been promoted in fields such as displays and optical communications. This organic EL element is an element in which a light-emitting layer is formed of an organic low-molecular or low-molecular organic material having EL light-emitting ability, and its characteristics are attracting attention as a self-emitting element. For example, the basic structure is that a film of a hole transport material such as triphenyldiamine (TPD) is formed on a hole injection electrode, and a fluorescent material such as an aluminum quinolinol complex (Alq 3 ) is laminated thereon as a light emitting layer. Further, a metal electrode having a small work function such as Mg, Li, or Ca is formed as an electron injection electrode.
[0003]
Low molecular weight organic materials such as organic electroluminescence light-emitting elements are vulnerable to moisture and the outside air, and when they come into contact with the atmosphere, non-display defects called dark spots are generated and the defects grow gradually. Resulting in. Therefore, in such an organic light emitting device, it is necessary to hermetically seal the organic light emitting element.
[0004]
Even in a semiconductor element such as an IC chip, it is hermetically sealed for the purpose of protection from the ambient atmosphere, electrical insulation, and the like. Conventionally, plastic sealing with low cost and good workability is often used for sealing semiconductor elements for such purposes. For example, airtight sealing is performed using a polyimide resin or the like.
However, sealing with plastic is inexpensive and has good workability, and has a higher degree of freedom than other sealing methods, but has a disadvantage of poor moisture resistance due to intrusion of moisture. Therefore, it is not suitable for sealing the organic light emitting element as described above.
[0005]
Therefore, in the organic light emitting device, a metal can-like sealing cap is used instead of the resin sealing as described above, and the organic light emitting element is covered with this, and the sealing cap is made of an ultraviolet curable resin with a substrate or a cathode. Adhering airtightly on top is done. In particular, after the organic light emitting device is formed on the substrate, the organic light emitting device is hermetically covered with the sealing cap in a vacuum or a nitrogen gas atmosphere without being exposed to the air. .
[0006]
[Problems to be solved by the invention]
However, the organic light-emitting element sealing means using the conventional sealing cap uses a cap-like device, which increases the volume of the entire apparatus. In particular, there is a problem that the thickness cannot be reduced. Furthermore, a process such as mounting a sealing cap on the substrate in a vacuum or nitrogen gas atmosphere by a manipulator or the like, and further irradiating the ultraviolet curable resin with ultraviolet rays in a vacuum is required. For this reason, there exists a subject that a sealing process is complicated and manufacture takes time.
[0007]
In view of the problems in the conventional means for sealing an organic light-emitting element, the present invention can hermetically seal the organic light-emitting element with a simple process, can be downsized, and has confidentiality and durability. An object of the present invention is to provide a sealed organic light-emitting device capable of obtaining a high airtight state.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs hermetic sealing with an inorganic sealing layer such as a deposited film of quartz glass without taking sealing means with resin sealing or a sealing cap. Further, in order to improve mechanical brittleness of the sealing means made of the quartz glass film 9, the inorganic material sealing layer 3 made of a composite film of the quartz glass layer 9 and the magnesia layer 10 is employed.
[0009]
That is, the organic light-emitting device sealed with an inorganic material according to the present invention is formed by hermetically sealing the surface of the organic light-emitting element 2, and the surface of the organic light-emitting element 2 is fused with the quartz glass layer 9 and the magnesia layer 10. Are hermetically covered and sealed with the inorganic material sealing layers 3 laminated alternately.
[0010]
Such an inorganic material sealing layer 3 can be formed by a vapor deposition film. For example, the inorganic glass sealing layer 3 is formed by alternately laminating the quartz glass layers 9 and the magnesia layers 10 by several tens to several hundreds of nanometers by vacuum deposition.
[0011]
The inorganic material sealing layer 3 having the quartz glass layer 9 is superior in airtightness compared to resin sealing using a polyimide resin or the like, and can surely prevent water molecules from entering. However, on the other hand, when the inorganic material sealing layer 3 is formed by the quartz glass layer 9 alone, the quartz glass layer 9 is fragile, so that a fine crack is generated even with a slight impact, and airtightness is easily lost.
[0012]
Therefore, as a result of investigation by the present inventor, the inorganic material sealing layer 3 is not a single layer of the quartz glass layer 9 but a composite layer of the quartz glass layer 9 and the magnesia layer 10, so that it is unique to quartz glass. We focused on improving the brittleness. That is, by using such a composite layer, the inorganic material sealing layer 3 is not easily damaged by an impact.
[0013]
Although the reason or cause is not necessarily clear, the quartz glass layer 9 is amorphous, while the magnesia layer 10 formed by vacuum deposition has cubic crystals. This is presumed to have a buffering action on the quartz glass layer 9.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described specifically and in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing an embodiment of an organic light-emitting device sealed with an inorganic material according to the present invention, and FIG.
[0015]
An organic light emitting element 2 is formed on a translucent substrate 1 such as a glass substrate. The organic light emitting device 2 will be briefly described.
First, an anode 4 as a hole injection electrode is formed on a translucent substrate 1. The anode 4 is made of a conductive film that is transparent and has a high work function, such as a film of indium tin oxide (ITO) or polyanine.
[0016]
A buffer layer 5 such as amine (m-MTDATA) or copper phthalocyanine (CuPc) is formed on the anode 4.
A hole transport layer 6 made of a hole transport material such as triphenyldiamine (TPD) is formed on the buffer layer 5. Further, an organic light emitting layer 7 made of organic electroluminescence or the like is formed on the hole transport layer 6. For example, the organic light emitting layer 7 is made of a light emitting material such as 8-quinolinol / aluminum complex (Aiq3) and an electron transport material such as trisaluminum.
[0017]
Further, a cathode 8 made of a conductor having a low work function such as magnesium / silver alloy (Mg—Ag), lithium fluoride (LiF), or aluminum (Al) is formed on the organic light emitting layer 7. The cathode 8 is patterned as necessary. For example, in the case of an organic electroluminescence display, a cathode 8 patterned for each pixel is provided.
[0018]
In the present invention, the inorganic material sealing layer 3 is formed so as to cover the organic light emitting element 2 in an airtight manner. The inorganic material sealing layer 3 is composed of a composite layer in which quartz glass layers 9 and magnesia layers 10 are alternately formed and stacked. First, a quartz glass layer 9 is formed on the translucent substrate 1 so as to cover the organic light emitting element 2, and a magnesia layer 3 is formed thereon. Hereinafter, the quartz glass layer 9 and the magnesia layer 3 are alternately formed. Finally, a quartz glass layer 9 is formed to form the inorganic material sealing layer 3.
[0019]
The film thickness of the quartz glass layer 9 and the magnesia layer 10 is about several tens nm to several hundreds nm, and a total of 5 to 9 layers are laminated. The entire inorganic material sealing layer 3 has a thickness of about 1 to 2 μm.
The inorganic material sealing layer 3 composed of a composite layer of the quartz glass layer 9 and the magnesia layer 10 is formed by vacuum deposition in a vacuum chamber. For example, after forming the organic light-emitting element 2 as described above on the light-transmitting substrate 1 by vacuum deposition in a vacuum chamber, the light-transmitting substrate 1 is not taken out into the atmosphere and sealed with an inorganic material in the vacuum chamber as it is. Layer 3 is formed.
[0020]
FIG. 3 is a schematic view showing a state in which the inorganic material sealing layer 3 is formed by vacuum deposition in a vacuum chamber. The translucent substrate 1 provided with the organic light emitting element 2 is mounted on the substrate holder 16. Quartz glass (SiO 2 ) 12 and magnesia (MgO) 13 housed in the crucible 11 are focused and irradiated alternately with focused electron beam guns 14 and 15, and the quartz glass 12 and magnesia 13 are alternately evaporated. Then, the molecules are deposited on the light-transmitting substrate 1 and the organic light emitting device 2 thereon. Thereby, the inorganic material sealing layer 3 as shown in FIGS. 1 and 2 is formed.
[0021]
As described above, by using the inorganic material sealing layer 3 as a composite layer of the quartz glass layer 9 and the magnesia layer 10, the inherent brittleness of the quartz glass can be improved. That is, the inorganic material sealing layer 3 is not easily damaged by impact. As described above, this is presumed to be due to the buffering action obtained from the crystal structure of the deposited film of the magnesia layer 10.
In addition, by making the inorganic material sealing layer 3 transparent, an organic light-emitting device that emits light from the inorganic material sealing layer 3 side instead of the light-transmitting substrate 1 side can be obtained.
[0022]
Next, specific examples of the present invention will be described.
(Example 1)
After the organic light emitting element 2 is formed on the translucent substrate 1 made of a glass substrate as described above, the translucent substrate 1 is moved to a substrate holder 16 as shown in FIG. . Then, the quartz glass 12 and the magnesia 13 are alternately evaporated by a vacuum vapor deposition apparatus as shown in the figure, and this is deposited on the light-transmitting substrate 1 and the organic light-emitting element 2 thereon. About 100 nm quartz glass layers 9 and magnesia layers 10 were alternately formed and laminated. Thereby, the inorganic material sealing layer 3 which consists of a total of nine layers of the quartz glass layer 9 and the magnesia layer 10 was formed.
[0023]
Thereafter, the completed organic light emitting device was taken out of the vacuum chamber. The inorganic material sealing layer 3 was transparent, and even if the light-transmitting substrate 1 was lightly tapped with a fingertip to give an impact, no streaks or white turbidity due to cracks occurred. Furthermore, after this organic light emitting device was placed in an environment of a temperature of 80 ° C. and a relative humidity of 90% for 48 hours, when the inside of the inorganic material sealing layer 3 was observed, no moisture permeation was observed.
[0024]
(Example 2)
In Example 1, except that the thickness of the quartz glass layer 9 and the magnesia layer 10 was about 200 nm, and the inorganic material sealing layer 3 composed of a total of five layers of the quartz glass layer 9 and the magnesia layer 10 was formed. An organic light emitting device having the inorganic material sealing layer 3 was manufactured in the same manner as in Example 1.
[0025]
Thereafter, the completed organic light emitting device was taken out of the vacuum chamber. The inorganic material sealing layer 3 was transparent, and even if the light-transmitting substrate 1 was lightly tapped with a fingertip to give an impact, no streaks or white turbidity due to cracks occurred. Furthermore, after this organic light emitting device was placed in an environment of a temperature of 80 ° C. and a relative humidity of 90% for 48 hours, when the inside of the inorganic material sealing layer 3 was observed, no moisture permeation was observed.
[0026]
(Comparative example)
In Example 1, except that the inorganic material sealing layer 3 was not a composite layer of the quartz glass layer 9 and the magnesia layer 10 and the inorganic material sealing layer was formed only by a quartz glass layer having a thickness of about 1 μm. In the same manner as in Example 1, an organic light emitting device having an inorganic material sealing layer was manufactured.
[0027]
Thereafter, the completed organic light emitting device was taken out of the vacuum chamber. The inorganic material sealing layer made of quartz glass was transparent, but when the light-transmitting substrate was lightly hit with a fingertip to give an impact, streaks due to cracks and white turbidity occurred. Further, after placing the organic light emitting device in an environment of a temperature of 80 ° C. and a relative humidity of 90% for 48 hours, when the inside of the inorganic material sealing layer 3 was observed, moisture permeation from the crack was observed.
[0028]
【The invention's effect】
As described above, in the organic light emitting device sealed with the inorganic material according to the present invention, the organic light emitting element can be hermetically sealed by a simple process called vacuum deposition. Moreover, since the inorganic material sealing layer 3 is as thin as 1 to 2 μm, it can be reduced in size as compared with the one using a metal can-like sealing cap. Furthermore, high confidentiality is obtained by the quartz glass layer 9 and the magnesia layer 10, and at the same time, the presence of the magnesia layer 10 improves the brittleness unique to the quartz glass layer 9, thereby obtaining a highly durable airtight seal.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional side view showing an embodiment of an organic light emitting device sealed with an inorganic material according to the present invention.
FIG. 2 is an enlarged view of a portion A in FIG.
FIG. 3 is a schematic side view showing an apparatus for forming an inorganic material sealing layer 3 of an organic light emitting device sealed with an inorganic material according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Translucent board | substrate 2 Organic light emitting element 3 Inorganic material sealing layer 9 Quartz glass layer 10 Magnesia layer

Claims (3)

有機発光素子(2)の表面を気密に封止してなる有機発光装置において、有機発光素子(2)の表面を石英ガラス層(9)とマグネシア層(10)とが交互に積層された無機材料封止層(3)で気密に覆って封止したことを特徴とする無機材料封止された有機発光装置。In the organic light emitting device in which the surface of the organic light emitting element (2) is hermetically sealed, the inorganic light emitting element (2) has an inorganic surface in which quartz glass layers (9) and magnesia layers (10) are alternately stacked. An organic light-emitting device sealed with an inorganic material, wherein the organic light-emitting device is sealed by being hermetically covered with a material sealing layer (3). 無機材料封止層(3)は蒸着膜からなることを特徴とする請求項1に記載の無機材料封止された有機発光装置。The organic light emitting device sealed with an inorganic material according to claim 1, wherein the inorganic material sealing layer (3) is made of a vapor deposition film. 無機材料封止層(3)が、石英ガラス層(9)とマグネシア層(10)とをそれぞれ数十nm〜数百nmずつ交互に積層したものであることを特徴とする請求項1または2に記載の無機材料封止された有機発光装置。The inorganic material sealing layer (3) is formed by alternately laminating quartz glass layers (9) and magnesia layers (10) by several tens of nanometers to several hundreds of nanometers, respectively. An organic light emitting device sealed with an inorganic material as described in 1.
JP2002063270A 2002-03-08 2002-03-08 Organic light emitting device sealed with inorganic material Expired - Fee Related JP3650366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002063270A JP3650366B2 (en) 2002-03-08 2002-03-08 Organic light emitting device sealed with inorganic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002063270A JP3650366B2 (en) 2002-03-08 2002-03-08 Organic light emitting device sealed with inorganic material

Publications (2)

Publication Number Publication Date
JP2003264062A JP2003264062A (en) 2003-09-19
JP3650366B2 true JP3650366B2 (en) 2005-05-18

Family

ID=29196624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002063270A Expired - Fee Related JP3650366B2 (en) 2002-03-08 2002-03-08 Organic light emitting device sealed with inorganic material

Country Status (1)

Country Link
JP (1) JP3650366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8247809B2 (en) 2010-10-19 2012-08-21 Samsung Mobile Display Co., Ltd. Organic light emitting diode display

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101369908B1 (en) * 2007-11-23 2014-03-05 주성엔지니어링(주) Organic electroluminescent element and method of manufacturing the same
FR2949776B1 (en) 2009-09-10 2013-05-17 Saint Gobain Performance Plast LAYERED ELEMENT FOR ENCAPSULATING A SENSITIVE ELEMENT
FR2973939A1 (en) * 2011-04-08 2012-10-12 Saint Gobain LAYERED ELEMENT FOR ENCAPSULATING A SENSITIVE ELEMENT
KR20120138307A (en) 2011-06-14 2012-12-26 삼성디스플레이 주식회사 Organic light emitting diode display and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8247809B2 (en) 2010-10-19 2012-08-21 Samsung Mobile Display Co., Ltd. Organic light emitting diode display

Also Published As

Publication number Publication date
JP2003264062A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
US6765351B2 (en) Organic optoelectronic device structures
US6692326B2 (en) Method of making organic electroluminescent display
JP5124083B2 (en) Organic electroluminescent display device and manufacturing method thereof
TWI557893B (en) Organic light emitting diode display and manufacturing method of the same
US6835950B2 (en) Organic electronic devices with pressure sensitive adhesive layer
JP3817081B2 (en) Manufacturing method of organic EL element
KR101074807B1 (en) Organic light emitting display apparatus
US8070546B2 (en) Laser irradiation apparatus for bonding and method of manufacturing display device using the same
JPH08306955A (en) Passivation of organic device
TW201208172A (en) Organic light emitting diode display
JP2004001296A (en) Film with laminated film, manufacturing method thereof and film type indication element
US20120181544A1 (en) Organic light-emitting display device
JP2008198625A (en) Organic electroluminescent display device and its manufacturing method
JP2011124219A (en) Organic light-emitting display device and its manufacturing method
KR101835920B1 (en) Thin film encapsulation of organic light emitting diodes
JP3650366B2 (en) Organic light emitting device sealed with inorganic material
JP4627897B2 (en) Manufacturing method of organic LED element
KR101174873B1 (en) Organic light emitting display apparatus and method of manufacturing the same
JP2003086357A (en) Light emitting element and manufacturing method of the same
US8946759B2 (en) Organic light emitting display device with improved sealing property
KR101493409B1 (en) Organic light emitting display apparatus and method of manufacturing thereof
KR20020096813A (en) Method of Making Organic Electro luminescent Display
CN1507084A (en) Organic LED with hydrophobic film and its manufacture
CN2613053Y (en) Organic LED with water removing film
KR100765530B1 (en) Top Emission Light Emitting Diodes and Method of Manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees