JP3650301B2 - Laminated structure with snow melting and heat insulation - Google Patents

Laminated structure with snow melting and heat insulation Download PDF

Info

Publication number
JP3650301B2
JP3650301B2 JP35877399A JP35877399A JP3650301B2 JP 3650301 B2 JP3650301 B2 JP 3650301B2 JP 35877399 A JP35877399 A JP 35877399A JP 35877399 A JP35877399 A JP 35877399A JP 3650301 B2 JP3650301 B2 JP 3650301B2
Authority
JP
Japan
Prior art keywords
infrared
layer
laminated structure
heat
roof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35877399A
Other languages
Japanese (ja)
Other versions
JP2001176642A (en
Inventor
茂人 上村
誠一 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Kaken Co Ltd filed Critical SK Kaken Co Ltd
Priority to JP35877399A priority Critical patent/JP3650301B2/en
Publication of JP2001176642A publication Critical patent/JP2001176642A/en
Application granted granted Critical
Publication of JP3650301B2 publication Critical patent/JP3650301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築物の屋根や屋上等の表面に適用することで、冬期には融雪効果を、夏期には遮熱効果を発揮することができる積層構造に関するものである。
【0002】
【従来技術】
従来、寒冷地域における建築物の屋根等に対する融雪方法、あるいは凍結防止方法としては、屋根等の内側に電熱線を設置し、その電熱線に電力を供給して発熱させることにより、外側の雪を溶かしたり、凍結を防止するような方法が知られている。しかしながら、このような方法では、雪や氷に対して直接的に熱を与えることができないため、雪や氷の融解に比較的長い時間を要し、電力消費が増加することとなる。
一方、屋根等の表面に、グラファイト、導電性カーボン等の導電性粉体を含有する発熱性塗料を塗付する方法も知られており、この方法では直接的に雪や氷に熱を与えるため、前記のような問題は解消され得る。しかしながら、一般に導電性粉体は黒色等の濃色であるため、形成塗膜が熱線を吸収しやすく、日差しの強い夏期においては室内の温度上昇をまねき、冷房負荷が増し、電力消費も増大してしまうという欠点がある。
【0003】
【発明が解決しようとする課題】
本発明は、上記のような問題点に鑑みてなされたものであり、建築物の屋根や屋上等において、冬期には融雪効果や凍結防止効果を発揮し、さらに夏期における蓄熱を防止し、一年を通して電力消費を節約することのできる積層構造を得ることである。
【0004】
【課題を解決するための手段】
これらの課題を解決するため、本発明者は鋭意検討を行い、その結果、屋根等の表面に、赤外線反射性を有する導電性粒子を含有する発熱層と、赤外線透過性を有する絶縁層とを積層することを見出し、本発明の完成に至った。
【0005】
即ち、本発明は、下記の積層構造を提供するものである。
1.建築物の屋根、屋上の表面に、赤外線反射性を有する導電性粒子を含有する発熱層を積層し、その上に、赤外線透過性を有する絶縁層を最外層として積層することを特徴とする融雪効果及び遮熱効果を有する積層構造。
2.発熱層が電気抵抗値10−2〜10Ω・cmであり、赤外線透過性を有する絶縁層が電気抵抗値10Ω・cm以上であることを特徴とする1.記載の積層構造。
3.導電性粒子が、赤外線反射性粉粒体に導電性金属酸化物をドープしたものである1.または2.に記載の積層構造。
【0006】
【発明の実施の形態】
以下、本発明をその実施の形態とともに詳細に説明する。
【0007】
(1)対象となる基材
本発明の積層構造は、屋根、屋上等の外側に適用するものである。具体的には、例えば、粘土瓦、セメント瓦、スレート板、カラー鋼板、銅板、アルミニウム板、チタン板、ステンレス板、亜鉛めっき鋼板等、あるいはこれらに塗装を施したもの、防水モルタル、シート防水材、塗膜防水材等で施工された陸屋根があげられる。本発明は、新設の屋根は勿論、改修が必要な既存の屋根等にも比較的容易に適用することができる。
対象となる基材が絶縁性を有する場合は、基材上に直接積層構造を重ねることができる。一方、基材が導電性を有する場合は、基材上に合成樹脂膜等の絶縁層を設けることが望ましい。
【0008】
(2)発熱層
発熱層(以下「(2)層」ともいう)は、太陽光の赤外線を反射する機能と、電力供給により発熱して雪や氷を溶かす機能とを併有するものである。これらの機能は、赤外線反射性を有する導電性粒子を必須成分とすることにより発揮される。この他(2)層の主成分としては、バインダー成分が用いられ、さらに必要に応じ、本発明の効果を阻害しない範囲内で、その他の粉粒体、添加剤等を含むこともできる。
【0009】
(2)層の必須成分である導電性粒子は、、導電性を有するとともに、太陽光の赤外線領域を反射し蓄熱を防止する機能を発揮するものである。このような導電性粒子としては、平均粒子径が0.01〜20μm、粉体抵抗値が10−4〜10Ω・cm、好ましくは10−1〜10Ω・cmのものが使用される。本発明では、赤外線反射性粉粒体に導電性金属酸化物をドープしたものが好ましく用いられる。赤外線反射性粉粒体としては、アルミニウムフレーク、酸化チタン、硫酸バリウム、酸化亜鉛、酸化マグネシウム、アルミナ、無機系中空ビーズ、有機系中空ビーズ等があげられる。導電性金属酸化物としては、酸化錫、アンチモン含有酸化錫、リン含有酸化錫、錫含有酸化インジウム等があげられる。導電性金属酸化物の形状としては、棒状、針状、繊維状、樹枝状、海星状、球状、等のものが使用可能である。
【0010】
赤外線反射性粉粒体に導電性金属酸化物をドープする方法としては、例えば、赤外線反射性粉粒体に対して水溶性の導電性金属化合物を添加処理して、赤外線反射性粉粒体表面に導電性金属水酸化物を被着した後、焼成する方法等があげられる。通常、導電性金属酸化物は赤外線反射性粉粒体に対し、10〜150重量%、望ましくは30〜100重量%の範囲でドープする。導電性金属酸化物が10重量%より少ない場合は、連続した導電層の形成が困難となり、所望の導電性が得られない。150重量%より多い場合は、赤外線反射性が低下するため好ましくない。また、量の増加に応じた導電性向上が期待できないので経済的でない。
【0011】
導電性粒子は、バインダー成分の樹脂固形分100重量部に対し30〜600重量部含有することが望ましい。導電性粒子が30重量部より少ない場合は、電気抵抗値が高くなり、所望の発熱を得るために高い電圧が必要となるため好ましくない。600重量部より多い場合は、(2)層にクラックが生じやすくなり、その結果、導電性が低下してしまう。
【0012】
バインダー成分の種類としては、特に限定されず、熱可塑性樹脂、熱硬化性樹脂から選ばれる1種または2種以上が使用される。具体的には、例えば、エチレン系、酢酸ビニル系、アルキッド系、塩化ビニル系、アクリル系、ウレタン系、シリコン系、フッ素系等、あるいはこれらの複合系等を使用することができる。バインダー成分のガラス転移温度(以下「Tg」ともいう)は、(2)層の発熱による著しい軟化を防止するため、(2)層の発熱温度より高く設定する必要がある。通常、バインダー成分のTgは30〜200℃の範囲内に設定する。
【0013】
(2)層は、その電気抵抗値が10−2〜10Ω・cm、好ましくは10〜10Ω・cmの範囲内であることが望ましい。電気抵抗値が10Ω・cmより大きい場合は、所望の発熱を得るために高い電圧が必要となったり、電極間距離を広くすることができないというような欠点が出てくるため好ましくない。10−2Ω・cmより小さい場合は、金属に近い導電性となり、ジュール熱による発熱を得るために多大な電流が必要となり好ましくない。
【0014】
(2)層においては、赤外線反射率が20%以上、さらには50%以上であることが望ましい。このような反射性を有することにより、太陽光による蓄熱を十分に抑制することができる。なお、本発明における赤外線反射率は、波長1μmの光に対する分光反射率を測定することにより得られる値である。
【0015】
(3)赤外線透過性を有する絶縁層
赤外線透過性を有する絶縁層(以下「(3)層」ともいう)は、前記(2)層を絶縁するとともに、太陽光の赤外線領域を吸収せずに透過し、蓄熱を防止する機能を発揮するものである。さらに、耐候性、防水性、傷つき防止性等を高める役割も担う。
(3)層は、バインダー成分を主成分とするもので、必要に応じ、赤外線透過性を有する着色剤を含有することもできる。これらの着色剤を含有することにより、通常白または金属色などの色相に限定される赤外線反射層に、任意の色相で着色仕上げを行うことが可能となり、特に屋根材として好まれる濃色系色相の仕上げにおいても、蓄熱を防止することができる。その他の成分としては、紫外線吸収剤、酸化防止剤、防カビ剤、防藻剤、低汚染化剤、等を本発明の効果を阻害しない範囲内で添加することもできる。
【0016】
バインダー成分としては、絶縁性を有し、さらに太陽光の赤外線領域を吸収せず、透過する性質を有するものが使用される。樹脂の種類としては、特に限定されず、エチレン系、酢酸ビニル系、アルキッド系、塩化ビニル系、アクリル系、ウレタン系、シリコン系、フッ素系等、あるいはこれらの複合系等を使用することができる。このうち本発明では、アクリル系、ウレタン系、シリコン系、フッ素系から選ばれる1種、または2種以上の樹脂を用いると、耐候性を高めることができ好ましい。
【0017】
赤外線透過性を有する着色剤としては、ペリレン系顔料、アゾ系顔料、黄鉛、弁柄、朱、チタニウムレッド、カドミウムレッド、キナクリドンレッド、イソインドリノン、ベンズイミダゾロン、コバルトブルー、フタロシアニンブルー、インダスレンブルー、群青、紺青等があげられる。このような着色剤の含有量は、通常、バインダー成分の樹脂固形分100重量部に対し、0〜150重量部であることが望ましい。150重量部より多い場合は、赤外線透過性低下のおそれがある。
【0018】
(3)層においては、赤外線透過率が50%以上、さらには70%以上であることが望ましい。このような透過性を有することにより、太陽光による蓄熱を防止することができる。なお、本発明における赤外線透過率は、波長1μmの光に対する分光透過率を測定することにより得られる値である。
【0019】
本発明では、最外層となる(3)層に、蓄熱源となるおそれのあるカーボン等の黒色汚染物質を表面に付着させない機能を付与することにより、蓄熱防止効果を長期にわたり維持することが可能となる。このような機能は、層表面の水に対する接触角を小さくする、層表面の硬度を高くする、層表面の帯電性を低下させる等の手法により発現される。このような層は、具体的には、シリケート等のアルコキシシラン化合物、あるいはこれらの縮合物や変性物等を含有する塗料を塗付することによって得ることができる。
【0020】
(4)積層方法
本発明積層構造は、対象となる基材(1)の上に、(2)層、(3)層が順に積層されたものである。(1)の導電性が高い場合は、(1)と(2)層の間に絶縁層を設けることもできる。また、(2)層から発生した熱の屋内への温度放出を防止するために、(1)と(2)層の間に断熱層を設けることもできる。
本発明積層の形成方法としては特に限定されず、例えば、塗料を塗付することによって積層する方法、予め作製したシート状物を積層する方法等を採用することができる。シート状物を用いる場合は、本発明の効果を阻害しない限り、隣接する層との間に接着層を設けることもできる。
【0021】
【実施例】
以下に実施例及び比較例を示し、本発明の特徴をより明確にする。
【0022】
[赤外線反射性塗料の作製]
(発熱層用塗料A)
Tg80℃のアクリル系樹脂の樹脂固形分100重量部に対して、Sb/SnOドープ酸化チタンを160部重量部配合し、発熱層用塗料Aを得た。この発熱層用塗料Aによって得られる乾燥膜(膜厚1.0mm)の赤外線反射率は50%であり、電気抵抗値は2×10Ω・cmであった。なお、赤外線反射率については、分光光度計「UV−3100」(島津製作所製)を用いて波長1μmの光に対する分光反射率を測定して求めた。電気抵抗値については、デジタルマルチメーターによる2端子法で測定した(以下の測定も同様)。
(発熱層用塗料B)
Tg80℃アクリル系樹脂の樹脂固形分100重量部に対して、黒鉛を160部重量部配合し、発熱層用塗料Bを得た。この発熱層用塗料Bによって得られる乾燥膜(膜厚1.0mm)の赤外線反射率は3%であり、電気抵抗値は92Ω・cmであった。
【0023】
[絶縁層用塗料の作製]
(絶縁層用塗料P)
アクリルポリオール樹脂の樹脂固形分100重量部に対して、イソシアネート化合物14.3重量部を配合し、絶縁層用塗料Pを得た。この絶縁性用塗料Pによって得られる乾燥膜(膜厚30μm)の赤外線透過率は90%、電気抵抗値は無限大であった。なお、赤外線透過率については、フーリエ変換近赤外分析装置「Spectrum Identi Check」(パーキンエルマー社製)を用いて波長1μmの光に対する分光透過率を測定して求めた(以下の測定も同様)。
(絶縁層用塗料Q)
アクリルポリオール樹脂の樹脂固形分100重量部に対して、イソシアネート化合物14.3重量部、フタロシアニンブルー顔料を20重量部配合し、絶縁性用塗料塗料Qを得た。この絶縁性用塗料Qによって得られる乾燥膜(膜厚30μm)の赤外線透過率は82%、電気抵抗値は無限大であった。
【0024】
塗料作製に使用した原料を表1に示す。
【表1】

Figure 0003650301
【0025】
[実施例1]
厚さ0.5mmのカラートタン(着色合成樹脂塗料による塗装を施した亜鉛めっき鋼板)上に、塗料Aを乾燥膜厚が1.0mmとなるように塗付・乾燥して、発熱層を形成した。次にこの発熱層の上に、塗料Pを乾燥膜厚が30μmとなるように塗付・乾燥して、試験体を得た。作製した試験体について、下記の試験方法に従い遮熱性試験及び発熱特性試験を行ったところ、表2に示す結果を得た。
【0026】
[遮熱性試験方法]
23℃下にて、赤外線(250Wの赤外線ランプ)を試験体表面に10分間照射し、その裏面温度を測定した。
[発熱特性試験]
23℃下にて試験体に50Vの電圧を加え、30分後、その試験体の表面温度を測定した。
【0027】
[実施例2]
塗料Pに代えて、塗料Qを用いた以外は実施例1と同様にして試験を行った。
【0028】
[比較例1]
塗料Aに代えて、塗料Bを用いた以外は実施例1と同様にして試験を行った。
【0029】
【表2】
Figure 0003650301
【0030】
[試験結果]
表2に示すように、本発明の積層体である実施例1〜2では、比較例1に比べ、発熱性と遮熱性のいずれにも優れる結果となった。
【0031】
【発明の効果】
本発明積層構造を建築物の屋根や屋上等に適応すると、冬期には、比較的短時間で容易に融雪効果や凍結防止効果を発揮することができる。一方、夏期には、太陽光の熱線による屋根や屋上等の蓄熱を防止し、建築物内部の温度上昇を抑制することができる。従って、本発明積層構造は、一年を通じて優れた機能性を発揮するとともに、通年の電力消費を節約することが可能となる。また、本発明積層構造は既存の屋根等の表面に適応するため、屋根構造を大きく変える必要がなく、比較的容易に施工することができ、改修工事を兼ねることもできる。
【図面の簡単な説明】
【図1】本発明積層構造の一例を示す断面図
【符号の説明】
1:基材
2:発熱層
3:赤外線透過性を有する絶縁層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated structure that can exert a snow melting effect in winter and a heat shielding effect in summer by being applied to the surface of a building roof or rooftop.
[0002]
[Prior art]
Conventionally, as a method for melting snow on a roof of a building in a cold region, or a method for preventing freezing, a heating wire is installed on the inside of the roof, etc., and electric power is supplied to the heating wire to generate heat, thereby removing the outside snow. Methods are known that melt or prevent freezing. However, in such a method, since heat cannot be directly applied to snow or ice, a relatively long time is required for melting snow or ice, and power consumption increases.
On the other hand, a method of applying a heat-generating paint containing conductive powder such as graphite or conductive carbon to the surface of a roof or the like is also known, and this method directly heats snow and ice. The above problems can be solved. However, since the conductive powder is generally dark in color such as black, the formed coating film easily absorbs heat rays, and in summer when the sunlight is strong, the indoor temperature rises, the cooling load increases, and the power consumption also increases. There is a disadvantage that it ends up.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems. On the roof and rooftop of a building, the snow melting effect and the anti-freezing effect are exhibited in winter, and further, heat storage in summer is prevented. It is to obtain a laminated structure that can save power consumption throughout the year.
[0004]
[Means for Solving the Problems]
In order to solve these problems, the present inventor has intensively studied, and as a result, on the surface of a roof or the like, a heating layer containing conductive particles having infrared reflectivity and an insulating layer having infrared transparency are provided. The inventors have found that they are laminated, and have completed the present invention.
[0005]
That is, the present invention provides the following laminated structure.
1. A snow melting characterized by laminating a heat generating layer containing conductive particles having infrared reflectivity on the roof of a building, the surface of the roof, and further laminating an insulating layer having infrared transmissivity as an outermost layer. Laminated structure having effect and heat shielding effect.
2. The heat generating layer has an electric resistance value of 10 −2 to 10 4 Ω · cm, and the insulating layer having infrared transparency has an electric resistance value of 10 6 Ω · cm or more. The laminated structure described.
3. 1. Conductive particles are obtained by doping an infrared reflective powder with a conductive metal oxide. Or 2. The laminated structure described in 1.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail together with embodiments thereof.
[0007]
(1) Base material to be used The laminated structure of the present invention is applied to the outside of a roof, a rooftop or the like. Specifically, for example, clay roof tile, cement roof tile, slate plate, color steel plate, copper plate, aluminum plate, titanium plate, stainless steel plate, galvanized steel plate, etc., or those coated with these, waterproof mortar, sheet waterproofing material And a flat roof constructed with a waterproof coating material. The present invention can be applied relatively easily to existing roofs that need to be refurbished as well as to new roofs.
In the case where the target base material has insulating properties, the laminated structure can be directly stacked on the base material. On the other hand, when the substrate has conductivity, it is desirable to provide an insulating layer such as a synthetic resin film on the substrate.
[0008]
(2) Heat generation layer The heat generation layer (hereinafter also referred to as “(2) layer”) has both a function of reflecting the infrared rays of sunlight and a function of generating heat by supplying power and melting snow and ice. These functions are exhibited by using, as an essential component, conductive particles having infrared reflectivity. In addition, a binder component is used as the main component of the layer (2), and other powders, additives and the like can be included as long as they do not impair the effects of the present invention.
[0009]
(2) The electroconductive particle which is an essential component of a layer exhibits conductivity while reflecting the infrared region of sunlight and preventing heat storage. As such conductive particles, those having an average particle diameter of 0.01 to 20 μm and a powder resistance value of 10 −4 to 10 2 Ω · cm, preferably 10 −1 to 10 1 Ω · cm are used. The In this invention, what doped the electroconductive metal oxide to the infrared reflective powder granular material is used preferably. Examples of the infrared reflective powder particles include aluminum flakes, titanium oxide, barium sulfate, zinc oxide, magnesium oxide, alumina, inorganic hollow beads, and organic hollow beads. Examples of the conductive metal oxide include tin oxide, antimony-containing tin oxide, phosphorus-containing tin oxide, and tin-containing indium oxide. As the shape of the conductive metal oxide, rod-like, needle-like, fiber-like, dendritic, marine, spherical, etc. can be used.
[0010]
Examples of the method for doping the infrared reflective powder with conductive metal oxide include, for example, addition treatment of a water-soluble conductive metal compound to the infrared reflective powder and the surface of the infrared reflective powder For example, a method of firing after depositing a conductive metal hydroxide is used. Usually, the conductive metal oxide is doped in the range of 10 to 150% by weight, desirably 30 to 100% by weight, based on the infrared reflective powder particles. When the amount of the conductive metal oxide is less than 10% by weight, it is difficult to form a continuous conductive layer, and desired conductivity cannot be obtained. When it is more than 150% by weight, the infrared reflectivity is lowered, which is not preferable. In addition, it is not economical because it cannot be expected to improve conductivity according to the increase in amount.
[0011]
The conductive particles are desirably contained in an amount of 30 to 600 parts by weight with respect to 100 parts by weight of the resin solid content of the binder component. When the amount of the conductive particles is less than 30 parts by weight, the electric resistance value is increased, and a high voltage is required to obtain a desired heat generation, which is not preferable. When the amount is more than 600 parts by weight, cracks are likely to occur in the layer (2), resulting in a decrease in conductivity.
[0012]
It does not specifically limit as a kind of binder component, 1 type, or 2 or more types chosen from a thermoplastic resin and a thermosetting resin are used. Specifically, for example, ethylene, vinyl acetate, alkyd, vinyl chloride, acrylic, urethane, silicon, fluorine, or a composite of these can be used. The glass transition temperature (hereinafter also referred to as “Tg”) of the binder component needs to be set higher than the heat generation temperature of the (2) layer in order to prevent significant softening due to heat generation of the (2) layer. Usually, Tg of a binder component is set in the range of 30-200 degreeC.
[0013]
(2) The layer has an electric resistance value of 10 −2 to 10 4 Ω · cm, preferably 10 1 to 10 3 Ω · cm. When the electric resistance value is larger than 10 4 Ω · cm, it is not preferable because a high voltage is required to obtain a desired heat generation, and the distance between the electrodes cannot be increased. If it is smaller than 10 −2 Ω · cm, it becomes conductive close to metal, and a large amount of current is required to obtain heat generated by Joule heat, which is not preferable.
[0014]
In the (2) layer, the infrared reflectance is preferably 20% or more, and more preferably 50% or more. By having such reflectivity, heat storage by sunlight can be sufficiently suppressed. The infrared reflectance in the present invention is a value obtained by measuring the spectral reflectance with respect to light having a wavelength of 1 μm.
[0015]
(3) Insulating layer having infrared transparency The insulating layer having infrared transparency (hereinafter also referred to as “(3) layer”) insulates the layer (2) and does not absorb the infrared region of sunlight. It permeates and exhibits the function of preventing heat storage. Furthermore, it also plays a role of improving weather resistance, waterproofness, scratch resistance and the like.
(3) The layer is mainly composed of a binder component, and can contain a colorant having infrared transparency as required. By containing these colorants, it is possible to carry out a color finish with an arbitrary hue on an infrared reflective layer that is usually limited to a hue such as white or metallic color, and particularly a dark color hue that is preferred as a roofing material. In the finishing, heat storage can be prevented. As other components, an ultraviolet absorber, an antioxidant, an antifungal agent, an algaeproofing agent, a low-contamination agent, and the like can be added within a range that does not impair the effects of the present invention.
[0016]
As the binder component, one having an insulating property and further having a property of transmitting without transmitting the infrared region of sunlight is used. The type of resin is not particularly limited, and ethylene, vinyl acetate, alkyd, vinyl chloride, acrylic, urethane, silicon, fluorine, or a composite of these can be used. . Among these, in the present invention, it is preferable to use one or two or more resins selected from acrylic, urethane, silicon, and fluorine, because the weather resistance can be improved.
[0017]
Examples of colorants having infrared transparency include perylene pigments, azo pigments, yellow lead, petals, vermilion, titanium red, cadmium red, quinacridone red, isoindolinone, benzimidazolone, cobalt blue, phthalocyanine blue, and indus. Examples include ren blue, ultramarine blue, and bitumen. Usually, the content of such a colorant is desirably 0 to 150 parts by weight with respect to 100 parts by weight of the resin solid content of the binder component. When the amount is more than 150 parts by weight, there is a possibility that the infrared transmittance is lowered.
[0018]
(3) The layer preferably has an infrared transmittance of 50% or more, more preferably 70% or more. By having such permeability, heat storage by sunlight can be prevented. The infrared transmittance in the present invention is a value obtained by measuring the spectral transmittance with respect to light having a wavelength of 1 μm.
[0019]
In the present invention, the heat storage prevention effect can be maintained over a long period of time by providing the outermost layer (3) with the function of preventing black contaminants such as carbon that may be a heat storage source from adhering to the surface. It becomes. Such a function is expressed by techniques such as reducing the contact angle of the layer surface with water, increasing the hardness of the layer surface, and reducing the chargeability of the layer surface. Specifically, such a layer can be obtained by applying a paint containing an alkoxysilane compound such as silicate, or a condensate or modified product thereof.
[0020]
(4) Lamination method The laminated structure of the present invention is obtained by sequentially laminating the (2) layer and the (3) layer on the target substrate (1). When the conductivity of (1) is high, an insulating layer can be provided between the (1) and (2) layers. Further, in order to prevent the heat generated from the layer (2) from being released into the room, a heat insulating layer may be provided between the layers (1) and (2).
The method for forming the laminate of the present invention is not particularly limited. For example, a method of laminating by applying a paint, a method of laminating a sheet-like material prepared in advance, and the like can be employed. When using a sheet-like material, an adhesive layer can be provided between adjacent layers as long as the effects of the present invention are not impaired.
[0021]
【Example】
Examples and Comparative Examples are shown below to clarify the features of the present invention.
[0022]
[Production of infrared reflective paint]
(Heat layer paint A)
160 parts by weight of Sb / SnO 2 -doped titanium oxide was blended with 100 parts by weight of the resin solid content of an acrylic resin having a Tg of 80 ° C. to obtain a heating layer coating material A. The infrared reflectance of the dry film (film thickness: 1.0 mm) obtained by the heat generating layer coating material A was 50%, and the electric resistance value was 2 × 10 3 Ω · cm. The infrared reflectance was obtained by measuring the spectral reflectance for light having a wavelength of 1 μm using a spectrophotometer “UV-3100” (manufactured by Shimadzu Corporation). The electrical resistance value was measured by a two-terminal method using a digital multimeter (the same applies to the following measurements).
(Heat layer coating B)
160 parts by weight of graphite was blended with 100 parts by weight of the resin solid content of an acrylic resin having a Tg of 80 ° C. to obtain a heat generation layer coating material B. The infrared reflectance of the dry film (film thickness: 1.0 mm) obtained by the heat generating layer coating material B was 3%, and the electric resistance value was 92 Ω · cm.
[0023]
[Preparation of coating material for insulating layer]
(Insulation layer coating P)
Insulating layer coating material P was obtained by blending 14.3 parts by weight of the isocyanate compound with respect to 100 parts by weight of the resin solid content of the acrylic polyol resin. The infrared ray transmittance of the dry film (thickness 30 μm) obtained by this insulating coating P was 90%, and the electric resistance value was infinite. The infrared transmittance was obtained by measuring the spectral transmittance with respect to light having a wavelength of 1 μm using a Fourier transform near infrared analyzer “Spectrum Identity Check” (manufactured by PerkinElmer) (the same applies to the following measurements). .
(Insulation layer coating Q)
An insulating coating material Q was obtained by blending 14.3 parts by weight of the isocyanate compound and 20 parts by weight of the phthalocyanine blue pigment with respect to 100 parts by weight of the resin solid content of the acrylic polyol resin. The infrared transmission of the dry film (thickness 30 μm) obtained by this insulating coating Q was 82%, and the electric resistance value was infinite.
[0024]
Table 1 shows the raw materials used for preparing the paint.
[Table 1]
Figure 0003650301
[0025]
[Example 1]
A paint layer A is applied and dried to a thickness of 1.0 mm on a 0.5 mm thick colored tin (galvanized steel sheet coated with a colored synthetic resin paint) to form a heating layer. did. Next, a coating material P was applied and dried on the heat generating layer so that the dry film thickness was 30 μm to obtain a test specimen. About the produced test body, when the thermal-insulation test and the heat-generation characteristic test were done according to the following test method, the result shown in Table 2 was obtained.
[0026]
[Thermal insulation test method]
At 23 ° C., the surface of the test body was irradiated with infrared rays (infrared lamp of 250 W) for 10 minutes, and the back surface temperature was measured.
[Heat generation characteristic test]
A voltage of 50 V was applied to the specimen at 23 ° C., and after 30 minutes, the surface temperature of the specimen was measured.
[0027]
[Example 2]
A test was conducted in the same manner as in Example 1 except that paint Q was used instead of paint P.
[0028]
[Comparative Example 1]
The test was conducted in the same manner as in Example 1 except that paint B was used instead of paint A.
[0029]
[Table 2]
Figure 0003650301
[0030]
[Test results]
As shown in Table 2, in Examples 1 and 2 which are laminates of the present invention, both the exothermic property and the heat shielding property were excellent as compared with Comparative Example 1.
[0031]
【The invention's effect】
When the laminated structure of the present invention is applied to a roof or a roof of a building, a snow melting effect and an anti-freezing effect can be easily achieved in a relatively short time in winter. On the other hand, in summer, it is possible to prevent heat accumulation on the roof, the rooftop, and the like due to the heat rays of sunlight, and to suppress the temperature rise inside the building. Therefore, the laminated structure of the present invention exhibits excellent functionality throughout the year, and can save power consumption throughout the year. Further, since the laminated structure of the present invention is adapted to the surface of an existing roof or the like, it is not necessary to change the roof structure greatly, it can be constructed relatively easily, and it can also serve as a repair work.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a laminated structure of the present invention.
1: Base material 2: Heat generation layer 3: Insulating layer having infrared transparency

Claims (3)

建築物の屋根、屋上の表面に、赤外線反射性を有する導電性粒子を含有する発熱層を積層し、その上に、赤外線透過性を有する絶縁層を最外層として積層することを特徴とする融雪効果及び遮熱効果を有する積層構造。A snow melting characterized by laminating a heat generating layer containing conductive particles having infrared reflectivity on the roof of a building, the surface of the roof, and further laminating an insulating layer having infrared transmissivity as an outermost layer. Laminated structure having effect and heat shielding effect. 発熱層が電気抵抗値10−2〜10Ω・cmであり、赤外線透過性を有する絶縁層が電気抵抗値10Ω・cm以上であることを特徴とする請求項1記載の積層構造。The laminated structure according to claim 1, wherein the heat generating layer has an electric resistance value of 10 −2 to 10 4 Ω · cm, and the insulating layer having infrared transparency has an electric resistance value of 10 6 Ω · cm or more. 導電性粒子が、赤外線反射性粉粒体に導電性金属酸化物をドープしたものである請求項1または2に記載の積層構造。  The laminated structure according to claim 1 or 2, wherein the conductive particles are obtained by doping an infrared-reflecting granular material with a conductive metal oxide.
JP35877399A 1999-12-17 1999-12-17 Laminated structure with snow melting and heat insulation Expired - Fee Related JP3650301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35877399A JP3650301B2 (en) 1999-12-17 1999-12-17 Laminated structure with snow melting and heat insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35877399A JP3650301B2 (en) 1999-12-17 1999-12-17 Laminated structure with snow melting and heat insulation

Publications (2)

Publication Number Publication Date
JP2001176642A JP2001176642A (en) 2001-06-29
JP3650301B2 true JP3650301B2 (en) 2005-05-18

Family

ID=18461040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35877399A Expired - Fee Related JP3650301B2 (en) 1999-12-17 1999-12-17 Laminated structure with snow melting and heat insulation

Country Status (1)

Country Link
JP (1) JP3650301B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076043B2 (en) * 2006-04-08 2012-11-21 株式会社大木工藝 Roofing material
JP2015160759A (en) * 2014-02-26 2015-09-07 チタン工業株式会社 Transparent electroconductive compound oxide fine powder, production method thereof, and transparent electroconductive film

Also Published As

Publication number Publication date
JP2001176642A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
CN102496642B (en) Back sheet of solar cell and preparation method for back sheet
EP1244543B1 (en) Thermochromic laminates and methods for controlling the temperature of a structure
JP4096277B2 (en) Solar shading material, coating liquid for solar shading film, and solar shading film
JPS597043A (en) Heat-wave shielding laminate
CN104070734B (en) A kind of coated glass with high reflectivity and preparation method thereof
JP6498202B2 (en) Low radiation coating and functional building materials for joinery including the same
CN102202884A (en) Thermally conducting materials for solar panel components
CN103410289B (en) A kind of foam glass heat insulating photovoltaic decoration integrated board and preparation method thereof
CN113015769A (en) Metal-free coating capable of reflecting sunlight and emitting infrared light and preparation method thereof
CN107160773A (en) A kind of composite membrane with infra-red radiation heat sinking function and its production and use
EP3631865A1 (en) Colored photovoltaic module with nanoparticle layer
US20130330570A1 (en) Energy-shielding plastics film
JP6791156B2 (en) Organic photoelectric conversion element and organic thin film solar cell module
JP3650301B2 (en) Laminated structure with snow melting and heat insulation
US20150144188A1 (en) Black glass and solar cell assembly using the same
JP3705572B2 (en) Laminated body having snow melting and heat shielding properties
JP3311664B2 (en) White paint and its coating
CN113809194A (en) Layer containing effect pigments and scattering additives
CN207644529U (en) A kind of shared bicycle
CN109860333A (en) Preparation method of battery back plate
WO2021099246A1 (en) Laminated glazing
CN202721839U (en) Far-infrared heating cable
US20220412091A1 (en) Building materials comprising graphene and related methods
CN118250844A (en) Electrothermal film and manufacturing method thereof
Gupta et al. A new approach to low cost large area selective surfaces for photothermal conversion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees