JP3648765B2 - Epoxy resin curable composition - Google Patents

Epoxy resin curable composition Download PDF

Info

Publication number
JP3648765B2
JP3648765B2 JP21370594A JP21370594A JP3648765B2 JP 3648765 B2 JP3648765 B2 JP 3648765B2 JP 21370594 A JP21370594 A JP 21370594A JP 21370594 A JP21370594 A JP 21370594A JP 3648765 B2 JP3648765 B2 JP 3648765B2
Authority
JP
Japan
Prior art keywords
phenol
formaldehyde
resin
curing agent
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21370594A
Other languages
Japanese (ja)
Other versions
JPH0873567A (en
Inventor
力 安部
潤司 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP21370594A priority Critical patent/JP3648765B2/en
Publication of JPH0873567A publication Critical patent/JPH0873567A/en
Application granted granted Critical
Publication of JP3648765B2 publication Critical patent/JP3648765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【0001】
【産業上の利用分野】
本発明はエポキシ樹脂用潜在性硬化剤に関する。
【0002】
【従来の技術】
エポキシ樹脂は、従来の二液性のものよりも、配合ミスの防止、連続化、ライン化が可能である等の理由から一液型タイプのものが望まれてきている。一液性エポキシ樹脂には室温ではエポキシ樹脂と反応しないが、加熱により反応して硬化する硬化剤、いわゆる潜在性硬化剤が必要である。
【0003】
潜在性硬化剤としてはこれまでにいくつか提案されており、その代表的なものとしては、三フッ化ホウ素−アミン錯体、ジシアンジアミド、二塩基酸ジヒドラジド、アミン−エポキシ付加物等が挙げられる。しかし、三フッ化ホウ素−アミン錯体は吸湿性が大きく、硬化物の諸特性に悪影響を与え、ジシアンジアミド、二塩基酸ジヒドラジドは貯蔵安定性は優れているが、150℃以上の高温、長時間硬化を必要とする欠点がある。また、アミン−エポキシ付加物は低温速硬化のものは保存安定性に乏しく、保存安定性の良いものは低温速硬化性に欠ける傾向にある。特に、エポキシ樹脂を電子部品の封止材等に用いる場合は電子部品を傷めないために、より低温硬化が強く望まれている。
【0004】
この問題を解決するために、ジアミン類またはポリアミン類を、フェノール類とアルデヒド類の酸触媒による縮合物であるフェノールノボラック樹脂とで塩とし、常温で低活性とする方法が知られている。(特開昭60−49025、特開昭63−117032)しかし、低温硬化性の塩は室温以下ではエポキシ樹脂と低活性ではあるが、40℃近辺では貯蔵安定性に乏しく、夏場での保存は困難である。また、40℃近辺での貯蔵安定性を持つものは、低温硬化性を有さず、高温長時間硬化を要する。
【0005】
【発明が解決しようとする課題】
低温速硬化性を有し、且つ室温での貯蔵安定性に優れたエポキシ樹脂用潜在性硬化剤を開発することである。
【0006】
【課題を解決するための手段】
本発明者は低温硬化性を有し、且つ貯蔵安定性に優れた潜在性硬化剤を開発すべく鋭意検討した結果、(1)イミダゾール化合物と、(2)フェノール類1モルに対して、ホルムアルデヒド類0.8〜1.5モルとなるような条件で、初めに0.2〜2モル%の酸触媒の存在下、フェノールとホルマリンを反応させ(ノボラック化反応)、次いで0.2〜2モル%の塩基性触媒の存在下でさらに反応を進行させる(レゾール化反応)ことによって得られるフェノール類とホルムアルデヒド類との縮合物からなるフェノール・ホルムアルデヒド系樹脂との固溶体が優れた潜在性硬化剤であり、さらにこの潜在性硬化剤(b)とエポキシ樹脂(a)との組成物が優れたエポキシ樹脂硬化性組成物であることを見いだし、本願発明を完成させるに至った。すなわち本発明の第1は請求項1記載の(a)エポキシ樹脂、(b)(1)イミダゾール化合物と、(2)フェノール類1モルに対して、ホルムアルデヒド類0.8〜1.5モルとなるような条件で、初めに0.2〜2モル%の酸触媒の存在下、フェノールとホルマリンを反応させ、次いで0.2〜2モル%の塩基性触媒の存在下でさらに反応を進行させることによって得られるフェノール類とホルムアルデヒド類との縮合物からなり、かつ該縮合物の分子量がゲルパーミエイションクロマトグラフィーによるポリスチレン換算平均分子量が3000以上7000以下であるフェノール・ホルムアルデヒド系樹脂との固溶体から成るエポキシ樹脂硬化性組成物及び本発明の第は請求項記載のフェノール類とホルムアルデヒド類との縮合物の分子量がゲルパーミエイションクロマトグラフィー(GPC)によるポリスチレン換算平均分子量が3500以上、5500未満である本発明第1記載のエポキシ樹脂硬化性組成物である。
【0007】
本発明における固溶体とは、(1)イミダゾール化合物と、(2)フェノール類1モルに対して、ホルムアルデヒド類0.8〜1.5モルとなるような条件で、初めに0.2〜2モル%の酸触媒の存在下、フェノールとホルマリンを反応させ(ノボラック反応)、次いで0.2〜2モル%の塩基性触媒の存在下でさらに反応を進行させる(レゾール化反応)ことによって得られるフェノール類とホルムアルデヒド類との縮合物からなり、かつ該縮合物の分子量がゲルパーミエイションクロマトグラフィー(GPC)によるポリスチレン換算平均分子量が3000以上7000以下であるフェノール・ホルムアルデヒド系樹脂とが単一の固体相を形成したものを言う。
具体的には、上記2成分が水素結合、塩形成等により単一の固体相を形成したものであるが、必ずしも各成分が化学量論量存在する必要はなく、一成分が他の成分より過剰に存在してもかまわない。
【0008】
本発明の組成物において用いられるエポキシ樹脂(a)は、一分子中に2個以上のエポキシ基を有するものであればいかなるものであってもよい。
具体的には、一般にこの分野でよく知られている化合物、例えばビスフェノールA、ビスフェノールF、カテコール、レゾルシノールなどの多価フェノールまたはグリセリンやポリエチレングリコールのような多価アルコールとエピクロロヒドリンを反応させて得られるポリグリシジルエーテル、p−オキシ安息香酸、β−オキシナフトエ酸のようなヒドロキシカルボン酸とエピクロロヒドリンを反応させて得られるグリシジルエーテルエステル、フタル酸、テレフタル酸のようなポリカルボン酸から得られるポリグリシジルエステル、4,4’−ジアミノジフェニルメタンやm−アミノフェノールなどから得られるグリシジルアミン化合物、さらにはエポキシ化ノボラックやエポキシ化ポリオレフィン等が挙げられる。
【0009】
本願発明の固溶体(b)はフェノール類1モルに対して、ホルムアルデヒド類0.8〜1.5モルとなるような条件で、初めに0.2〜2モル%の酸触媒の存在下、フェノールとホルマリンを反応させ(ノボラック反応)、次いで0.2〜2モル%の塩基性触媒の存在下でさらに反応を進行させる(レゾール化反応)ことによって得られるフェノール類とホルムアルデヒド類との縮合物からなるフェノール・ホルムアルデヒド系樹脂との固溶体であり、又フェノール類とホルムアルデヒド類との縮合物の分子量がゲルパーミエイションクロマトグラフィー(GPC)によるポリスチレン換算平均分子量が3000以上7000以下、さらに好ましくは3500以上5500未満であるフェノール類とホルムアルデヒドとの縮合物からなるフェノール・ホルムアルデヒド系樹脂(以下、フェノール・ホルムアルデヒド系樹脂と略す)との固溶体でもある。樹脂とイミダゾール化合物とを一緒に透明液体を得るまで加熱し、ついで個体生成物を形成するまで冷却することによって製造することができる。
加熱温度が低すぎると本発明のフェノール・ホルムアルデヒド系樹脂との縮合物からなる樹脂が融解しないため固溶体が得られず、また加熱温度が高すぎると固溶体生成前に窒素塩基が蒸散または昇華するおそれがあるので、製造上好ましい温度は100〜200℃である。
【0010】
別法として、上記のフェノール・ホルムアルデヒド系樹脂をメタノールまたはエタノールのような低級アルコールに室温で溶解させ、次いで分子中に一級のアミノ基を持たない窒素塩基を有する化合物(前記溶媒の溶液であっても可)を得られた溶液中に加え、必要に応じて環流装置を付けた反応容器中で加熱、撹拌し、反応終了後常法で溶媒を除去してもよい。製造方法に関わらず、生成物は本発明の組成物において硬化剤として使用される前に粉末に変える。
【0011】
固溶体(b)中のフェノール・ホルムアルデヒド系樹脂と窒素塩基を有する化合物の重量比は、固体の安定な生成物を与えるように選ばれ、通常1:1ないし20:1の範囲内、好ましくは2:1ないし10:1の範囲内である。
【0012】
本発明の組成物において硬化剤として使用される固溶体(b)は、エポキシ樹脂(a)と混合する以前に製造され、粉末にされる。
【0013】
固溶体(b)を製造するために使用されるイミダゾール化合物は具体的には1−メチルイミダゾール、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾールのような含窒素複素環化合物が挙げられる。上記窒素塩基は2つまたはそれより多くの混合物を使用することができる。
【0014】
固溶体(b)を製造するために使用されるフェノール・ホルムアルデヒド系樹脂は、下記の方法で得ることができる。
フェノール類1モルに対して、ホルムアルデヒド類0.8〜1.5モルとなるような条件で、初めに0.2〜2モル%の酸触媒の存在下フェノールとホルマリンを反応させ(ノボラック化反応)、次いで0.2〜2モル%塩基性触媒の存在下でさらに反応を進行させる(レゾール化反応)ことによって製造する。即ち、まずノボラック化反応により線状縮合物を生成させ、次いでレゾール化反応により架橋点を付与するものである。
【0015】
ノボラック化反応は公知の条件、方法で反応させ得る。通常100℃近辺で2、3時間、酸触媒存在下で反応を行なう。次いで水を系中に注入し、冷却した後、樹脂を沈降して回収する。
また、レゾール化反応も公知の条件、方法で反応させ得る。通常60〜100℃で1時間前後、塩基性触媒下で反応を行ない、次いで放冷し、樹脂を回収する。
【0016】
本発明に使用し得るフェノール類としては、フェノール、クレゾール、キシレノール、レゾルシノール、カテコール、ハイドロキノン等であるが、それらの2種類あるいはそれ以上の混合物でも良い。
【0017】
ホルムアルデヒドとしては、各濃度のホルマリン、パラホルムアルデヒド、グリオキサール、トリオキサン等であり、その2種類あるいはそれ以上の混合物でも良い。
【0018】
酸性触媒としては、塩酸、硫酸、蟻酸、シュウ酸、パラトルエンスルホン酸、フェノールスルホン酸等が使用できる。
【0019】
塩基性触媒としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム等、アルカリ金属またはアルカリ土類金属の水酸化物あるいは酸化物、アルカリ金属の炭酸塩重炭酸塩等の無機系アルカリ化合物、各種アミン類、アンモニア水、ヘキサメチレンテトラミン等の有機系アルカリ化合物の1種あるいは2種以上が使用される。
【0020】
この様にして製造したフェノール・ホルムアルデヒド系樹脂は、(1)実質的に炭素、水素及び酸素原子から構成されており、(2)メチレン基、メチロール基並びにフェノール類の3官能性の残基を主たる結合単位として含有しており、(3)該3官能性の残基はフェノール類の2・4及び6位の1箇所でメチレン基と結合し、その少なくとも他の1箇所でメチロール基及び/又はメチレン基と結合しており、そして(4)ゲルパーミエイションクロマトグラフィー(GPC)によるポリスチレン換算平均分子量が2000以上10000以下であることを特徴とする。
特に好ましいものは、GPCによるポリスチレン換算平均分子量が3000以上7000以下である。さらに好ましい範囲は3500以上、5500未満である。
【0021】
このフェノール・ホルムアルデヒド系樹脂は、KBr錠剤法による遠赤外線吸収スペクトルにおいて、1600cm-1の吸収強度をD1600、990〜1015cm-1の範囲の最も大きな吸収強度をD990〜1015、890cm-1の吸収強度をD890で表した場合に、D990〜1015/D1600=0.2〜9.0、D890/D1600=0.09〜1.0であることを特徴とする。特に好ましいものは、D990〜1015/D1600=0.4〜5.0、D890/D1600=0.12〜0.3という特性を有する。
【0022】
赤外線吸収スペクトルにおいて、D1600のピークがベンゼン核に帰属する吸収を示し、D990〜1015のピークがメチロール基に帰属する吸収を示し、さらにD890のピークがベンゼン核の孤立した水素に帰属することはフェノール・ホルムアルデヒド樹脂に関して既に広く知られているが、D990〜1015/D1600=0.2〜9.0という特性値は、この樹脂がある程度のメチロール基を含有していることを示し、さらに、D890/D1600=0.09〜1.0という特性値は、高分子量化に関与したフェノール分子の反応部位(オルト及びパラ)がメチレン結合またはメチロール基によって適度に封鎖されていることを示すものである。
【0023】
従来、フェノール・ホルムアルデヒド樹脂の代表的なものとしてノボラック樹脂とレゾール樹脂とが知られている。
通常、ノボラック樹脂はフェノール対ホルムアルデヒドのモル比が例えば1対0.7〜0.9となるようなフェノール過剰の条件下で、シュウ酸の如き酸触媒の存在下(通常0.2〜2%)でフェノールとホルマリンとを反応させることによって製造される。このような方法で得られるノボラック樹脂は、フェノールが主としてメチレン基によって結合された3〜5量体が主成分をなし、分子量は約1000程度以下である。また、遊離メチロール基を殆ど含有せず、従ってD990〜1015/D1600の値は0.2以下となり、本願発明に用いるフェノール・ホルムアルデヒド系樹脂とは異なるものである。
【0024】
また、通常のレゾール樹脂は、例えば水酸化ナトリウム、アンモニアまたは有機アミンの如き塩基性触媒(通常0.2〜2%)の存在下でフェノール対ホルムアルデヒドのモル比が1対1〜2のホルムアルデヒド過剰の条件下で反応させることによって製造される。このようにして得られるレゾール樹脂は、フェノールの1〜3量体が主成分を成し、分子量は100〜300程度である。また、比較的多量の遊離メチロール基により、高分子量化に関与したフェノール分子の反応部位(オルト及びパラ)の多くが封鎖されているため、D890/D1600の値は0.09以下となり、通常のノボラックと同様に、本願発明に用いるフェノール・ホルムアルデヒド系樹脂とは異なるものである。
【0025】
本発明における硬化性組成物中の固溶体(b)の量は、通常エポキシ樹脂(a)100重量部に対して0.5〜50重量部が好ましい。固溶体(b)が0.5重量部未満では十分な硬化性を示さず、50重量部を越えると硬化物の性能低下を招来する原因となる。
【0026】
本発明の硬化性組成物は、固溶体(b)を所定量のエポキシ樹脂に添加し、乳鉢でよく摺りこみ混和し、製造される。
【0027】
本発明の硬化性組成物には、エポキシ樹脂(a)、固溶体(b)以外に公知の硬化剤、例えば酸無水物、ジシアンジアミド、二塩基酸ジヒドラジド、グアナミン類、メラミン等が併用されうる。
【0028】
本発明の硬化性組成物は、一定温度のギアオーブン中に所定時間入れることにより硬化させる。
【0029】
【実施例】
次に合成例及び実施例により具体的に説明するが、本発明はこの実施例に限定されるものではない。
尚、合成例及び実施例に用いた原料の略称は以下の通りである。
(a)多官能エポキシ樹脂
エピコート#828(商品名シェル化学(株))
ビスフェノールA系エポキシ樹脂
エポキシ当量184〜194
(b)窒素塩基
PI :ピペラジン
TEA :トリエタノールアミン
DMP−10:2−ジメチルアミノメチルフェノール
MZ :2−メチルイミダゾール
EMZ :2−エチル−4−メチルイミダゾール
【0030】
硬化剤製造例1
予め、30℃に加温した20重量%の塩酸と8重量%のホルムアルデヒドとを含む混合水溶液を温度計、環流冷却器、撹拌装置、加熱及び冷却ジャケットを備えた反応器に入れた。次いで、フェノール70重量%とホルムアルデヒド6重量%とを含む混合水溶液を、上記の混合水溶液に滴下した。滴下後、24時間放置し、反応を集結させた後、反応系に水を加え、冷却した内容物を取り出し、水洗した。水洗後、1.0重量%のアンモニア水溶液中、50℃の温度で60分間処理し、さらに水洗後、70℃で3時間乾燥した。得られた生成物を樹脂No.1とする。この樹脂のGPCによるポリスチレン換算分子量は4000であった。また、赤外吸収スペクトル法による1600cm−1に対する990〜1015cm−1と890cm−1の吸収波長強度比はそれぞれ1.23及び0.23であった。
温度計、撹拌装置をそなえた金属製ビーカーに、樹脂No.1を100g秤取し、PIを40g加え、加熱しながらよく撹拌した。150℃で1時間保ち、反応が集結した後、加熱を停止し室温まで冷却して黄色の固体を得た。この固体を粉砕したものを硬化剤No.1とした。
【0031】
硬化剤製造例2
温度計、撹拌装置をそなえた金属製ビーカーに、樹脂No.1を100g秤取し、TEAを40g加え、加熱しながらよく撹拌した。150℃で1時間保ち、反応が集結した後、加熱を停止し室温まで冷却して黄色の固体を得た。この固体を粉砕したものを硬化剤No.2とした。
【0032】
硬化剤製造例3
温度計、撹拌装置をそなえた金属製ビーカーに、樹脂No.1を100g秤取し、DMP−10を50g加え、加熱しながらよく撹拌した。150℃で1時間保ち、反応が集結した後、加熱を停止し室温まで冷却して黄色の固体を得た。この固体を粉砕したものを硬化剤No.3とした。
【0033】
硬化剤製造例4
温度計、撹拌装置をそなえた金属製ビーカーに、樹脂No.1を100g秤取し、MZを30g加え、加熱しながらよく撹拌した。150℃で1時間保ち、反応が集結した後、加熱を停止し室温まで冷却して黄色の固体を得た。この固体を粉砕したものを硬化剤No.4とした。
【0034】
硬化剤製造例5
温度計、撹拌装置をそなえた金属製ビーカーに、樹脂No.1を100g秤取し、EMZを30g加え、加熱しながらよく撹拌した。150℃で1時間保ち、反応が集結した後、加熱を停止し室温まで冷却して黄色の固体を得た。この固体を粉砕したものを硬化剤No.5とした。
【0035】
硬化剤製造例6
予め、60℃に加温した20重量%の塩酸と8重量%のホルムアルデヒドとを含む混合水溶液を温度計、環流冷却器、撹拌装置、加熱及び冷却ジャケットを備えた反応器に入れた。次いで、フェノール70重量%とホルムアルデヒド6重量%とを含む混合水溶液を、上記の混合水溶液に滴下した。滴下後、24時間放置し、反応を集結させた後、反応系に水を加え、冷却した内容物を取り出し、水洗した。水洗後、1.0重量%のアンモニア水溶液中、50℃の温度で60分間処理し、さらに水洗後、70℃で3時間乾燥した。得られた生成物を樹脂No.2とする。この樹脂のGPCによるポリスチレン換算分子量は5000であった。また、赤外吸収スペクトル法による1600cm−1に対する990〜1015cm−1と890cm−1の吸収波長強度比はそれぞれ1.40及び0.18であった。
温度計、撹拌装置をそなえた金属製ビーカーに、樹脂No.2を100g秤取し、PIを40g加え、加熱しながらよく撹拌した。150℃で1時間保ち、反応が集結した後、加熱を停止し室温まで冷却して黄色の固体を得た。この固体を粉砕したものを硬化剤No.6とした。
【0036】
硬化剤製造例7
温度計、撹拌装置をそなえた金属製ビーカーに、樹脂No.2を100g秤取し、TEAを40g加え、加熱しながらよく撹拌した。150℃で1時間保ち、反応が集結した後、加熱を停止し室温まで冷却して黄色の固体を得た。この固体を粉砕したものを硬化剤No.7とした。
【0037】
硬化剤製造例8
温度計、撹拌装置をそなえた金属製ビーカーに、樹脂No.2を100g秤取し、DMP−10を50g加え、加熱しながらよく撹拌した。150℃で1時間保ち、反応が集結した後、加熱を停止し室温まで冷却して黄色の固体を得た。この固体を粉砕したものを硬化剤No.8とした。
【0038】
硬化剤製造例9
温度計、撹拌装置をそなえた金属製ビーカーに、樹脂No.2を100g秤取し、MZを30g加え、加熱しながらよく撹拌した。150℃で1時間保ち、反応が集結した後、加熱を停止し室温まで冷却して黄色の固体を得た。この固体を粉砕したものを硬化剤No.9とした。
【0039】
硬化剤製造例10
温度計、撹拌装置をそなえた金属製ビーカーに、樹脂No.2を100g秤取し、EMZを30g加え、加熱しながらよく撹拌した。150℃で1時間保ち、反応が集結した後、加熱を停止し室温まで冷却して黄色の固体を得た。この固体を粉砕したものを硬化剤No.10とした。
【0040】
硬化剤製造例11
温度計、環流冷却器、撹拌装置、加熱及び冷却ジャケットを備えた反応器に、フェノール390g、37重量%のホルマリン370g、シュウ酸1.5g及び水390gを入れ、撹拌しながら60分で90℃にまで昇温し、90〜92℃の温度で60分間撹拌、加熱した。次に35重量%の塩酸1.0gを加え、更に90〜92℃の温度で60分間撹拌、加熱した。次いで、水を500g加えて冷却し、サイホンにより水を除き、30mmHgの減圧下に加熱して、100℃の温度で3時間、更に昇温した180℃の温度で3時間減圧、加熱した。得られたノボラック樹脂は冷却すると黄褐色の固体として得られた。得られた生成物を樹脂No.3とした。
この樹脂のGPCによるポリスチレン換算分子量は、900であった。また、赤外吸収スペクトル法による1600cm−1に対する990〜1015cm−1と890cm−1の吸収波長強度比はそれぞれ0.12及び1.02であった。
温度計、撹拌装置をそなえた金属製ビーカーに、樹脂No.3を100g秤取し、PIを40g加え、加熱しながらよく撹拌した。150℃で1時間保ち、反応が集結した後、加熱を停止し室温まで冷却して黄色の固体を得た。この固体を粉砕したものを硬化剤No.11とした。
【0041】
硬化剤製造例12
温度計、撹拌装置をそなえた金属製ビーカーに、樹脂No.3を100g秤取し、MZを30g加え、加熱しながらよく撹拌した。150℃で1時間保ち、反応が集結した後、加熱を停止し室温まで冷却して黄色の固体を得た。この固体を粉砕したものを硬化剤No.12とした。
【0042】
硬化剤製造例13
温度計、環流冷却器、撹拌装置、加熱及び冷却ジャケットを備えた反応器に、蒸留したフェノール282gと37重量%のホルマリン368g及び26重量%のアンモニア水150gを入れ、撹拌しながら室温から70℃にまで60分間で昇温し、さらに70〜72℃の温度で90分間撹拌、加熱した。次いで放冷し、300gのメタノールを少量ずつ加えながら40mmHgの減圧下に共沸蒸留により脱水を行い、溶剤としてメタノールを700g加えて黄色透明のレゾール樹脂溶液を取り出した。この樹脂をNo.4とした。
この樹脂のGPCによるポリスチレン換算分子量は、500以下であった。また、赤外吸収スペクトル法による1600cm−1に対する990〜1015cm−1と890cm−1の吸収波長強度比はそれぞれ5.47及び0.08であった。
温度計、撹拌装置をそなえたビーカーに、樹脂No.4を100g秤取し、PIを20g加えた。得られた沈殿を濾別し、エーテルで洗浄し、次いで減圧下50℃で乾燥した。得られた固体を粉砕したものを硬化剤No.13とした。
【0043】
硬化剤製造例14
温度計、撹拌装置をそなえたビーカーに、樹脂No.4を100g秤取し、MZを15g加えた。得られた沈殿を濾別し、エーテルで洗浄し、次いで減圧下50℃で乾燥した。得られた固体を粉砕したものを硬化剤No.14とした。
【0044】
実施例1〜4、比較例1〜4、参考例 1 〜6
エポキシ樹脂(エピコート#828)100重量部、硬化剤製造例1〜10で得られた硬化剤No.1〜10または硬化剤製造例11〜14で得られた硬化剤No.11〜14それぞれ25重量部、微粒子状シリカ(アエロジル#200、日本アエロジル(株)製)1重量部を真空らいかい機((株)石川工場製)を用いて減圧脱泡混合し添加分散させ、それらの硬化性、保存安定性、ガラス転移点及び引っ張り剪断接着強度を評価した。得られた結果を表1に示した。
【0045】
なお、硬化性、保存安定性、ガラス転移点及び引っ張り剪断接着強度は下記の方法により測定した。
1.硬化性の評価
所定の温度に設定した熱板上に約0.1〜0.2gの試料をのせ、ゲル化するまでの時間を測定した。
2.保存安定性
40℃の恒温槽に試料を入れ、BH型回転粘度計で測定した粘度が2倍になるまでの日数を測定した。
3.ガラス転移点(Tg)
100℃、1時間で硬化させた試料を熱機械分析装置(TMA、理学電気(株)製)を用い、TMAペネトレーション法にてTgを測定した。
測定条件 昇温速度 10℃/min
過重 10g
針の直径 1mm
4.引っ張り剪断接着強度
引っ張り剪断接着強度は、脱脂、研磨処理した寸法25mm×100mm×1.6mmの軟鋼板を用いて、25mm×12.5mmのラップ面積で接着を行いクリップで圧締し、100℃、1時間で硬化させた後、25℃で引っ張り剪断接着強度を測定した。(単位はkg/cm2)
【0046】
【表1】

Figure 0003648765
【0047】
【発明の効果】
低温速硬化性を有し、且つ室温での貯蔵安定性に優れたエポキシ樹脂用潜在性硬化剤を提供することが可能となった。 [0001]
[Industrial application fields]
The present invention relates to a latent curing agent for epoxy resins.
[0002]
[Prior art]
One-part type epoxy resins have been desired for reasons such as prevention of blending errors, continuation, and line formation, rather than conventional two-part epoxy resins. The one-part epoxy resin does not react with the epoxy resin at room temperature, but requires a curing agent that reacts and cures by heating, a so-called latent curing agent.
[0003]
Several latent curing agents have been proposed so far, and representative examples thereof include boron trifluoride-amine complex, dicyandiamide, dibasic acid dihydrazide, and amine-epoxy adducts. However, boron trifluoride-amine complex has a high hygroscopic property and adversely affects various properties of the cured product. Dicyandiamide and dibasic acid dihydrazide are excellent in storage stability, but are cured at a high temperature of 150 ° C or higher for a long time. There are drawbacks that require Further, amine-epoxy adducts with low-temperature fast curing tend to have poor storage stability, and those with good storage stability tend to lack low-temperature fast-curing properties. In particular, when an epoxy resin is used as a sealing material for electronic parts, the low temperature curing is strongly desired in order not to damage the electronic parts.
[0004]
In order to solve this problem, a method is known in which diamines or polyamines are converted into salts with phenol novolac resins, which are condensation products of phenols and aldehydes by an acid catalyst, and the activity is reduced at room temperature. However, the low-temperature curable salt is less active than the epoxy resin at room temperature or lower, but has poor storage stability around 40 ° C., and storage in the summer is not possible. Have difficulty. Moreover, what has the storage stability in the vicinity of 40 degreeC does not have low temperature curability, and requires high temperature long time hardening.
[0005]
[Problems to be solved by the invention]
It is to develop a latent curing agent for epoxy resins that has low-temperature rapid curing properties and excellent storage stability at room temperature.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to develop a latent curing agent having low-temperature curability and excellent storage stability, the present inventors have found that (1) imidazole compound and (2) formaldehyde with respect to 1 mol of phenols. under conditions such that s a 0.8 to 1.5 molar, the presence of initially 0.2 to 2 mole% of an acid catalyst, by reacting phenol and formalin (novolak reaction), followed by 0.2 Latent curing with excellent solid solution of phenol and formaldehyde resin, which is a condensate of phenol and formaldehyde obtained by further proceeding the reaction in the presence of 2 mol% basic catalyst (resolation reaction) In order to complete the present invention, it was found that the composition of the latent curing agent (b) and the epoxy resin (a) is an excellent epoxy resin curable composition. Was Tsu. That is, according to the first aspect of the present invention, 0.8 to 1.5 mol of formaldehyde is added to 1 mol of (a) epoxy resin, (b) (1) imidazole compound and (2) 1 mol of phenol. First , phenol and formalin are reacted in the presence of 0.2 to 2 mol% of an acid catalyst, and further reaction proceeds in the presence of 0.2 to 2 mol% of a basic catalyst. Ri Do condensates of phenols and formaldehydes obtainable by, and polystyrene-reduced average molecular weight molecular weight by gel permeation chromatography of the condensate of a phenol-formaldehyde resin is 3000 or more 7000 or less condensation of the second epoxy resin curing composition and the present invention consists of a solid solution is a phenol and formaldehyde according to claim 2, wherein The amount of molecule gel permeation chromatography (GPC) by polystyrene conversion average molecular weight of 3500 or more, an epoxy resin curing composition of the present invention first described is less than 5500.
[0007]
The solid solution in the present invention refers to (1) imidazole compound and (2) 0.2 to 2 mol of formaldehyde in an amount of 0.8 to 1.5 mol with respect to 1 mol of phenol. It is obtained by reacting phenol and formalin in the presence of a mol% acid catalyst (novolak reaction), and then proceeding further in the presence of 0.2-2 mol% of a basic catalyst (resorification reaction). A single phenol / formaldehyde resin comprising a condensate of phenols and formaldehydes, and having a molecular weight of the condensates of 3000 to 7000 in terms of polystyrene per gel by gel permeation chromatography (GPC) . A solid phase is formed.
Specifically, the above two components form a single solid phase by hydrogen bonding, salt formation, etc., but each component does not necessarily have to exist in a stoichiometric amount, and one component is more than the other components. It does not matter if it exists in excess.
[0008]
The epoxy resin (a) used in the composition of the present invention may be any as long as it has two or more epoxy groups in one molecule.
Specifically, epichlorohydrin is reacted with a compound generally well known in this field, for example, a polyhydric phenol such as bisphenol A, bisphenol F, catechol or resorcinol, or a polyhydric alcohol such as glycerin or polyethylene glycol. Polyglycidyl ether, p-oxybenzoic acid, polycarboxylic acid such as β-oxynaphthoic acid and glycidyl ether ester obtained by reacting epichlorohydrin, phthalic acid, terephthalic acid, etc. Examples thereof include polyglycidyl esters obtained from glycidylamine compounds obtained from 4,4′-diaminodiphenylmethane and m-aminophenol, epoxidized novolaks and epoxidized polyolefins.
[0009]
The solid solution (b) of the present invention is prepared in the presence of 0.2 to 2 mol% of an acid catalyst under the condition that the formaldehyde is 0.8 to 1.5 mol with respect to 1 mol of phenols. A condensate of phenols and formaldehyde obtained by reacting phenol with formalin (novolak reaction) and then further proceeding in the presence of 0.2 to 2 mol% of a basic catalyst (resorification reaction) The molecular weight of the condensate of phenols and formaldehyde is a polystyrene-converted average molecular weight of 3000 or more and 7000 or less by gel permeation chromatography (GPC), more preferably 3500. More than 5500 phenols and a condensation product of formaldehyde Nord-formaldehyde resins (hereinafter, referred to as phenol-formaldehyde resins) are also solid solution of. The resin and the imidazole compound can be produced by heating together until a clear liquid is obtained, and then cooling until a solid product is formed.
If the heating temperature is too low, the resin composed of the condensate with the phenol-formaldehyde resin of the present invention will not melt, so a solid solution cannot be obtained. If the heating temperature is too high, the nitrogen base may evaporate or sublime before the solid solution is formed. Therefore, a preferable temperature for production is 100 to 200 ° C.
[0010]
Alternatively, the above phenol-formaldehyde resin is dissolved in a lower alcohol such as methanol or ethanol at room temperature, and then a compound having a nitrogen base that does not have a primary amino group in the molecule (in the solvent solution) In addition, the solvent may be removed by a conventional method after completion of the reaction by heating and stirring in a reaction vessel equipped with a reflux device if necessary. Regardless of the method of manufacture, the product is converted to a powder before being used as a curing agent in the composition of the present invention.
[0011]
The weight ratio of the phenol-formaldehyde resin to the compound having a nitrogen base in the solid solution (b) is selected so as to give a solid stable product and is usually in the range of 1: 1 to 20: 1, preferably 2 : 1 to 10: 1.
[0012]
The solid solution (b) used as a curing agent in the composition of the present invention is produced and powdered before mixing with the epoxy resin (a).
[0013]
Imidazole compounds used to produce the solid solution (b) is specifically 1 - methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, nitrogen-containing heterocyclic such as 2-phenyl-imidazole A ring compound is mentioned. The nitrogen base can use a mixture of two or more.
[0014]
The phenol-formaldehyde resin used for producing the solid solution (b) can be obtained by the following method.
First, phenol and formalin are reacted in the presence of 0.2 to 2 mol% of an acid catalyst under the conditions that formaldehyde is 0.8 to 1.5 mol per mol of phenol (novolacization). Reaction), and then the reaction is further allowed to proceed in the presence of 0.2 to 2 mol% basic catalyst (resorification reaction). That is, a linear condensate is first produced by a novolak reaction and then a crosslinking point is imparted by a resolation reaction.
[0015]
The novolak reaction can be performed under known conditions and methods. The reaction is usually carried out in the presence of an acid catalyst at around 100 ° C. for a few hours. Next, water is poured into the system, and after cooling, the resin settles and is recovered.
Further, the resolation reaction can be carried out under known conditions and methods. The reaction is usually carried out at 60 to 100 ° C. for about 1 hour under a basic catalyst, and then allowed to cool to recover the resin.
[0016]
Phenols that can be used in the present invention include phenol, cresol, xylenol, resorcinol, catechol, hydroquinone and the like, but may be a mixture of two or more thereof.
[0017]
As formaldehyde, there are formalin, paraformaldehyde, glyoxal, trioxane and the like of each concentration, and a mixture of two or more of them may be used.
[0018]
As the acidic catalyst, hydrochloric acid, sulfuric acid, formic acid, oxalic acid, paratoluenesulfonic acid, phenolsulfonic acid and the like can be used.
[0019]
Basic catalysts include inorganic alkalis such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, hydroxides or oxides of alkali metals or alkaline earth metals, alkali metal carbonate bicarbonates, etc. One or more organic alkali compounds such as compounds, various amines, aqueous ammonia and hexamethylenetetramine are used.
[0020]
The phenol-formaldehyde resin produced in this way is (1) substantially composed of carbon, hydrogen and oxygen atoms, and (2) a trifunctional residue of methylene group, methylol group and phenols. (3) The trifunctional residue is bonded to a methylene group at one of the 2, 4 and 6 positions of the phenols, and a methylol group and / or at least one other position. Or it is couple | bonded with the methylene group, and the polystyrene conversion average molecular weight by gel permeation chromatography (GPC) is 2000-10000, It is characterized by the above-mentioned.
Particularly preferred is a polystyrene-reduced average molecular weight of 3000 or more and 7000 or less by GPC. A more preferable range is 3500 or more and less than 5500.
[0021]
In the far-infrared absorption spectrum by the KBr tablet method, this phenol-formaldehyde resin has an absorption intensity of 1600 cm @ -1 with D1600 and the largest absorption intensity in the range of 990 to 1015 cm @ -1 with D990 to 1015 and 890 cm @ -1. Is represented by D890, D990 to 1015 / D1600 = 0.2 to 9.0, and D890 / D1600 = 0.09 to 1.0. Particularly preferable ones have the characteristics of D990 to 1015 / D1600 = 0.4 to 5.0 and D890 / D1600 = 0.12 to 0.3.
[0022]
In the infrared absorption spectrum, the peak of D1600 indicates the absorption attributed to the benzene nucleus, the peak of D990 to 1015 indicates the absorption attributed to the methylol group, and the peak of D890 is attributed to the isolated hydrogen of the benzene nucleus. Although already widely known for formaldehyde resins, the characteristic values D990-1015 / D1600 = 0.2-9.0 indicate that the resin contains some methylol groups, and further D890 / The characteristic value of D1600 = 0.09 to 1.0 indicates that the reaction site (ortho and para) of the phenol molecule involved in the high molecular weight is appropriately blocked with a methylene bond or a methylol group.
[0023]
Conventionally, novolak resins and resol resins are known as typical phenol-formaldehyde resins.
Normally, novolak resins are present in the presence of an acid catalyst such as oxalic acid (usually 0.2 to 2%) under phenol-excess conditions such that the phenol to formaldehyde molar ratio is, for example, 1 to 0.7 to 0.9. ) By reacting phenol with formalin. The novolak resin obtained by such a method is mainly composed of a 3-5 mer in which phenol is bonded mainly by a methylene group, and has a molecular weight of about 1000 or less. Further, it contains almost no free methylol group, and therefore the value of D990 to 1015 / D1600 is 0.2 or less, which is different from the phenol / formaldehyde resin used in the present invention.
[0024]
In addition, ordinary resole resins have an excess of formaldehyde in the molar ratio of phenol to formaldehyde of 1: 1 to 2 in the presence of a basic catalyst (usually 0.2 to 2%) such as sodium hydroxide, ammonia or an organic amine. It is manufactured by making it react on the conditions of this. The resole resin thus obtained has a phenol trimer as a main component and a molecular weight of about 100 to 300. In addition, because of the relatively large amount of free methylol groups, many of the reaction sites (ortho and para) of the phenol molecules involved in high molecular weight are blocked, the value of D890 / D1600 is 0.09 or less, Similar to the novolak, it is different from the phenol / formaldehyde resin used in the present invention.
[0025]
The amount of the solid solution (b) in the curable composition in the present invention is usually preferably 0.5 to 50 parts by weight with respect to 100 parts by weight of the epoxy resin (a). If the solid solution (b) is less than 0.5 parts by weight, sufficient curability is not exhibited, and if it exceeds 50 parts by weight, the performance of the cured product is deteriorated.
[0026]
The curable composition of the present invention is produced by adding the solid solution (b) to a predetermined amount of an epoxy resin and thoroughly rubbing and mixing in a mortar.
[0027]
In addition to the epoxy resin (a) and the solid solution (b), a known curing agent such as an acid anhydride, dicyandiamide, dibasic acid dihydrazide, guanamines, and melamine can be used in the curable composition of the present invention.
[0028]
The curable composition of the present invention is cured by placing it in a gear oven at a constant temperature for a predetermined time.
[0029]
【Example】
Next, although a synthesis example and an Example demonstrate concretely, this invention is not limited to this Example.
In addition, the abbreviation of the raw material used for the synthesis example and the Example is as follows.
(A) Multifunctional epoxy resin Epicoat # 828 (trade name Shell Chemical Co., Ltd.)
Bisphenol A epoxy resin Epoxy equivalents 184-194
(B) Nitrogen base PI: piperazine TEA: triethanolamine DMP-10: 2-dimethylaminomethylphenol MZ: 2-methylimidazole EMZ: 2-ethyl-4-methylimidazole
Curing agent production example 1
A mixed aqueous solution containing 20% by weight hydrochloric acid and 8% by weight formaldehyde previously heated to 30 ° C. was put in a reactor equipped with a thermometer, a reflux condenser, a stirring device, a heating and cooling jacket. Next, a mixed aqueous solution containing 70% by weight of phenol and 6% by weight of formaldehyde was dropped into the mixed aqueous solution. After dropping, the mixture was allowed to stand for 24 hours to collect the reaction, water was added to the reaction system, and the cooled contents were taken out and washed with water. After washing with water, it was treated in a 1.0 wt% aqueous ammonia solution at a temperature of 50 ° C. for 60 minutes, further washed with water and dried at 70 ° C. for 3 hours. The obtained product was designated as Resin No. Set to 1. The polystyrene-reduced molecular weight of this resin by GPC was 4000. Further, the absorption wavelength intensity ratios of 990 to 1015 cm −1 and 890 cm −1 with respect to 1600 cm −1 by infrared absorption spectrum method were 1.23 and 0.23, respectively.
In a metal beaker equipped with a thermometer and a stirrer, resin no. 100 g of 1 was weighed, 40 g of PI was added, and stirred well while heating. After maintaining at 150 ° C. for 1 hour and the reaction was concentrated, heating was stopped and the mixture was cooled to room temperature to obtain a yellow solid. A pulverized solid was used as a curing agent No. It was set to 1.
[0031]
Curing agent production example 2
In a metal beaker equipped with a thermometer and a stirrer, resin no. 100 g of 1 was weighed, 40 g of TEA was added, and stirred well while heating. After maintaining at 150 ° C. for 1 hour and the reaction was concentrated, heating was stopped and the mixture was cooled to room temperature to obtain a yellow solid. A pulverized solid was used as a curing agent No. 2.
[0032]
Curing agent production example 3
In a metal beaker equipped with a thermometer and a stirrer, resin no. 100 g of 1 was weighed, 50 g of DMP-10 was added, and stirred well while heating. After maintaining at 150 ° C. for 1 hour and the reaction was concentrated, heating was stopped and the mixture was cooled to room temperature to obtain a yellow solid. A pulverized solid was used as a curing agent No. It was set to 3.
[0033]
Curing agent production example 4
In a metal beaker equipped with a thermometer and a stirrer, resin no. 100 g of 1 was weighed, 30 g of MZ was added, and stirred well while heating. After maintaining at 150 ° C. for 1 hour and the reaction was concentrated, heating was stopped and the mixture was cooled to room temperature to obtain a yellow solid. A pulverized solid was used as a curing agent No. It was set to 4.
[0034]
Curing agent production example 5
In a metal beaker equipped with a thermometer and a stirrer, resin no. 100 g of 1 was weighed, 30 g of EMZ was added, and stirred well while heating. After maintaining at 150 ° C. for 1 hour and the reaction was concentrated, heating was stopped and the mixture was cooled to room temperature to obtain a yellow solid. A pulverized solid was used as a curing agent No. It was set to 5.
[0035]
Curing agent production example 6
A mixed aqueous solution containing 20% by weight hydrochloric acid and 8% by weight formaldehyde previously heated to 60 ° C. was put in a reactor equipped with a thermometer, a reflux condenser, a stirrer, a heating and cooling jacket. Next, a mixed aqueous solution containing 70% by weight of phenol and 6% by weight of formaldehyde was dropped into the mixed aqueous solution. After dropping, the mixture was allowed to stand for 24 hours to collect the reaction, water was added to the reaction system, and the cooled contents were taken out and washed with water. After washing with water, it was treated in a 1.0 wt% aqueous ammonia solution at a temperature of 50 ° C. for 60 minutes, further washed with water and dried at 70 ° C. for 3 hours. The obtained product was designated as Resin No. 2. The polystyrene-reduced molecular weight by GPC of this resin was 5000. Further, the absorption wavelength intensity ratios of 990 to 1015 cm −1 and 890 cm −1 with respect to 1600 cm −1 by infrared absorption spectrum method were 1.40 and 0.18, respectively.
In a metal beaker equipped with a thermometer and a stirrer, resin no. 100 g of 2 was weighed, 40 g of PI was added, and the mixture was stirred well while heating. After maintaining at 150 ° C. for 1 hour and the reaction was concentrated, heating was stopped and the mixture was cooled to room temperature to obtain a yellow solid. A pulverized solid was used as a curing agent No. It was set to 6.
[0036]
Curing agent production example 7
In a metal beaker equipped with a thermometer and a stirrer, resin no. 100 g of 2 was weighed, 40 g of TEA was added, and stirred well while heating. After maintaining at 150 ° C. for 1 hour and the reaction was concentrated, heating was stopped and the mixture was cooled to room temperature to obtain a yellow solid. A pulverized solid was used as a curing agent No. It was set to 7.
[0037]
Curing agent production example 8
In a metal beaker equipped with a thermometer and a stirrer, resin no. 100 g of 2 was weighed, 50 g of DMP-10 was added, and stirred well while heating. After maintaining at 150 ° C. for 1 hour and the reaction was concentrated, heating was stopped and the mixture was cooled to room temperature to obtain a yellow solid. A pulverized solid was used as a curing agent No. It was set to 8.
[0038]
Curing agent production example 9
In a metal beaker equipped with a thermometer and a stirrer, resin no. 100 g of 2 was weighed, 30 g of MZ was added, and stirred well while heating. After maintaining at 150 ° C. for 1 hour and the reaction was concentrated, heating was stopped and the mixture was cooled to room temperature to obtain a yellow solid. A pulverized solid was used as a curing agent No. It was set to 9.
[0039]
Curing agent production example 10
In a metal beaker equipped with a thermometer and a stirrer, resin no. 100 g of 2 was weighed, 30 g of EMZ was added, and stirred well while heating. After maintaining at 150 ° C. for 1 hour and the reaction was concentrated, heating was stopped and the mixture was cooled to room temperature to obtain a yellow solid. A pulverized solid was used as a curing agent No. It was set to 10.
[0040]
Curing agent production example 11
A reactor equipped with a thermometer, reflux condenser, stirring device, heating and cooling jacket was charged with 390 g of phenol, 370 g of 37% by weight formalin, 1.5 g of oxalic acid and 390 g of water, and stirred at 90 ° C. for 60 minutes. The mixture was heated to 90 to 92 ° C. and stirred and heated for 60 minutes. Next, 1.0 g of 35 wt% hydrochloric acid was added, and the mixture was further stirred and heated at a temperature of 90 to 92 ° C. for 60 minutes. Next, 500 g of water was added and cooled, water was removed by siphon, and the mixture was heated under reduced pressure of 30 mmHg, heated at a temperature of 100 ° C. for 3 hours, and further heated at a temperature of 180 ° C. for 3 hours. The resulting novolac resin was obtained as a tan solid upon cooling. The obtained product was designated as Resin No. It was set to 3.
The polystyrene-reduced molecular weight of this resin by GPC was 900. Further, the absorption wavelength intensity ratios of 990 to 1015 cm −1 and 890 cm −1 with respect to 1600 cm −1 by infrared absorption spectrum method were 0.12 and 1.02, respectively.
In a metal beaker equipped with a thermometer and a stirrer, resin no. 100 g of 3 was weighed, 40 g of PI was added, and the mixture was stirred well while heating. After maintaining at 150 ° C. for 1 hour and the reaction was concentrated, heating was stopped and the mixture was cooled to room temperature to obtain a yellow solid. A pulverized solid was used as a curing agent No. It was set to 11.
[0041]
Curing agent production example 12
In a metal beaker equipped with a thermometer and a stirrer, resin no. 100 g of 3 was weighed, 30 g of MZ was added, and stirred well while heating. After maintaining at 150 ° C. for 1 hour and the reaction was concentrated, heating was stopped and the mixture was cooled to room temperature to obtain a yellow solid. A pulverized solid was used as a curing agent No. It was set to 12.
[0042]
Curing agent production example 13
A reactor equipped with a thermometer, a reflux condenser, a stirrer, a heating and cooling jacket was charged with 282 g of distilled phenol, 368 g of 37% by weight formalin and 150 g of 26% by weight aqueous ammonia, and from room temperature to 70 ° C. with stirring. The temperature was raised to 60 minutes, and the mixture was further stirred and heated at a temperature of 70 to 72 ° C. for 90 minutes. Next, the mixture was allowed to cool and dehydrated by azeotropic distillation under reduced pressure of 40 mmHg while adding 300 g of methanol little by little, and 700 g of methanol was added as a solvent to take out a yellow transparent resol resin solution. This resin was designated as No. It was set to 4.
The polystyrene-equivalent molecular weight of this resin by GPC was 500 or less. Further, the absorption wavelength intensity ratios of 990 to 1015 cm −1 and 890 cm −1 to 1600 cm −1 by the infrared absorption spectrum method were 5.47 and 0.08, respectively.
In a beaker equipped with a thermometer and a stirring device, resin No. 4 was weighed 100 g, and 20 g of PI was added. The resulting precipitate was filtered off, washed with ether and then dried at 50 ° C. under reduced pressure. A pulverized solid was obtained as a curing agent No. It was set to 13.
[0043]
Curing agent production example 14
In a beaker equipped with a thermometer and a stirring device, resin No. 4 was weighed 100 g, and 15 g of MZ was added. The resulting precipitate was filtered off, washed with ether and then dried at 50 ° C. under reduced pressure. A pulverized solid was obtained as a curing agent No. It was set to 14.
[0044]
Examples 1-4, Comparative Examples 1-4, Reference Example 1-6
100 parts by weight of epoxy resin (Epicoat # 828), curing agent No. obtained in curing agent production examples 1-10. 1 to 10 or curing agent No. obtained in Production Examples 11 to 14 of the curing agent. 11-14 each of 25 parts by weight and 1 part by weight of fine-particle silica (Aerosil # 200, manufactured by Nippon Aerosil Co., Ltd.) were degassed and mixed under reduced pressure using a vacuum breaker (manufactured by Ishikawa Factory) and dispersed. Their curability, storage stability, glass transition point and tensile shear bond strength were evaluated. The obtained results are shown in Table 1.
[0045]
The curability, storage stability, glass transition point and tensile shear bond strength were measured by the following methods.
1. Evaluation of Curability About 0.1 to 0.2 g of a sample was placed on a hot plate set at a predetermined temperature, and the time until gelation was measured.
2. Storage stability The sample was put into a 40 degreeC thermostat, and the number of days until the viscosity measured with the BH type rotational viscometer doubled was measured.
3. Glass transition point (Tg)
A sample cured at 100 ° C. for 1 hour was measured for Tg by TMA penetration method using a thermomechanical analyzer (TMA, manufactured by Rigaku Denki Co., Ltd.).
Measurement conditions Temperature rising rate 10 ℃ / min
Overweight 10g
Needle diameter 1mm
4). Tensile shear adhesive strength Tensile shear adhesive strength is a degreased and polished mild steel plate of dimensions 25 mm x 100 mm x 1.6 mm, bonded with a lap area of 25 mm x 12.5 mm and pressed with a clip, 100 ° C After curing in 1 hour, the tensile shear bond strength was measured at 25 ° C. (Unit is kg / cm2)
[0046]
[Table 1]
Figure 0003648765
[0047]
【The invention's effect】
It has become possible to provide a latent curing agent for epoxy resins that has a low temperature rapid curing property and is excellent in storage stability at room temperature.

Claims (2)

(a)エポキシ樹脂、
(b)(1)イミダゾール化合物と、
(2)フェノール類1モルに対して、ホルムアルデヒド類0.8〜1.5モルとなるような条件で、初めに0.2〜2モル%の酸触媒の存在下、フェノールとホルマリンを反応させ、次いで0.2〜2モル%の塩基性触媒の存在下でさらに反応を進行させることによって得られるフェノール類とホルムアルデヒド類との縮合物からなり、かつ該縮合物の分子量がゲルパーミエイションクロマトグラフィーによるポリスチレン換算平均分子量が3000以上7000以下であるフェノール・ホルムアルデヒド系樹脂との固溶体から成るエポキシ樹脂硬化性組成物。
(A) epoxy resin,
(B) (1) an imidazole compound;
(2) Phenol and formalin are first reacted in the presence of 0.2 to 2 mol% of an acid catalyst under the condition that formaldehyde is 0.8 to 1.5 mol per mol of phenol. And a condensation product of phenols and formaldehyde obtained by further proceeding the reaction in the presence of 0.2 to 2 mol% of a basic catalyst, and the molecular weight of the condensation product is a gel permeation. An epoxy resin curable composition comprising a solid solution with a phenol-formaldehyde resin having a polystyrene-reduced average molecular weight of 3000 or more and 7000 or less by chromatography.
フェノール類とホルムアルデヒド類との縮合物の分子量がゲルパーミエイションクロマトグラフィーによるポリスチレン換算平均分子量が3500以上、5500未満である請求項1記載のエポキシ樹脂硬化性組成物。2. The epoxy resin curable composition according to claim 1, wherein the condensate of phenols and formaldehyde has a polystyrene-reduced average molecular weight of 3500 or more and less than 5500 by gel permeation chromatography.
JP21370594A 1994-09-07 1994-09-07 Epoxy resin curable composition Expired - Fee Related JP3648765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21370594A JP3648765B2 (en) 1994-09-07 1994-09-07 Epoxy resin curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21370594A JP3648765B2 (en) 1994-09-07 1994-09-07 Epoxy resin curable composition

Publications (2)

Publication Number Publication Date
JPH0873567A JPH0873567A (en) 1996-03-19
JP3648765B2 true JP3648765B2 (en) 2005-05-18

Family

ID=16643628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21370594A Expired - Fee Related JP3648765B2 (en) 1994-09-07 1994-09-07 Epoxy resin curable composition

Country Status (1)

Country Link
JP (1) JP3648765B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752131B2 (en) * 2001-05-16 2011-08-17 味の素株式会社 Latent curing agent for epoxy resin and curable epoxy resin composition
JP5755737B2 (en) * 2010-06-29 2015-07-29 ダウ グローバル テクノロジーズ エルエルシー Storage-stable heat-activated tertiary amine catalyst for epoxy resins
US9546243B2 (en) * 2013-07-17 2017-01-17 Air Products And Chemicals, Inc. Amines and polymeric phenols and usage thereof as curing agents in one component epoxy resin compositions

Also Published As

Publication number Publication date
JPH0873567A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
JP5755737B2 (en) Storage-stable heat-activated tertiary amine catalyst for epoxy resins
JP3487083B2 (en) Thermosetting resin composition and cured product thereof
CA2690295C (en) Catalyst for curing epoxides
JPWO2014065152A1 (en) Epoxy resin composition, method for producing cured epoxy resin, and semiconductor device
US3896081A (en) Rapid curing resin compositions employing aminoplast condensation polymer modified with a di-substituted bis-aryl amine
JP2823057B2 (en) Manufacturing method of epoxy resin
TW201125838A (en) Polyhydroxy compound, method for producing the same and epoxy resin composition and cured product thereof
JP3648765B2 (en) Epoxy resin curable composition
JP2010229304A (en) Phenol resin, process for producing the same, epoxy resin composition including the resin, and cured article thereof
AU556197B2 (en) Polyfunctional phenolic reaction product, a process for its preparation and its use
JPH0521925B2 (en)
JP3390416B2 (en) Low temperature curing type latent curing agent for epoxy resin
JP3429090B2 (en) Thermosetting resin composition and cured product thereof
JPH04255714A (en) Polyfunctional epoxy resin and its production
JPH0681775B2 (en) Method for producing polyhydroxy compound
JP3941659B2 (en) Thermosetting resin composition and cured product thereof
JPH06228257A (en) Oxygen-containing modified phenolic resin, epoxy resin-containing modified phenolic resin molding material and semiconductor-sealing material
JP2823056B2 (en) Epoxy resin composition and cured product thereof
JPH05287053A (en) Epoxy resin, resin composition and cured product
JPH0545607B2 (en)
JP2003252943A (en) Thermosetting resin composition and its cured product
JPH04189812A (en) Method for preparing novolak type aromatic hydrocarbon-formaldehyde resin, epoxy resin curing agent and epoxy resin composition
CN116997587A (en) Amine-terminated oxamide curing agents
JPS62197412A (en) Curing agent for epoxy or urethane resin and curable mixture consisting of said resin and said curing agent
JPH04217944A (en) Aminomethylation of phenols and production of epoxy resin

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees