JP3647355B2 - Operation method of sub-chamber combustion engine - Google Patents

Operation method of sub-chamber combustion engine Download PDF

Info

Publication number
JP3647355B2
JP3647355B2 JP2000124172A JP2000124172A JP3647355B2 JP 3647355 B2 JP3647355 B2 JP 3647355B2 JP 2000124172 A JP2000124172 A JP 2000124172A JP 2000124172 A JP2000124172 A JP 2000124172A JP 3647355 B2 JP3647355 B2 JP 3647355B2
Authority
JP
Japan
Prior art keywords
sub
chamber
combustion
fuel
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000124172A
Other languages
Japanese (ja)
Other versions
JP2001303958A (en
Inventor
貴生 藤若
伸一 足立
義隆 角濱
浩之 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Osaka Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Osaka Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000124172A priority Critical patent/JP3647355B2/en
Publication of JP2001303958A publication Critical patent/JP2001303958A/en
Application granted granted Critical
Publication of JP3647355B2 publication Critical patent/JP3647355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、副室用燃料をシリンダヘッドに設けられた副燃焼室に供給し、前記副燃焼室に供給された副室用燃料を点火プラグにより着火し、前記副燃焼室から複数の噴孔を介して主燃焼室へ火炎トーチを噴出させる副室燃焼式エンジンの運転方法に関する。
【0002】
【従来の技術】
上記のような副室燃焼式エンジンは、副室用燃料を副室バルブを介して副燃焼室に供給し、混合気等の新気を吸気行程において吸気バルブを介して主燃焼室に吸気し、副燃焼室に供給された副室用燃料を点火プラグにより着火して燃焼させ、副燃焼室から複数の噴孔を介して主燃焼室へ火炎トーチを噴出させて主燃焼室の混合気を燃焼させ、クランク軸の回転を維持するものである。
【0003】
このような副室燃焼式エンジンの運転時においては、副室用燃料ガスは、ガス圧制御装置等で圧力を吸気マニホールドの圧力よりも高めの設定圧力になるように調整された後、副燃焼室に設けられた副室バルブ上流側のガスチャンバに流入する。そして、該副室用燃料ガスは、副室バルブが開かれると副燃焼室内に流入する。
【0004】
一方、主燃焼室内には高効率、低NOxの燃焼を実現するため、燃料量が希薄状態の燃料と空気との混合気が新気として吸気バルブを経て吸入される。そして、クランク軸の回転運動に連動した点火装置により点火プラグに高電圧が付与されると、点火プラグからの火花放電により副燃焼室内の副室用燃料ガスが着火、燃焼する。この着火がなされた副室用燃料ガスは火炎トーチとして噴孔から主燃焼室内に噴出され、該主燃焼室内の希薄混合気を燃焼させる。
【0005】
また、副室燃焼式エンジンにおいて、副室バルブは、閉じる方向に弾性力を発生させるばね部材を設けたリードバルブ、若しくはカム機構によりクランク軸の回転運動を利用して開閉するバルブとして構成されており、その開閉時期は、排気工程が終了するTDC時期(ピストン位置が上死点となる時期)の直前に開状態となり、吸気行程において副室用燃料ガスを副燃焼室に供給し、圧縮行程が開始されるBDC時期(ピストン位置が下死点となる時期)以降の副燃焼室の圧力がガスチャンバ内のガス圧とほぼ同等になる時期に、閉状態となり、副室用燃料ガスの供給を完了していた。
【0006】
【発明が解決しようとする課題】
このような副室燃焼式エンジンは、副燃焼室において、副室用燃料ガスと圧縮行程において主燃焼室から噴孔を介して流入する希薄混合気を充分に混合する必要が有る。
この混合が充分でない場合は、副燃焼室において燃料濃度むらが発生し、副燃焼室における副室燃料ガスの燃焼が不安定になるだけでなく、副燃焼室からの火炎トーチによって燃焼する主燃焼室内の混合気の燃焼も不安定になり、結果エンジンの効率が低下する。
【0007】
従って、本発明は、上記の事情に鑑みて、副燃焼室において、副室用燃料と主燃焼室から供給される新気との混合を充分に行い、高効率化を図ることのできる副室燃焼式エンジンの運転技術を得ることを目的とする。
【0008】
【課題を解決するための手段】
〔構成1〕
本発明に係る副室燃焼式エンジンの運転方法は、請求項1に記載したごとく、前記副燃焼室に副室用燃料を供給するに、前記副室用燃料の前記副燃焼室への供給を吸気行程時のピストン下降中の時期に完了することを特徴とする。
【0009】
〔作用効果〕
本構成のごとく、副燃焼室に副室用燃料を供給し、その供給を完了する時期を、吸気行程時のピストン下降中の時期、即ち吸気行程時のクランク角が180°ATDC以前の時期とすることで、副室用燃料の供給が完了してから圧縮行程終了時の点火プラグによってその副室用燃料を点火するまでの時間を長くとることができ、その点火時期まで、噴孔から副燃焼室に流入する希薄混合気によって充分に副室用燃料を混合することができる。
従って、副室燃焼式エンジンにおいて、副燃焼室の混合を良好なものとし、副燃焼室及び主燃焼室の燃焼を安定させて高効率運転を実現することができる。
【0010】
また、このような副室用燃料の供給を完了する時期は、クランク角が吸気行程時の60°ATDC以降の時期が好ましく、60°ATDC以前の時期に完了させると、副燃焼室への副室用燃料の供給量を確保し、充分な性能を得ることが困難となり、副室用燃料の供給圧力を高く設定すれば副室用燃料の供給量は確保できるが、副室用燃料の圧縮動力が大きくなり、高効率のメリットが相殺されてしまう。
さらに、副室用燃料の供給を完了する時期は、クランク角が吸気行程時の150°ATDC以降の時期が一層好ましく、副室用燃料の供給圧力を比較的低く設定しても、充分に副燃焼室に副室用燃料を供給することができる。
【0011】
〔構成2〕
本発明に係る副室燃焼式エンジンの運転方法は、請求項2に記載したごとく、上記構成1の副室燃焼式エンジンの運転方法の構成に加えて、吸気バルブを開閉させ、閉時期を吸気行程時のピストン下降中の時期とするカムにより、前記副燃焼室に副室用燃料を供給する副室バルブを開閉させることを特徴とする。
【0012】
〔作用効果〕
本構成のごとく、吸気バルブと副室バルブとを同じカムによって開閉させると共に、両方のバルブを吸気行程時のピストン下降中の時期、即ち吸気行程時のクランク角が180°ATDC以前の時期に閉じることで、副室バルブを動作させるための専用のカムを設ける必要がなく、さらに、吸気バルブを吸気行程時のピストン下降中の時期に閉じることで、副室燃焼式エンジンを、ミラーサイクル方式で運転することができる。ミラーサイクル方式とは、吸気バルブを閉じる時期によって、実圧縮比を下げることで筒内圧縮温度・圧力を低減し、ノッキングを回避する方式である。これによって、膨張比を大きく取ることができ、熱効率を向上させることができる。
従って、安価で単純な構造で高効率の副室燃焼式エンジンを実現することができる。
【0013】
尚、本願において、TDCはピストンの上死点位置、BDCはピストンの下死点位置をそれぞれ示し、さらに、クランク角を、上記TDCに対する早遅角度で示し、角度値の後に、早角の場合はBTDC、遅角の場合はATDCを付して示す。
【0014】
【発明の実施の形態】
本発明に係る副室燃焼式エンジンの運転方法の実施の形態について、図面に基づいて説明する。
図1は、副室燃焼式エンジンの燃焼室及び燃料供給系を示す要部断面図を示したものであり、1はシリンダヘッド、2は主燃焼室であり、該主燃焼室2はピストン3の上面とシリンダ4の内面とシリンダヘッド1の下面により区画形成されている。この主燃焼室2には天然ガス系都市ガス13Aである燃料ガスと空気の希薄混合気が吸気バルブ5を介して導入されるようになっている。
【0015】
7は副燃焼室であり、副燃焼室7はシリンダヘッド1の略中央部に形成され、シリンダ軸線方向に軸方向を有する筒状である。該副燃焼室7の上部には副室上部金物8が、下部には副室口金9が夫々設けられている。該副室口金9の先端部には、1個又は複数の噴孔10が穿孔されている。11は前記副室上部金物8内に形成されたガスチャンバであり、該ガスチャンバ11はガス通路12を介して天然ガス系都市ガス13Aである副室用燃料ガスのガス圧を制御するガス圧制御装置(図示省略)に接続されている。13は副室上部金物8内に往復摺動可能に設けられた副室バルブで、ガスチャンバ11と副燃焼室7との間を開閉する。
14は副燃焼室7内の燃料ガスに点火するための点火プラグである。
【0016】
このような副室燃焼式エンジンの運転時においては、副室用燃料ガスは、ガス圧制御装置で圧力を吸気マニホールド(図示省略)上流側の圧力よりも高めの設定圧力になるように調整された後、副室上部金物8内のガス通路12を経てガスチャンバ11に流入する。そして、該副室用燃料ガスは、副室バルブ13が開かれると副燃焼室7内に流入する。
【0017】
一方、高効率且つ低NOxの燃焼を実現するため、燃料量が希薄状態の燃料と空気との混合気が新気として吸気バルブ5を経て主燃焼室2に吸入される。そして、クランク軸(図示省略)の回転運動に連動した点火装置(図示省略)により点火プラグ14に高電圧が付与されると、点火プラグ14からの火花放電により副燃焼室7内の副室用燃料ガスが着火、燃焼する。この着火がなされた副室用燃料ガスは火炎トーチとして噴孔10から主燃焼室2内に噴出され、該主燃焼室2内の希薄混合気を燃焼させる。
【0018】
また、副室燃焼式エンジンは、例えば、吸気行程、圧縮行程、膨張行程、排気行程を経て、一サイクルを完了する4サイクルエンジンとして構成されている。尚、本願において、夫々の行程は、TDCとBDCとの間の区間であり、たとえば吸気行程は、吸気バルブが開状態となるTDCの時期から、吸気バルブが閉状態となって次の圧縮行程が開始されるBDCの時期までの区間を示す。
【0019】
以上が副室燃焼式ガスエンジンの基本構成についての説明であるが、以下に本発明の特徴構成について説明する。
副室燃焼式エンジンにおいて、副室バルブ13と吸気バルブ5と排気バルブ6は夫々、カム機構部Aによりクランク軸の回転運動を利用して開閉するバルブとして構成されている。
カム機構部Aは、図2に示すように、クランク軸の回転運動によって1サイクルあたり1回転するカム軸24と、そのカム軸24に設けられたカム21,22,23と、夫々のカム21,22,23の表面形状に従って軸方向に往復運動するプッシュロッド25,26,27と、プッシュロッド25によってロッカアーム軸31廻りに揺動し吸気バルブ5を開閉させる吸気用ロッカアーム28と、プッシュロッド26によってロッカアーム軸31廻りに揺動し排気バルブ6を開閉させる排気用ロッカアーム29と、プッシュロッド27によってロッカアーム軸31廻りに揺動し副室バルブ13を開閉させる副室用ロッカアーム30とを備えている。
【0020】
また、吸気バルブ5及び排気バルブ6の開閉時期は、従来のエンジンと同様であるが、副室バルブの開閉時期は、図3の副室バルブ13のリフト量の変化を示すグラフのように、排気行程時のクランク角が30°BTDC程度の時期で開状態となり、BDC以前の吸気行程時のクランク角が165°ATDC程度の時期で閉状態となり、副燃焼室7への副室用燃料ガスの供給は吸気行程終了前に完了することになる。
このように、副燃焼室7に副室用燃料ガスを供給し、その供給を完了する時期を、吸気行程時のピストン下降中の時期とすることで、副室用燃料ガスの供給が完了してから圧縮行程終了時の点火プラグによってその副室用燃料を点火するまでの時間を長くとることができ、その点火時期まで、噴孔10から副燃焼室7に流入する希薄混合気によって充分に副室用燃料を混合することができるのである。
【0021】
さらに、本手法のように副室用燃料ガスの供給完了時期を吸気行程時のBDC以前のクランク角が165°ATDC程度の時期に設定した副室燃焼式エンジンにおいて、副室用燃料ガスの供給圧を変化させたときの熱効率と、従来のように副室用燃料ガスの供給完了をBDC以降の時期に設定した副室燃焼式エンジンにおいて、副室用燃料ガスの供給圧を変化させたときの熱効率を図4に示す。
図4からも判るように、本手法においては、副室用燃料ガスの供給圧を変化させても、高い熱効率を維持することができるが、従来のように副室バルブ13を吸気行程終了後に閉じると、全体的に熱交率が低く、さらに副室用燃料ガスの供給圧を高く設定すると一段と熱交率が悪化する。これは、従来の副室燃焼式エンジンにおいては、圧縮行程途中まで副室用燃料ガスを供給しているので、点火までの混合時間が短く、副燃焼室7の燃焼が不安定になっているといえる。
【0022】
〔別実施の形態〕
上記の実施の形態のカム機構部Aにおいて、吸気バルブ5と副室バルブ13とを別のカムにて駆動するように構成したが、別に両方のバルブを同一のカムにて駆動させることもできる。
即ち、図5に示すように、クランク軸の回転運動によって1サイクルあたり1回転するカム軸24と、そのカム軸24に設けられた2つのカム32,22と、夫々のカム32,22の表面形状に従って軸方向に往復運動する2つのプッシュロッド33,26と、プッシュロッド33によってロッカアーム軸31廻りに揺動し吸気バルブ5及び副室バルブ13の両方を開閉させるロッカアーム34と、プッシュロッド26によってロッカアーム軸31廻りに揺動し排気バルブ6を開閉させる排気用ロッカアーム29とを備えている。
【0023】
さらに、本手法においては、副室バルブ13は、吸気行程時のピストン下降中の時期に閉じるように構成されているので、同じく吸気バルブ5も吸気行程時のピストン下降中の時期に閉じることになり、結果、副室燃焼式エンジンを、所謂ミラーサイクル方式で運転し、簡単な構成でより効率を向上させることができる。
【0024】
また、本発明の副室燃焼式エンジンに使用できる気体燃料としては、都市ガス以外に、プロパン、水素等、任意の炭化水素系気体燃料を使用することができる。
【0025】
【発明の効果】
本手法によって、副室燃焼式エンジンにおいて、副室用燃料の供給圧力を高く設定しても供給量が過大になり過ぎることなく、さらに、副燃焼室における副室用燃料の混合状態を良好なものとすることができる。このため、エンジンの効率を大幅に改善でき、また、副室用燃料の供給量のばらつきを抑制し、長期にわたって安定した運転を維持することができる。
【図面の簡単な説明】
【図1】副室燃焼式エンジンの燃焼室及び燃料供給系を示す要部断面図
【図2】図1に示す副室燃焼式エンジンのカム機構部Aの斜視図
【図3】副室バルブ13のリフト量の変化を示すグラフ図
【図4】副室燃焼式エンジンにおいて副室用燃料ガスの供給圧を変化させたときの熱効率の変化を示すグラフ図
【図5】副室燃焼式エンジンのカム機構部Aの別の構成を示す斜視図
【符号の説明】
1 シリンダヘッド
2 主燃焼室
3 ピストン
4 シリンダ
5 吸気バルブ
6 排気バルブ
7 副燃焼室
10 噴孔
13 副室バルブ
14 点火プラグ
32 カム
A カム機構部
[0001]
BACKGROUND OF THE INVENTION
The present invention supplies a sub-chamber fuel to a sub-combustion chamber provided in a cylinder head, ignites the sub-chamber fuel supplied to the sub-combustion chamber with a spark plug, and a plurality of nozzle holes from the sub-combustion chamber It is related with the operating method of the subchamber combustion type engine which ejects a flame torch to a main combustion chamber via.
[0002]
[Prior art]
The sub-chamber combustion engine as described above supplies sub-chamber fuel to the sub-combustion chamber via the sub-chamber valve, and sucks fresh air such as air-fuel mixture into the main combustion chamber via the intake valve during the intake stroke. The sub-chamber fuel supplied to the sub-combustion chamber is ignited and burned by a spark plug, and a flame torch is ejected from the sub-combustion chamber to the main combustion chamber through a plurality of nozzle holes to generate a mixture in the main combustion chamber. It burns and maintains the rotation of the crankshaft.
[0003]
During operation of such a sub-chamber combustion type engine, the sub-chamber fuel gas is adjusted by a gas pressure control device or the like so that the pressure becomes higher than the pressure of the intake manifold, and then sub-combustion is performed. It flows into the gas chamber upstream of the sub chamber valve provided in the chamber. The sub chamber fuel gas flows into the sub combustion chamber when the sub chamber valve is opened.
[0004]
On the other hand, in order to realize high efficiency and low NOx combustion in the main combustion chamber, a mixture of fuel and air with a lean fuel amount is drawn as fresh air through the intake valve. When a high voltage is applied to the spark plug by the ignition device linked to the rotational movement of the crankshaft, the sub-chamber fuel gas in the sub-combustion chamber is ignited and burned by the spark discharge from the spark plug. The sub-chamber fuel gas thus ignited is ejected from the nozzle hole into the main combustion chamber as a flame torch, and the lean air-fuel mixture in the main combustion chamber is combusted.
[0005]
Further, in the sub-chamber combustion type engine, the sub-chamber valve is configured as a reed valve provided with a spring member that generates an elastic force in the closing direction, or as a valve that opens and closes using the rotational movement of the crankshaft by a cam mechanism. The opening / closing timing is opened immediately before the TDC timing (time when the piston position becomes top dead center) when the exhaust process is completed, and the sub-chamber fuel gas is supplied to the sub-combustion chamber during the intake stroke, and the compression stroke is performed. When the pressure in the auxiliary combustion chamber becomes almost equal to the gas pressure in the gas chamber after the BDC timing when the piston is started (timing when the piston position is at bottom dead center), supply of fuel gas for the auxiliary chamber Was completed.
[0006]
[Problems to be solved by the invention]
In such a sub-combustion engine, it is necessary to sufficiently mix the sub-chamber fuel gas and the lean air-fuel mixture flowing from the main combustion chamber through the nozzle holes in the compression stroke in the sub-combustion chamber.
If this mixing is not sufficient, uneven fuel concentration occurs in the sub-combustion chamber, and not only does the combustion of the sub-chamber fuel gas in the sub-combustion chamber become unstable, but also the main combustion combusted by the flame torch from the sub-combustion chamber The combustion of the air-fuel mixture in the room also becomes unstable, resulting in a decrease in engine efficiency.
[0007]
Therefore, in view of the above circumstances, the present invention provides a sub-chamber that can sufficiently improve the efficiency by sufficiently mixing the sub-chamber fuel and the fresh air supplied from the main combustion chamber in the sub-combustion chamber. The purpose is to obtain combustion engine operation technology.
[0008]
[Means for Solving the Problems]
[Configuration 1]
The operation method of the sub-chamber combustion engine according to the present invention, as described in claim 1, is to supply the sub-chamber fuel to the sub-combustion chamber by supplying the sub-chamber fuel to the sub-combustion chamber. It is characterized in that it is completed when the piston is descending during the intake stroke.
[0009]
[Function and effect]
As in this configuration, the sub-chamber fuel is supplied to the sub-combustion chamber, and the completion of the supply is the time when the piston is descending during the intake stroke, that is, the time when the crank angle during the intake stroke is before 180 ° ATDC. As a result, it is possible to increase the time from the completion of the supply of the sub chamber fuel to the ignition of the sub chamber fuel by the spark plug at the end of the compression stroke. The sub-chamber fuel can be sufficiently mixed by the lean air-fuel mixture flowing into the combustion chamber.
Therefore, in the sub-chamber combustion type engine, the mixing of the sub-combustion chamber can be made good, the combustion in the sub-combustion chamber and the main combustion chamber can be stabilized, and high-efficiency operation can be realized.
[0010]
Further, the timing for completing the supply of the fuel for the sub-chamber is preferably a timing after the crank angle of 60 ° ATDC at the intake stroke. If the crank angle is completed before the 60 ° ATDC, the sub-chamber is supplied to the sub-combustion chamber. It is difficult to secure sufficient supply of chamber fuel and to obtain sufficient performance, and if the supply pressure of fuel for the sub chamber is set high, the supply amount of fuel for the sub chamber can be secured. Power is increased and the benefits of high efficiency are offset.
Furthermore, the time for completing the supply of the sub chamber fuel is more preferably a time after the crank angle of 150 ° ATDC during the intake stroke, and even if the supply pressure of the sub chamber fuel is set relatively low, the sub chamber fuel supply can be sufficiently performed. The sub chamber fuel can be supplied to the combustion chamber.
[0011]
[Configuration 2]
The sub-chamber combustion engine operating method according to the present invention is, as described in claim 2, in addition to the configuration of the sub-chamber combustion engine operating method of the above configuration 1, the intake valve is opened and closed, and the closing timing is set to the intake timing. A sub-chamber valve for supplying sub-chamber fuel to the sub-combustion chamber is opened and closed by a cam that is a time during which the piston descends during the stroke.
[0012]
[Function and effect]
As in the present configuration, the intake and the valve and the sub-chamber valve in the same cams thus causes opening and closing, timing piston descending during both valves intake stroke, i.e., the crank angle at the time of the intake stroke period of 180 ° ATDC previously closing enough, there is no need to provide a dedicated cams for operating the auxiliary chamber valve, further, by closing the intake valve timing in the downward movement of the piston during the intake stroke, the auxiliary chamber combustion engine, mirror It can be operated in a cycle mode. The Miller cycle method is a method in which knocking is avoided by reducing the in-cylinder compression temperature and pressure by lowering the actual compression ratio depending on the timing of closing the intake valve. As a result, the expansion ratio can be increased and the thermal efficiency can be improved.
Therefore, it is possible to realize a high efficiency sub-chamber combustion engine with an inexpensive and simple structure.
[0013]
In the present application, TDC indicates the top dead center position of the piston, BDC indicates the bottom dead center position of the piston, and the crank angle is expressed by an early / late angle with respect to the TDC. Is shown with BTDC and ATDC in the case of retarded angle.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a method for operating a sub-chamber combustion engine according to the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a main part showing a combustion chamber and a fuel supply system of a sub-chamber combustion type engine. 1 is a cylinder head, 2 is a main combustion chamber, and the main combustion chamber 2 is a piston 3. The upper surface of the cylinder 4, the inner surface of the cylinder 4, and the lower surface of the cylinder head 1 are partitioned. A lean gas mixture of fuel gas and air, which is a natural gas city gas 13A, is introduced into the main combustion chamber 2 via an intake valve 5.
[0015]
Reference numeral 7 denotes a sub-combustion chamber. The sub-combustion chamber 7 is formed in a substantially central portion of the cylinder head 1 and has a cylindrical shape having an axial direction in the cylinder axial direction. A sub chamber upper metal piece 8 is provided at the upper part of the sub combustion chamber 7, and a sub chamber base 9 is provided at the lower part. One or a plurality of nozzle holes 10 are perforated at the tip of the sub chamber base 9. 11 is a gas chamber formed in the sub-chamber upper hardware 8, and the gas chamber 11 controls the gas pressure of the sub-chamber fuel gas which is the natural gas city gas 13 </ b> A through the gas passage 12. It is connected to a control device (not shown). A sub chamber valve 13 is provided in the sub chamber upper hardware 8 so as to be slidable back and forth, and opens and closes between the gas chamber 11 and the sub combustion chamber 7.
Reference numeral 14 denotes an ignition plug for igniting the fuel gas in the auxiliary combustion chamber 7.
[0016]
During operation of such a sub-chamber combustion type engine, the sub-chamber fuel gas is adjusted by the gas pressure control device so that the pressure becomes higher than the pressure upstream of the intake manifold (not shown). After that, the gas flows into the gas chamber 11 through the gas passage 12 in the sub-chamber upper hardware 8. The sub chamber fuel gas flows into the sub combustion chamber 7 when the sub chamber valve 13 is opened.
[0017]
On the other hand, in order to realize high-efficiency and low NOx combustion, an air-fuel mixture of lean fuel and air is sucked into the main combustion chamber 2 through the intake valve 5 as fresh air. When a high voltage is applied to the spark plug 14 by an ignition device (not shown) that is linked to the rotational movement of the crankshaft (not shown), a spark discharge from the spark plug 14 causes the auxiliary chamber in the sub-combustion chamber 7. Fuel gas ignites and burns. The sub chamber fuel gas thus ignited is ejected from the nozzle hole 10 into the main combustion chamber 2 as a flame torch, and the lean air-fuel mixture in the main combustion chamber 2 is combusted.
[0018]
The sub-chamber combustion engine is configured as a four-cycle engine that completes one cycle through, for example, an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke. In the present application, each stroke is a section between TDC and BDC. For example, the intake stroke is the next compression stroke when the intake valve is closed from the time of TDC when the intake valve is opened. Indicates a section up to the time of BDC at which start is started.
[0019]
The above is the description of the basic configuration of the sub-chamber combustion type gas engine. The characteristic configuration of the present invention will be described below.
In the sub-chamber combustion type engine, the sub-chamber valve 13, the intake valve 5, and the exhaust valve 6 are each configured as a valve that is opened and closed by the cam mechanism portion A using the rotational motion of the crankshaft.
As shown in FIG. 2, the cam mechanism A includes a cam shaft 24 that rotates once per cycle by the rotational movement of the crankshaft, cams 21, 22, and 23 provided on the cam shaft 24, and each cam 21. , 22, 23, push rods 25, 26, 27 that reciprocate in the axial direction according to the surface shape, an intake rocker arm 28 that swings around the rocker arm shaft 31 by the push rod 25 to open and close the intake valve 5, and the push rod 26 Is provided with an exhaust rocker arm 29 that swings around the rocker arm shaft 31 to open and close the exhaust valve 6, and a sub chamber rocker arm 30 that swings around the rocker arm shaft 31 by the push rod 27 to open and close the sub chamber valve 13. .
[0020]
Further, the opening / closing timing of the intake valve 5 and the exhaust valve 6 is the same as that of the conventional engine, but the opening / closing timing of the sub chamber valve is as shown in the graph showing the change in the lift amount of the sub chamber valve 13 in FIG. The sub-chamber fuel gas to the sub-combustion chamber 7 is opened when the crank angle during the exhaust stroke is about 30 ° BTDC and closed when the crank angle before the BDC is about 165 ° ATDC. Is completed before the end of the intake stroke.
Thus, the supply of the sub chamber fuel gas is completed by supplying the sub chamber fuel gas to the sub combustion chamber 7 and setting the completion of the supply to the time when the piston descends during the intake stroke. The ignition plug at the end of the compression stroke can be used for a long time until the fuel for the sub chamber is ignited, and the lean mixture flowing from the injection hole 10 into the sub combustion chamber 7 is sufficient until the ignition timing. The subchamber fuel can be mixed.
[0021]
Further, in the sub-chamber combustion type engine in which the crank chamber angle before the BDC at the time of the intake stroke is set to a time of about 165 ° ATDC as in this method, the supply of the sub-chamber fuel gas is supplied. When the supply pressure of the sub-chamber fuel gas is changed in the sub-chamber combustion engine in which the completion of the supply of the sub-chamber fuel gas is set to the time after the BDC as in the prior art, when the pressure is changed The thermal efficiency is shown in FIG.
As can be seen from FIG. 4, in this method, even if the supply pressure of the fuel gas for the sub chamber is changed, high thermal efficiency can be maintained. When closed, the overall heat exchange rate is low, and if the supply pressure of the sub chamber fuel gas is set higher, the heat exchange rate is further deteriorated. This is because in the conventional sub-chamber combustion engine, the sub-chamber fuel gas is supplied halfway through the compression stroke, so the mixing time until ignition is short and the combustion in the sub-combustion chamber 7 is unstable. It can be said.
[0022]
[Another embodiment]
In the cam mechanism portion A of the above embodiment, the intake valve 5 and the sub chamber valve 13 are configured to be driven by separate cams. However, both valves can be driven by the same cam. .
That is, as shown in FIG. 5, the camshaft 24 that rotates once per cycle by the rotational movement of the crankshaft, the two cams 32 and 22 provided on the camshaft 24, and the surfaces of the cams 32 and 22 respectively. Two push rods 33 and 26 that reciprocate in the axial direction according to the shape, a rocker arm 34 that swings around the rocker arm shaft 31 by the push rod 33 and opens and closes both the intake valve 5 and the sub chamber valve 13, and a push rod 26. An exhaust rocker arm 29 that swings around the rocker arm shaft 31 to open and close the exhaust valve 6 is provided.
[0023]
Further, in this method, the sub chamber valve 13 is configured to be closed when the piston is lowered during the intake stroke, so that the intake valve 5 is also closed when the piston is lowered during the intake stroke. As a result, the sub-chamber combustion engine can be operated in a so-called Miller cycle system, and the efficiency can be further improved with a simple configuration.
[0024]
Moreover, as a gaseous fuel which can be used for the subchamber combustion type engine of this invention, arbitrary hydrocarbon gas fuels, such as propane and hydrogen other than city gas, can be used.
[0025]
【The invention's effect】
With this method, in the sub-chamber combustion type engine, even if the supply pressure of the sub-chamber fuel is set high, the supply amount does not become excessive, and the sub-chamber fuel is mixed well in the sub-combustion chamber. Can be. For this reason, the efficiency of the engine can be greatly improved, variation in the amount of fuel supplied to the sub chamber can be suppressed, and stable operation can be maintained over a long period of time.
[Brief description of the drawings]
1 is a cross-sectional view of a main part showing a combustion chamber and a fuel supply system of a sub-chamber combustion type engine. FIG. 2 is a perspective view of a cam mechanism portion A of the sub-chamber combustion type engine shown in FIG. FIG. 4 is a graph showing a change in the lift amount of FIG. 13. FIG. 4 is a graph showing a change in thermal efficiency when the supply pressure of the fuel gas for the sub chamber is changed in the sub chamber combustion type engine. The perspective view which shows another structure of the cam mechanism part A of this invention
DESCRIPTION OF SYMBOLS 1 Cylinder head 2 Main combustion chamber 3 Piston 4 Cylinder 5 Intake valve 6 Exhaust valve 7 Subcombustion chamber 10 Injection hole 13 Subchamber valve 14 Spark plug 32 Cam A Cam mechanism part

Claims (2)

副室用燃料をシリンダヘッドに設けられた副燃焼室に供給し、前記副燃焼室に供給された副室用燃料を点火プラグにより着火し、前記副燃焼室から複数の噴孔を介して主燃焼室へ火炎トーチを噴出させる副室燃焼式エンジンの運転方法であって、
前記副燃焼室に副室用燃料を供給するに、前記副室用燃料の前記副燃焼室への供給を吸気行程時のピストン下降中の時期に完了する副室燃焼式エンジンの運転方法。
The sub-chamber fuel is supplied to the sub-combustion chamber provided in the cylinder head, and the sub-chamber fuel supplied to the sub-combustion chamber is ignited by a spark plug, and the main chamber fuel is supplied to the main combustion chamber via a plurality of nozzle holes. A method of operating a sub-chamber combustion type engine that jets a flame torch into a combustion chamber,
A sub-chamber combustion engine operating method in which the sub-chamber fuel is supplied to the sub-combustion chamber, and the supply of the sub-chamber fuel to the sub-combustion chamber is completed at a time when the piston is descending during the intake stroke.
吸気バルブを開閉させ、閉時期を吸気行程時のピストン下降中の時期とするカムにより、前記副燃焼室に副室用燃料を供給する副室バルブを開閉させる請求項1に記載の副室燃焼式エンジンの運転方法。The sub-chamber combustion according to claim 1, wherein the sub-chamber valve for supplying the sub-chamber fuel to the sub-combustion chamber is opened / closed by a cam that opens and closes the intake valve and sets the closing timing to the time when the piston descends during the intake stroke. How to operate the engine.
JP2000124172A 2000-04-25 2000-04-25 Operation method of sub-chamber combustion engine Expired - Lifetime JP3647355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124172A JP3647355B2 (en) 2000-04-25 2000-04-25 Operation method of sub-chamber combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124172A JP3647355B2 (en) 2000-04-25 2000-04-25 Operation method of sub-chamber combustion engine

Publications (2)

Publication Number Publication Date
JP2001303958A JP2001303958A (en) 2001-10-31
JP3647355B2 true JP3647355B2 (en) 2005-05-11

Family

ID=18634344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124172A Expired - Lifetime JP3647355B2 (en) 2000-04-25 2000-04-25 Operation method of sub-chamber combustion engine

Country Status (1)

Country Link
JP (1) JP3647355B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1288335C (en) * 2001-12-25 2006-12-06 新泻原动机株式会社 Dual fuel engine
JP4698471B2 (en) * 2006-03-31 2011-06-08 大阪瓦斯株式会社 engine
JP5325019B2 (en) * 2009-05-15 2013-10-23 大阪瓦斯株式会社 Sub-chamber engine

Also Published As

Publication number Publication date
JP2001303958A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP4326044B2 (en) 4-cycle internal combustion engine
JP3558370B2 (en) Compression ignition gasoline engine
CN111684151B (en) Method for operating a spark-ignition internal combustion engine
JPS6022170B2 (en) Combustion accelerator for multi-cylinder internal combustion engines
JP5325020B2 (en) Sub-chamber engine
JP5325019B2 (en) Sub-chamber engine
JP2002266645A (en) Engine, its operating method and auxiliary combustion chamber mechanism
JP2006500509A (en) Self-igniting internal combustion engine
JP2006316777A (en) Internal combustion engine
JP3647355B2 (en) Operation method of sub-chamber combustion engine
JP3873560B2 (en) Combustion control device for internal combustion engine
JP4073315B2 (en) Sub-chamber engine
JP2002266643A (en) Engine, its operating method and auxiliary combustion chamber mechanism
JP2002266644A (en) Engine and auxiliary combustion chamber mechanism
JP3235302B2 (en) Subchamber gas engine
JPH0763076A (en) Internal combustion engine
JPH11324805A (en) Precombustion chamber type gas engine
JP3695085B2 (en) Gas engine combustion chamber structure
JP3379177B2 (en) Subchamber gas engine
JP4145177B2 (en) Engine and operation method thereof
JP2002147241A (en) Cylinder injection engine
JP4052422B2 (en) Gas engine sub-chamber valve device
JP4045743B2 (en) Control device for internal combustion engine
JP2004316593A (en) Premix, compression and self-ignition type internal combustion engine
JPH10122000A (en) Variable compression ratio counter chamber type gas engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3647355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term