JP3646338B2 - Multilayer thermistor element - Google Patents

Multilayer thermistor element Download PDF

Info

Publication number
JP3646338B2
JP3646338B2 JP06163495A JP6163495A JP3646338B2 JP 3646338 B2 JP3646338 B2 JP 3646338B2 JP 06163495 A JP06163495 A JP 06163495A JP 6163495 A JP6163495 A JP 6163495A JP 3646338 B2 JP3646338 B2 JP 3646338B2
Authority
JP
Japan
Prior art keywords
thermistor
electrode
electrode plate
insulating ceramic
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06163495A
Other languages
Japanese (ja)
Other versions
JPH08236310A (en
Inventor
鋼三 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP06163495A priority Critical patent/JP3646338B2/en
Publication of JPH08236310A publication Critical patent/JPH08236310A/en
Application granted granted Critical
Publication of JP3646338B2 publication Critical patent/JP3646338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は,温度センサ等に用いる積層サーミスタ素子に関する。
【0002】
【従来技術】
シート状のサーミスタを電極と共に絶縁性セラミックで被った積層サーミスタ素子が知られている。積層サーミスタ素子は,サーミスタが絶縁性セラミックに被われているために信頼性が高く,またペースト状のサーミスタや電極を絶縁性セラミックシートに塗布し,焼成して製造することができるから安価に製造できるという利点がある。
【0003】
しかしながら,絶縁性セラミックとサーミスタとの間で素材の相互拡散現象が生じ,これによって抵抗値が変化するという問題がある。そのため,絶縁性セラミックとサーミスタの間に拡散防止層を1層形成する方法が提案されている(特開昭64−1204号公報)。
この積層サーミスタ素子は,絶縁性セラミックに拡散防止層を塗布し乾燥した後,上記と同様にペースト状の電極及びサーミスタを塗布し,熱圧着しつつ焼成することにより製造される。
【0004】
【解決しようとする課題】
しかしながら,絶縁性セラミックとサーミスタとの間に拡散防止層を形成する上記積層サーミスタ素子には次のような問題点がある。
第1は,拡散防止層を追加することにより,積層を構成するシートの加工精度の保持が困難となり,生産性の悪化と特性のばらつきが生じ易いことである。
即ち,拡散防止層を絶縁性セラミックに1層追加することにより,表面の平滑度,平面性の保持がむずかしくなり,このため電極やサーミスタの厚さが不均一となり特性のばらつきが生じ易い。そのため,製造の歩留り(良品率)が低下する。
【0005】
第2の問題点は,絶縁性セラミックとサーミスタとの間の相互拡散現象を完全に抑止することができないことである。
即ち,図5に示すように,積層によって形成される積層サーミスタ素子90では,サーミスタ91の上下両面は,一対の電極板92及び拡散防止層93によって被われるが,サーミスタ91の側面911は絶縁性セラミック94と直接に接触する。
【0006】
そのため,側面911の近傍に絶縁性セラミックとサーミスタの相互拡散部が形成され,これによって電極92の間の抵抗が変化し特性の変化を生じさせる。本発明は,かかる従来の問題点に鑑みてなされたものであり,製造が容易な簡素な構成により,かつ安定した特性を得ることができる積層サーミスタ素子を提供しようとするものである。
【0007】
【課題の解決手段】
本発明は,サーミスタの電気抵抗の変化を検知する積層サーミスタ素子であって,該積層サーミスタ素子は,電極貼着面を有するサーミスタと,該貼着面に貼着した抵抗値検出用の一対の電極板と,上記サーミスタ及び電極板を被う絶縁性セラミックとを有しており,
上記電極板は,上記サーミスタの貼着面から縁部をはみ出すことなく片面のすべてが上記貼着面に貼着されており,
かつ上記サーミスタは,Cr−Mn−O系の組成からなると共に,該サーミスタの片面のみに形成された上記貼着面と,上記電極板が貼着されてない対向面との間隔tが50μm以上となるように形成されており,かつ前記電極板の縁端部と前記サーミスタの電極貼着面の縁端部との間の距離dは,50μm以上であることを特徴とする積層サーミスタ素子にある。
【0008】
本発明において最も注目すべきことは,電極板がサーミスタの貼着面からはみ出すことなくその片面の全面がサーミスタに貼着されていることである。
なお,電極板はサーミスタの両面に設けられていてもよく(貼着面が2面,図5参照),サーミスタの片面に一対の電極板が貼着されていてもよい(貼着面が片面,図1参照)。
【0009】
そして,電極板の縁端部とサーミスタの電極貼着面の縁端部との間の距離dは,50μm以上とする。
詳細後述するように,上記距離dを50μm以上とすることにより,絶縁性セラミックとサーミスタとの間に相互拡散現象が生じても,サーミスタ素子の特性の変化が殆ど生じないようにすることができるからである。
【0010】
一対の電極板をサーミスタの片面に設け電極貼着部におけるサーミスタの厚さ(貼着面との対向面との間の間隔)tは、50μm以上としてある
後述する実験データが示すように、上記間隔tを50μm以上とすることにより、絶縁性セラミックとサーミスタとの相互拡散に伴う抵抗値のばらつきをほぼ一定の低めの値に抑制することができるからである(図3参照)。
【0011】
【作用及び効果】
絶縁性セラミックとサーミスタの間の相互拡散部は,絶縁性セラミックとサーミスタとの境界面からその両側に渡って形成され,そこでは純粋なサーミスタとは異なった特性を示す。
そして,相互拡散部による積層サーミスタ素子の上記特性の変化は,上記拡散部が両電極の間の電流路に位置することによって発生する。それ故,電極板の近傍の電流路に上記拡散部が形成されないようにすることにより,その影響を抑制することができる。
【0012】
本発明にかかる積層サーミスタ素子では,電極板はその全面がサーミスタ(貼着面)に面接触しているから,絶縁性セラミックとサーミスタの境界部は,電極板の直下になく,電極板の縁端部の外側に位置している。従って,両電極板間の抵抗値(電流路)は上記拡散部からの影響を受けにくくなっている。
即ち,図5に示すように,電極板92の直下にサーミスタ91と絶縁性セラミック94との境界部(絶縁性セラミックの側面911)がある場合には,両電極92の間の抵抗は境界部(側面911)の両側に生ずる拡散部の影響を受けることになる。
【0013】
しかしながら,本発明にかかる積層サーミスタ素子の電極板は全面がサーミスタに接し,電極板の直下には,上記境界部が存在しないから,電極板間の抵抗は拡散部の影響を受けにくく,本来のサーミスタの特性に従った特性を示すことになる。
また,拡散防止層などを設けないから,積層サーミスタ素子の構成は簡素であり,製造は容易であり,焼成して製造した場合にも電極及びサーミスタの厚さなどの寸法精度の保持も容易となる。
【0014】
上記のように,本発明によれば,製造が容易な簡素な構成により,安定した特性を得ることができる積層サーミスタ素子を提供することができる。
なお,上記絶縁性セラミックとサーミスタの間の拡散部は,電極板直下から離れているほど拡散部が与える影響は少なく,前記のように電極板の縁端部から50μm以上離れていることが好ましい。
また,電極板を同一貼着面に並置する場合には,両電極板の間に位置する貼着面でサーミスタと絶縁性セラミックとが接し,ここに上記拡散部が形成されることになる(図1,符号41参照)が,サーミスタの厚さtを50μm以上とすることにより,特性のばらつきに対する影響を小さくすることができる(図3参照)。
【0015】
【実施例】
実施例1
本例は,図1に示すように,サーミスタ10の電気抵抗の変化を検知する積層サーミスタ素子1である。積層サーミスタ素子1は,図1,図2に示すように,電極貼着面11(図1)を有するサーミスタ10と,貼着面11に貼着した抵抗値検出用の一対の電極板20と,サーミスタ10及び電極板20を被う絶縁性セラミック30とを有する。
電極板20は,サーミスタ10の貼着面11から縁部をはみ出すことなく片面の全てがサーミスタ10に貼着されている。
【0016】
また,電極板20の縁端部と電極貼着面11の縁端部との間の距離d1 ,d2 (図2)は50μm以上である。
そして,電極貼着面11は,サーミスタ10の片面に形成されており,電極板20が貼着されていない対向面12と貼着面11との間隔t(図1)は,50μm以上である。
【0017】
サーミスタ10は,Cr−Mn−O系の組成からなる。
そして,図2に示すように,Al2 3 系の一対の絶縁性セラミックシート31,32における一方のシート31の片面にPtペーストを塗布し,電極板20と信号引き出し部25とを形成し,その上にサーミスタ10を塗布し,乾燥する。その後両シート31,32を重ね合わせて,熱圧着しつつ焼成する。
【0018】
焼成の結果,図1に示すように,サーミスタ10の端部は角が取れて丸みを帯びる。また,電極板20によって被われた部分を除いた,サーミスタ10と絶縁性セラミック30の境界部41〜44近傍には,両部材10,30の相互拡散により拡散部が形成される。
【0019】
そして,両電極板20に挟まれた境界部41と対向面12の境界部43の近傍に形成される拡散部による特性への影響は,サーミスタ10の厚さtを50μm
以上とすることにより低めに抑制することができる。
図3は,上記厚さtを変化させた場合における,電極板20間の抵抗値Rの同一ロット内におけるばらつきの程度を,厚さt=20μmのときを基準値1として相対値で図示したものである。同図から直ちに分かるように,厚さtが50μm以上で,抵抗値Rのばらつきは,低めの一定値になる。
【0020】
また,電極板20の縁端部とサーミスタ10の貼着面11の縁端部との距離d1 , 2 を50μm以上とすることにより,電極板20の間の抵抗値Rは,境界部42,44の近傍の拡散部による影響を受けることが殆どなくなる。
その理由は,両電極板20を結ぶ電流路は,主として両電極20の間を結ぶ短い経路に沿って形成されるからである。
また,本例のサーミスタ素子は拡散防止層を設けない簡素な構成であり,製造が容易である。
上記のように,本例によれば,拡散防止層を設けない簡素な構成を有すると共に,サーミスタと絶縁性セラミックの相互拡散の影響を受けることのない安定した特性の積層サーミスタ素子1を提供することができる。
【0021】
参考例1
本例は、図4に示すように、実施例1において電極24をサーミスタ10の上下両面に貼着した参考例である。
サーミスタ10の厚さtは、60μmであり、電極24の縁端部241とサーミスタ10の縁端部101との距離dは60μmである。
その他については、実施例1と同様である。
【図面の簡単な説明】
【図1】 実施例1の積層サーミスタ素子の断面斜視図(図2のA−A′部で断面したもの)。
【図2】 実施例1の積層サーミスタ素子の焼成前の分解斜視図。
【図3】 実施例1の積層サーミスタ素子におけるサーミスタの厚さtを変化させたときの抵抗値のばらつきの程度の推移図。
【図4】 参考の積層サーミスタ素子の断面斜視図。
【図5】 従来の積層サーミスタ素子の断面斜視図。
【符号の説明】
1・・・積層サーミスタ素子、
10・・・サーミスタ、
11・・・貼着面、
20・・・電極板、
30・・・絶縁性セラミック、
1、d2・・・距離、
t・・・サーミスタの厚さ、
[0001]
[Industrial application fields]
The present invention relates to a laminated thermistor element used for a temperature sensor or the like.
[0002]
[Prior art]
A laminated thermistor element in which a sheet thermistor is covered with an insulating ceramic together with an electrode is known. Multilayer thermistor elements are highly reliable because the thermistor is covered with insulating ceramic, and can be manufactured at low cost because paste thermistors and electrodes can be applied to insulating ceramic sheets and fired. There is an advantage that you can.
[0003]
However, there is a problem that the interdiffusion phenomenon of the material occurs between the insulating ceramic and the thermistor, and this changes the resistance value. For this reason, a method of forming a single diffusion prevention layer between the insulating ceramic and the thermistor has been proposed (Japanese Patent Laid-Open No. 64-1204).
This laminated thermistor element is manufactured by applying a diffusion prevention layer to an insulating ceramic and drying it, and then applying a paste-like electrode and the thermistor in the same manner as described above, followed by firing while thermocompression bonding.
[0004]
[Problems to be solved]
However, the laminated thermistor element in which the diffusion prevention layer is formed between the insulating ceramic and the thermistor has the following problems.
First, by adding a diffusion prevention layer, it is difficult to maintain the processing accuracy of the sheets constituting the stack, and the productivity is likely to deteriorate and the characteristics are likely to vary.
That is, by adding one diffusion prevention layer to the insulating ceramic, it becomes difficult to maintain the smoothness and flatness of the surface, and therefore, the thickness of the electrode and the thermistor is uneven and the characteristics are likely to vary. Therefore, the manufacturing yield (non-defective product rate) decreases.
[0005]
The second problem is that the interdiffusion phenomenon between the insulating ceramic and the thermistor cannot be completely suppressed.
That is, as shown in FIG. 5, in the laminated thermistor element 90 formed by lamination, the upper and lower surfaces of the thermistor 91 are covered by the pair of electrode plates 92 and the diffusion prevention layer 93, but the side surface 911 of the thermistor 91 is insulative. Direct contact with the ceramic 94.
[0006]
For this reason, an interdiffusion portion of insulating ceramic and thermistor is formed in the vicinity of the side surface 911, thereby changing the resistance between the electrodes 92 and causing a change in characteristics. The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a laminated thermistor element that can obtain stable characteristics with a simple configuration that is easy to manufacture.
[0007]
[Means for solving problems]
The present invention is a laminated thermistor element that detects a change in electrical resistance of a thermistor, and the laminated thermistor element has a pair of a thermistor having an electrode adhesion surface and a resistance value detection adhered to the adhesion surface. An electrode plate and an insulating ceramic covering the thermistor and the electrode plate,
The electrode plate has all one side stuck to the sticking surface without protruding the edge from the sticking surface of the thermistor,
The thermistor is composed of a Cr—Mn—O-based composition, and an interval t between the attachment surface formed only on one side of the thermistor and the opposing surface where the electrode plate is not attached is 50 μm or more. In the laminated thermistor element, the distance d between the edge of the electrode plate and the edge of the electrode attachment surface of the thermistor is 50 μm or more. is there.
[0008]
What should be noted most in the present invention is that the entire surface of one side of the electrode plate is stuck to the thermistor without protruding from the sticking surface of the thermistor.
In addition, the electrode plate may be provided on both surfaces of the thermistor (two bonding surfaces, see FIG. 5), or a pair of electrode plates may be bonded to one surface of the thermistor (the bonding surface is one surface). FIG. 1).
[0009]
The distance d between the edge portion of the electrode attaching surface of the edge portion and the thermistor of the electrode plate shall be the 50μm or more.
As will be described in detail later, by setting the distance d to 50 μm or more, even if an interdiffusion phenomenon occurs between the insulating ceramic and the thermistor, the characteristic of the thermistor element hardly changes. Because it can.
[0010]
A pair of electrode plates on one side of the thermistor, t (distance between the facing surfaces of the adhered surface) thickness of the thermistor in the electrode attaching portion is as least 50 [mu] m.
As shown in the experimental data to be described later, by setting the distance t to 50 μm or more, it is possible to suppress the variation in resistance value due to mutual diffusion between the insulating ceramic and the thermistor to a substantially constant low value. Yes (see FIG. 3).
[0011]
[Action and effect]
The interdiffusion between the insulating ceramic and the thermistor is formed on both sides from the interface between the insulating ceramic and the thermistor, where it exhibits different characteristics than a pure thermistor.
The change in the characteristics of the laminated thermistor element due to the mutual diffusion portion occurs when the diffusion portion is positioned in the current path between the two electrodes. Therefore, by preventing the diffusion portion from being formed in the current path near the electrode plate, the influence can be suppressed.
[0012]
In the laminated thermistor element according to the present invention, since the entire surface of the electrode plate is in surface contact with the thermistor (sticking surface), the boundary between the insulating ceramic and the thermistor is not directly under the electrode plate, but the edge of the electrode plate. It is located outside the end. Therefore, the resistance value (current path) between the two electrode plates is less affected by the diffusion portion.
That is, as shown in FIG. 5, when there is a boundary portion (the side surface 911 of the insulating ceramic) between the thermistor 91 and the insulating ceramic 94 immediately below the electrode plate 92, the resistance between the electrodes 92 is the boundary portion. It will be influenced by the diffusion part generated on both sides of (side surface 911).
[0013]
However, the entire surface of the electrode plate of the laminated thermistor element according to the present invention is in contact with the thermistor, and the boundary portion does not exist immediately below the electrode plate. The characteristic according to the characteristic of the thermistor will be shown.
In addition, since no diffusion prevention layer is provided, the structure of the laminated thermistor element is simple and easy to manufacture, and it is easy to maintain the dimensional accuracy such as the thickness of the electrode and thermistor even when manufactured by firing. Become.
[0014]
As described above, according to the present invention, it is possible to provide a laminated thermistor element capable of obtaining stable characteristics with a simple configuration that is easy to manufacture.
The diffusion part between the insulating ceramic and the thermistor is less affected by the diffusion part as the distance from the electrode plate is lower, and it is preferably 50 μm or more away from the edge of the electrode plate as described above. .
Further, when the electrode plates are juxtaposed on the same bonding surface, the thermistor and the insulating ceramic are in contact with each other on the bonding surface located between the two electrode plates, and the diffusion portion is formed here (FIG. 1). However, by setting the thermistor thickness t to 50 μm or more, the influence on the variation in characteristics can be reduced (see FIG. 3).
[0015]
【Example】
Example 1
This example is a laminated thermistor element 1 that detects a change in electrical resistance of a thermistor 10 as shown in FIG. As shown in FIGS. 1 and 2, the laminated thermistor element 1 includes a thermistor 10 having an electrode attachment surface 11 (FIG. 1), and a pair of electrode plates 20 for resistance value detection attached to the attachment surface 11. And the insulating ceramic 30 covering the thermistor 10 and the electrode plate 20.
The electrode plate 20 is bonded to the thermistor 10 on one side without protruding the edge from the bonding surface 11 of the thermistor 10.
[0016]
The distances d 1 and d 2 (FIG. 2) between the edge of the electrode plate 20 and the edge of the electrode attaching surface 11 are 50 μm or more.
And the electrode sticking surface 11 is formed in the single side | surface of the thermistor 10, and the space | interval t (FIG. 1) of the opposing surface 12 and the sticking surface 11 in which the electrode plate 20 is not stuck is 50 micrometers or more. .
[0017]
The thermistor 10 has a Cr—Mn—O-based composition.
Then, as shown in FIG. 2, Pt paste is applied to one side of one of the Al 2 O 3 -based insulating ceramic sheets 31, 32 to form the electrode plate 20 and the signal lead portion 25. The thermistor 10 is applied thereon and dried. Thereafter, the sheets 31 and 32 are overlapped and fired while being thermocompression bonded.
[0018]
As a result of firing, as shown in FIG. 1, the end of the thermistor 10 is rounded and rounded. Further, in the vicinity of the boundary portions 41 to 44 between the thermistor 10 and the insulating ceramic 30 except for the portion covered by the electrode plate 20, a diffusion portion is formed by mutual diffusion of both members 10 and 30.
[0019]
The influence of the diffusion portion formed in the vicinity of the boundary portion 41 sandwiched between the two electrode plates 20 and the boundary portion 43 of the opposing surface 12 is that the thickness t of the thermistor 10 is 50 μm.
By setting it as the above, it can suppress to low.
FIG. 3 illustrates the degree of variation of the resistance value R between the electrode plates 20 in the same lot when the thickness t is changed as a relative value with a reference value 1 when the thickness t = 20 μm. Is. As can be seen immediately from the figure, when the thickness t is 50 μm or more, the variation of the resistance value R becomes a low constant value.
[0020]
Further, by setting the distances d 1 and d 2 between the edge portion of the electrode plate 20 and the edge portion of the attachment surface 11 of the thermistor 10 to be 50 μm or more, the resistance value R between the electrode plates 20 is the boundary portion. 42 and 44 are hardly affected by the diffusion part in the vicinity.
The reason is that the current path connecting the two electrode plates 20 is mainly formed along a short path connecting the two electrodes 20.
In addition, the thermistor element of this example has a simple configuration in which no diffusion prevention layer is provided, and is easy to manufacture.
As described above, according to the present example, there is provided a multilayer thermistor element 1 having a simple structure not provided with a diffusion prevention layer and having a stable characteristic that is not affected by mutual diffusion between the thermistor and the insulating ceramic. be able to.
[0021]
Reference example 1
This example is a reference example in which the electrodes 24 are attached to the upper and lower surfaces of the thermistor 10 in Example 1 as shown in FIG.
The thermistor 10 has a thickness t of 60 μm, and the distance d between the edge 241 of the electrode 24 and the edge 101 of the thermistor 10 is 60 μm.
About others, it is the same as that of Example 1. FIG.
[Brief description of the drawings]
FIG. 1 is a cross-sectional perspective view of a laminated thermistor element of Example 1 (taken along the line AA ′ in FIG. 2).
FIG. 2 is an exploded perspective view of the multilayer thermistor element of Example 1 before firing.
FIG. 3 is a transition diagram of the degree of variation in resistance value when the thermistor thickness t in the multilayer thermistor element of Example 1 is changed.
4 is a cross-sectional perspective view of the laminated thermistor element of Reference Example 1. FIG.
FIG. 5 is a cross-sectional perspective view of a conventional laminated thermistor element.
[Explanation of symbols]
1 ... stacked thermistor element,
10 ... Thermistor,
11 ... Affixing surface,
20 ... Electrode plate,
30 ... Insulating ceramic,
d 1 , d 2 ... distance,
t ... Thermistor thickness,

Claims (1)

サーミスタの電気抵抗の変化を検知する積層サーミスタ素子であって,該積層サーミスタ素子は,電極貼着面を有するサーミスタと,該貼着面に貼着した抵抗値検出用の一対の電極板と,上記サーミスタ及び電極板を被う絶縁性セラミックとを有しており,
上記電極板は,上記サーミスタの貼着面から縁部をはみ出すことなく片面のすべてが上記貼着面に貼着されており,
かつ上記サーミスタは,Cr−Mn−O系の組成からなると共に,該サーミスタの片面のみに形成された上記貼着面と,上記電極板が貼着されてない対向面との間隔tが50μm以上となるように形成されており,かつ前記電極板の縁端部と前記サーミスタの電極貼着面の縁端部との間の距離dは,50μm以上であることを特徴とする積層サーミスタ素子。
A laminated thermistor element that detects a change in electrical resistance of a thermistor, the laminated thermistor element comprising a thermistor having an electrode attachment surface, a pair of electrode plates for resistance detection attached to the attachment surface, An insulating ceramic covering the thermistor and the electrode plate,
The electrode plate has all one side stuck to the sticking surface without protruding the edge from the sticking surface of the thermistor,
The thermistor is composed of a Cr—Mn—O-based composition, and an interval t between the attachment surface formed only on one side of the thermistor and the opposing surface where the electrode plate is not attached is 50 μm or more. And a distance d between the edge of the electrode plate and the edge of the electrode attachment surface of the thermistor is 50 μm or more .
JP06163495A 1995-02-23 1995-02-23 Multilayer thermistor element Expired - Fee Related JP3646338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06163495A JP3646338B2 (en) 1995-02-23 1995-02-23 Multilayer thermistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06163495A JP3646338B2 (en) 1995-02-23 1995-02-23 Multilayer thermistor element

Publications (2)

Publication Number Publication Date
JPH08236310A JPH08236310A (en) 1996-09-13
JP3646338B2 true JP3646338B2 (en) 2005-05-11

Family

ID=13176832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06163495A Expired - Fee Related JP3646338B2 (en) 1995-02-23 1995-02-23 Multilayer thermistor element

Country Status (1)

Country Link
JP (1) JP3646338B2 (en)

Also Published As

Publication number Publication date
JPH08236310A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
US5914556A (en) Piezoelectric element and method of manufacturing the same
JP3646338B2 (en) Multilayer thermistor element
JP3057967B2 (en) Multilayer piezoelectric element
JP2753905B2 (en) Pyroelectric element
JP2572864Y2 (en) Pyroelectric infrared detector
JPH0831393B2 (en) Multilayer ceramic capacitor with fuse
JP3136847B2 (en) Method of manufacturing acceleration sensor
US4983838A (en) Pyroelectric element
US4629928A (en) Electrode terminal structure for a piezoelectric polymer
JPH0132371Y2 (en)
JPH11509631A (en) Force sensor with segmented electrodes
JPH09148642A (en) Piezoelectric actuator and its strain gauge bonding method
JPS62153765A (en) Laminated type piezoelectric ceramic element
JPH0452576Y2 (en)
JPH04104028A (en) Pressure detector
JPH0566537B2 (en)
JP2812994B2 (en) Stacked displacement element
JPS6177292A (en) Thermosensitive surface-shaped heat generating body
JPH0730164A (en) Laminated piezoelectric substance element
JPH0479154B2 (en)
JP3835721B2 (en) Platinum temperature sensor
JPH0314058Y2 (en)
JPH0524146Y2 (en)
JPS61225880A (en) Piezoelectric element and manufacture thereof
JP2981565B2 (en) Thermal head

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees