JP3645250B2 - Pressurized multilayer micro-ozone sterilization / purification / animal sterilization system - Google Patents

Pressurized multilayer micro-ozone sterilization / purification / animal sterilization system Download PDF

Info

Publication number
JP3645250B2
JP3645250B2 JP2003347498A JP2003347498A JP3645250B2 JP 3645250 B2 JP3645250 B2 JP 3645250B2 JP 2003347498 A JP2003347498 A JP 2003347498A JP 2003347498 A JP2003347498 A JP 2003347498A JP 3645250 B2 JP3645250 B2 JP 3645250B2
Authority
JP
Japan
Prior art keywords
water
ozone
micro
tank
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003347498A
Other languages
Japanese (ja)
Other versions
JP2005110552A (en
Inventor
金夫 千葉
正好 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003347498A priority Critical patent/JP3645250B2/en
Priority to PCT/JP2004/014560 priority patent/WO2005032243A1/en
Publication of JP2005110552A publication Critical patent/JP2005110552A/en
Application granted granted Critical
Publication of JP3645250B2 publication Critical patent/JP3645250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps

Description

本発明は、魚介類等の畜養に利用する水等の殺菌と浄化及び酸素の供給をし、安全かつ安心な食材等の提供を目的とする。   The object of the present invention is to sterilize and purify water, etc. used for raising livestock such as seafood and supply oxygen, and to provide safe and reliable foods.

従来、一般的な水の殺菌方法としては、紫外線照射や塩素殺菌等がよく用いており、魚介類の養殖、畜養水等の殺菌、浄化および廃水処理方法には、散気管方式、エゼクター方式等を用いている。散気管方式、エゼクター方式により、オゾンガスを水中に溶解させて殺菌浄化を行う場合、1〜3mmφのオゾンガスの気泡の大きさで散気管から圧入、或はオゾンガス気泡を長時間拡散させていた。従来技術としては、例えば以下のような文献がある。
特開2002−143885
Conventionally, UV irradiation, chlorine sterilization, etc. are often used as general water sterilization methods, and sterilization, purification, and wastewater treatment methods for seafood aquaculture, livestock culture water, etc., diffuser method, ejector method, etc. Is used. In the case of performing sterilization and purification by dissolving ozone gas in water by an air diffuser method or an ejector method, the size of the bubble of ozone gas of 1 to 3 mmφ was press-fitted from the air diffuser tube, or the ozone gas bubbles were diffused for a long time. As the prior art, for example, there are the following documents.
JP 2002-143885 A

特許文献1に記載された内容は、微小気泡によって生物の生理活性が促進されることにより新陳代謝機能が高められ、その結果として魚介類等の成長が促進されるといった内容であり、微小気泡を用いて殺菌・浄化するという記載は全くない。   The content described in Patent Document 1 is such that the metabolic function is enhanced by promoting the biological activity of the organism by the microbubbles, and as a result, the growth of seafood and the like is promoted. There is no mention of sterilization and purification.

紫外線による殺菌法では、浮遊物等により紫外線が遮断された部分が殺菌されにくいという問題があった。塩素による殺菌法では、魚介類の鮮度や色合い、薬品臭等の問題が多く、畜養レベルの塩素濃度は低いため、殺菌が完全にされ難いという問題があり、またトリハロメタン等の発ガン性物質が発生するという問題もあった。   The sterilization method using ultraviolet rays has a problem that it is difficult to sterilize portions where the ultraviolet rays are blocked by suspended matter or the like. In the sterilization method with chlorine, there are many problems such as freshness and color of seafood, chemical odor, etc., and the chlorine concentration at the level of animal husbandry is low, so there is a problem that sterilization is difficult to complete, and carcinogenic substances such as trihalomethane are There was also a problem that occurred.

オゾンガスを水中へ溶解させる場合において、散気管方式、エゼクター方式によるオゾンガスの気泡の球径は1〜3mmφと大きく浮力も大きい。そのため水中での滞留時間が短く、また容積に対し表面積が小さく、水との接触面積が小さいために水中へのオゾンガスの溶解効率が低く、高濃度のオゾンガスが必要となる。また、排オゾンの量も多く、排オゾンの処理の設備等多くのエネルギー、時間そしてコストが必要であるという不都合があった。   When ozone gas is dissolved in water, the sphere diameter of ozone gas bubbles by the diffuser tube method and ejector method is as large as 1 to 3 mmφ and the buoyancy is also large. Therefore, the residence time in water is short, the surface area is small with respect to the volume, and the contact area with water is small, so the efficiency of dissolving ozone gas in water is low, and high-concentration ozone gas is required. In addition, the amount of exhaust ozone is large, and there is a disadvantage that a lot of energy, time and cost are required for facilities for processing exhaust ozone.

本発明では、上記の問題点を鑑みてなされたものであり、本発明の目的は、オゾンガスの気泡の球径を小さくし、発明者が発見したマイクロオゾンガス気泡の圧壊現象を利用することによって、水の殺菌・浄化を行い、低容量で高効率の薬品を使用しない殺菌浄化畜養システムを提供することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to reduce the spherical diameter of ozone gas bubbles, and to utilize the crushing phenomenon of micro ozone gas bubbles discovered by the inventors, The purpose of the present invention is to provide a sterilized and purified animal raising system that sterilizes and purifies water and does not use chemicals with low capacity and high efficiency.

本発明の目的は、取水した原水とオゾンガスを混合させマイクロオゾンガス気泡を含む気液混合原水とし、原水を浄化・殺菌し、畜養槽内へ気液混合原水を圧入拡散させる取水浄化殺菌システムと、底部に複数のパンチング板が多層状に形成されている畜養槽からなる殺菌畜養施設と、畜養槽内の畜養水を循環させるために畜養水を循環水として取り入れ、循環水をオゾンガスと混合させ、浄化・殺菌を行い、畜養槽へマイクロオゾン含有循環水を高圧圧入させる循環浄化殺菌システムとを有することによって達成される。   The object of the present invention is to provide a gas-liquid mixed raw water containing micro-ozone gas bubbles by mixing raw raw water and ozone gas, purify and sterilize the raw water, and pressurize and diffuse the gas-liquid mixed raw water into the livestock tank, In order to circulate the breeding water in the breeding tank, a sterilized breeding facility consisting of a breeding tank in which a plurality of punching plates are formed in a multilayer shape at the bottom, and taking the breeding water as circulating water to mix the circulating water with ozone gas, This is achieved by having a circulation purification and sterilization system that performs purification and sterilization, and pressurizes the circulating water containing micro-ozone into the breeding tank under high pressure.

また、本発明は取水浄化殺菌システムは、取水ポンプにより取水された原水を1次反応槽へ供給し、第1オゾン発生器から発生したオゾンガスと原水を第1気液攪拌混合装置により混合してマイクロオゾンガス気泡を含む気液混合原水とする手段と、第1オゾン発生器から発生したオゾンガスと気液混合原水と畜養槽内に有する畜養水と共に、第2気液攪拌混合装置により混合してマイクロオゾンガス気泡を含む気液混合水とし、中層部へ気液混合水を圧入拡散させる手段によって、或は殺菌畜養施設は、畜養槽からなり、畜養槽の底部には複数のパンチング板が多層状に形成しており、複数のパンチング板の間に下層部と、中層部と上層部の空間を有することによって、或は循環浄化殺菌システムは、畜養槽内の畜養水を循環させるために畜養水を循環水として取り入れるために循環水槽に循環水を流出させ、循環水を循環ポンプで濾過処理槽を通じ、第2反応槽へ送る手段と、第2オゾン発生器から発生したオゾンガスと循環水を第3気液攪拌混合装置により混合しマイクロオゾン気泡含有循環水とし、マイクロオゾン気泡含有循環水を反応受槽へ送る手段と、反応受槽内のマイクロオゾン気泡含有循環水を加圧ポンプにより下層部に高圧圧入させる手段によって、或は下層部において、高圧圧入されて注入されたマイクロオゾン気泡含有循環水は、下層部の上部に位置するパンチング板を通過し中層部へ入るステップと、中層部では、渦流が発生し、マイクロオゾンガス気泡の圧壊が促進され、取水浄化殺菌システムから気液混合水が圧入拡散され、気液混合水中に含まれるマイクロオゾンガス気泡の酸化分解が行われ、中層部の上部に位置するパンチング板を通過し上層部へ入るステップと、上層部には、ブロワーから送られてくる加圧された空気を畜養槽内へ送る散気装置が設置されており、空気が上層部の上に位置するパンチング板を通過する際、畜養槽全体で渦流が発生し、マイクロオゾンガス気泡と共に、畜養槽内全体に拡散されるステップにより、畜養槽全体でマイクロオゾンガス気泡の圧壊が起り、畜養水の浄化・殺菌・富栄養化の防止を行うことによってより効果的に達成される。   In the present invention, the water purification and sterilization system supplies raw water taken by the water intake pump to the primary reaction tank, and mixes ozone gas and raw water generated from the first ozone generator by the first gas-liquid stirring and mixing device. Mixing by means of the second gas-liquid stirring and mixing device together with the means for making the gas-liquid mixed raw water containing micro ozone gas bubbles, the ozone gas generated from the first ozone generator, the gas-liquid mixed raw water, and the livestock feed water in the livestock tank Use gas-liquid mixed water containing ozone gas bubbles, and pressurize and diffuse the gas-liquid mixed water into the middle layer, or the sterilized animal husbandry facility consists of an animal culture tank, and a plurality of punching plates are formed in multiple layers at the bottom of the animal culture tank In order to circulate the breeding water in the breeding tank by forming and having the space of the lower layer part, the middle layer part and the upper layer part between a plurality of punching plates In order to take the nutrient water as circulating water, the circulating water is discharged into the circulating water tank, and the circulating water is sent to the second reaction tank through the filtration tank by the circulation pump, and the ozone gas generated from the second ozone generator and the circulating water. Is mixed with a third gas-liquid stirring and mixing device to obtain circulating water containing micro-ozone bubbles, a means for sending the circulating water containing micro-ozone bubbles to the reaction receiving tank, and the circulating water containing micro-ozone bubbles in the reaction receiving tank using a pressure pump The micro-ozone bubble-containing circulating water injected by high-pressure injection in the lower part or in the lower part passes through the punching plate located at the upper part of the lower part and enters the middle part, and the middle part Eddy currents are generated, the crushing of micro ozone gas bubbles is promoted, and the gas-liquid mixed water is pressed and diffused from the intake water purification and sterilization system, and is contained in the gas-liquid mixed water The ozone ozone gas bubbles are oxidatively decomposed, passed through the punching plate located at the upper part of the middle layer part and entered the upper layer part, and the upper layer part is supplied with pressurized air sent from the blower into the animal breeding tank When the air diffuser to be sent is installed and air passes through the punching plate located on the upper layer part, a vortex is generated in the whole livestock tank, and it is diffused in the whole livestock tank along with micro ozone gas bubbles The micro-ozone gas bubbles are crushed in the whole animal breeding tank, and this is achieved more effectively by purifying, sterilizing and preventing eutrophication of animal feed water.

また、本発明は加圧ポンプが畜養槽の底部に設けられた多層構造のパンチング板の下層部に第2気液混合水を高圧圧入させる際の圧力は0.3MPa以上であることによって、或は畜養槽の底部に設けられた複数のパンチング板はパンチング板が3枚からなる三層構造であることによってより効果的に達成される。   In the present invention, the pressure when the second gas-liquid mixed water is press-fitted into the lower layer of the multi-layer punching plate provided at the bottom of the animal culturing tank is 0.3 MPa or more, or The plurality of punching plates provided at the bottom of the animal culturing tank can be more effectively achieved by having a three-layer structure including three punching plates.

本発明の加圧多層式マイクロオゾン殺菌・浄化畜養殺菌システムにより、オゾンガス気泡の粒径を小さくし、圧壊させることにより、無菌化と浄化がスムーズに行なえ、畜養条件を低エネルギーで安全かつ安心で安定的に畜養できる。さらに魚介類の活性および鮮度保持が良くなる。   The pressurized multi-layer micro-ozone sterilization / purification livestock sterilization system of the present invention makes the sterilization and purification smooth by reducing the size of the ozone gas bubbles and causing them to be crushed. Livestock can be stably cultivated. Furthermore, the activity and freshness retention of seafood are improved.

以下、本発明の好適な実施形態を図面に基づき説明する。   Preferred embodiments of the present invention will be described below with reference to the drawings.

図1は、本実施形態の加圧多層式マイクロオゾン殺菌・浄化・畜養システムの全体構成を説明する概略図である。この加圧多層式マイクロオゾン殺菌・浄化畜養殺菌システムは、取水浄化殺菌システム2と殺菌畜養施設3と循環浄化殺菌システム4とからなっている。   FIG. 1 is a schematic diagram illustrating the overall configuration of a pressurized multilayer micro-ozone sterilization / purification / livestock raising system according to this embodiment. This pressurized multi-layer micro-ozone sterilization / purification livestock sterilization system comprises a water intake sterilization system 2, a sterilization livestock facility 3, and a circulation purification sterilization system 4.

取水浄化殺菌システム2は、取水した原水を浄化・殺菌するためのシステムである。   The intake water purification and sterilization system 2 is a system for purifying and sterilizing the collected raw water.

取水浄化殺菌システム2は、原水を取水する取水管21と、取水した原水を1次反応槽23へ送るための取水ポンプ22と、オゾンを発生させる第1オゾン発生装置24と、第1オゾン発生装置24から発生したオゾンガスと1次反応槽23にある原水を混合させる第1気液攪拌混合装置25aと、マイクロオゾンガス気泡と混合した原水と畜養槽31内の畜養水を混合させる気液混合槽26と、気液混合槽26で混合された気液混合液とオゾン発生器24から発生したオゾンガスを混合させる第2気液攪拌混合装置25bとからなる。気液混合槽26は畜養槽31と接続されており、畜養水が適当量気液混合槽26内に流出するように形成されている。気液混合槽26と畜養槽31の底部に設けられた複数のパンチング板が多層状に複数のパンチング板が形成されており、そのパンチング板の間の空間の一部である中層部33は、気液混合液注入管27により接続され、畜養槽31内の中層部33へ圧入拡散させる。ここで、原水とは淡水、海水のことをいう。   The intake water purification and sterilization system 2 includes an intake pipe 21 for taking raw water, a intake pump 22 for sending the taken raw water to the primary reaction tank 23, a first ozone generator 24 for generating ozone, and first ozone generation. The first gas-liquid stirring and mixing device 25a for mixing the ozone gas generated from the device 24 and the raw water in the primary reaction tank 23, and the gas-liquid mixing tank for mixing the raw water mixed with the micro ozone gas bubbles and the livestock water in the livestock tank 31 26, and a second gas-liquid stirring and mixing device 25b for mixing the gas-liquid mixture mixed in the gas-liquid mixing tank 26 and the ozone gas generated from the ozone generator 24. The gas-liquid mixing tank 26 is connected to the animal breeding tank 31, and is formed so that an appropriate amount of animal feeding water flows into the gas-liquid mixing tank 26. A plurality of punching plates provided at the bottom of the gas-liquid mixing tank 26 and the animal breeding tank 31 are formed in a plurality of layers, and the middle layer portion 33 which is a part of the space between the punching plates is a gas-liquid It is connected by the mixed solution injection pipe 27 and is press-fitted and diffused into the middle layer portion 33 in the animal breeding tank 31. Here, raw water means fresh water and seawater.

原水は取水管21を通り、適当量の原水を取水ポンプ22により1次反応槽23へと送られる。   The raw water passes through the intake pipe 21 and an appropriate amount of raw water is taken to the primary reaction tank 23 by the water pump 22.

第1オゾン発生装置24より発生したオゾンガスは、第1気液攪拌混合装置25aに圧送される。圧送されたオゾンガスは、第1気液攪拌混合装置25aにより原水と混合攪拌されて瞬時にマイクロオゾンガス気泡となると共に、気液凝縮混合され、気液混合水となる。ここで取水された原水に含まれる微生物や有害物質をマイクロオゾンガス気泡の酸化分解で殺菌・分解し、取水された原水は殺菌・浄化される。   The ozone gas generated from the first ozone generator 24 is pumped to the first gas-liquid stirring and mixing device 25a. The pressurized ozone gas is mixed and stirred with the raw water by the first gas-liquid stirring and mixing device 25a to instantaneously form micro-ozone gas bubbles, and gas-liquid condensed and mixed to become gas-liquid mixed water. Microbes and harmful substances contained in the raw water taken here are sterilized and decomposed by oxidative decomposition of micro ozone gas bubbles, and the taken raw water is sterilized and purified.

この気液混合水を気液混合槽26へ送り、畜養槽31内の畜養水と混合させ、第1オゾン発生装置24より発生したオゾンガスを第2気液攪拌混合装置25bに圧送し、オゾンガスと気液混合水と畜養槽31内の畜養水とを第2気液攪拌装置25bを用いて混合攪拌し、1次反応槽23で気液混合水とした状態よりも高濃度のマイクロオゾンガス気泡を含む気液混合水を生成させる。この高濃度のマイクロオゾンガス気泡を含む気液混合水を畜養槽31の底部に設置されたパンチング板の多層構造の中層部33へ圧入拡散する。   This gas-liquid mixed water is sent to the gas-liquid mixing tank 26, mixed with the animal feed water in the animal breeding tank 31, the ozone gas generated from the first ozone generator 24 is pumped to the second gas-liquid stirring and mixing apparatus 25b, and the ozone gas The gas-liquid mixed water and the animal feed water in the animal breeding tank 31 are mixed and stirred using the second gas-liquid stirring apparatus 25b, and micro ozone gas bubbles having a concentration higher than that in the state where the gas-liquid mixed water is formed in the primary reaction tank 23. Gas-liquid mixed water containing is produced. The gas-liquid mixed water containing the high-concentration micro ozone gas bubbles is press-fitted and diffused into the middle layer portion 33 of the multilayer structure of the punching plate installed at the bottom of the animal culturing tank 31.

殺菌畜養施設3は、畜養槽31内の畜用水を殺菌、浄化・富栄養化の防止を行なうための施設である。   The sterilized animal breeding facility 3 is a facility for sterilizing, purifying and preventing eutrophication of livestock water in the animal culturing tank 31.

図2は畜養槽31内の平面図である。なお、図2の上層部パンチング板37は散気装置39等の様子を見やすくするために一部のみ記載しており、実際には畜養槽31内全体に接続されている。散気装置39上に上層部パンチング板37が設置されており、畜養槽31内全体にパンチング板が接続されている。   FIG. 2 is a plan view inside the animal breeding tank 31. Note that only a part of the upper layer punching plate 37 in FIG. 2 is shown in order to make it easy to see the state of the air diffuser 39 and the like, and is actually connected to the entire inside of the breeding tank 31. An upper layer punching plate 37 is installed on the air diffuser 39, and the punching plate is connected to the entire inside of the animal culturing tank 31.

殺菌畜養施設3は、畜養槽31と、畜養槽31内の底部にはパンチング板が多層状に形成され、下から下層部パンチング板35、中層部パンチング板36、上層部パンチング板37が形成されおり、それぞれのパンチング板の間には空間を有しており、畜養槽31の底部から下層部32、中層部33、上層部34が形成されている。上層部34にはブロワー38から送られる空気を畜養槽31内に拡散させるための散気装置39が設置されている。   In the sterilized animal breeding facility 3, a punching plate is formed in a multilayer shape on the bottom of the animal raising tank 31, and the animal raising tank 31, and a lower layer punching plate 35, an intermediate layer punching plate 36, and an upper layer punching plate 37 are formed from the bottom. In addition, there is a space between each punching plate, and a lower layer portion 32, a middle layer portion 33, and an upper layer portion 34 are formed from the bottom of the breeding tank 31. An air diffuser 39 for diffusing the air sent from the blower 38 into the animal breeding tank 31 is installed in the upper layer portion 34.

畜養槽31内の底部に有するパンチング板の多層構造は何層であってもよいが、三層構造が好ましい。三層構造にすることにより、後述する循環浄化殺菌システム4から送られてくるマイクロオゾンガス気泡含有循環水を効率よく圧壊させることができ、畜養槽31内の畜養水を効率よく殺菌・浄化することができる。   Although the multilayer structure of the punching board which has in the bottom part in the breeding tank 31 may have any number of layers, a three-layer structure is preferable. By using a three-layer structure, it is possible to efficiently crush the circulating water containing micro-ozone gas bubbles sent from the circulation purification and sterilization system 4 to be described later, and to efficiently sterilize and purify the breeding water in the breeding tank 31. Can do.

下層部32は循環浄化殺菌システム4内のマイクロオゾンガス気泡含有循環水注入管49と接続され、マイクロオゾンガス気泡含有循環水が送られる。このマイクロオゾンガス気泡含有循環水は下層部パンチング板35を通過することにより、マイクロオゾンガス気泡の圧壊現象を促進させる。   The lower layer part 32 is connected to the micro-ozone gas bubble-containing circulating water injection pipe 49 in the circulation purification sterilization system 4, and the micro-ozone gas bubble-containing circulating water is sent. This circulating water containing micro ozone gas bubbles passes through the lower layer punching plate 35 to promote the collapse phenomenon of the micro ozone gas bubbles.

ここで、圧壊とは、液体中に浮遊する微小気泡(マイクロバブル)が微小気泡中に含まれる気体の自然溶解により徐々に縮小し、やがて消滅する過程において、消滅時の現象をいい、発明者の鋭意研究により発見された現象である。以下、微小気泡の圧壊について説明する。   Here, the crushing means a phenomenon at the time of disappearance in a process in which microbubbles (microbubbles) floating in a liquid gradually shrink due to natural dissolution of the gas contained in the microbubbles and eventually disappear. It is a phenomenon discovered by earnest research. Hereinafter, the collapse of the microbubbles will be described.

微小気泡の物理的性質として、図3に示すように、蒸留水中での微小気泡は、気泡の気泡径に関係なく−30〜−50mV程度の電位を有している。このため、例えば水の中では図4に示すように気泡表面にOH等の陰イオンが取り囲んでおり、その周囲にH+(H+)等の陽イオンが覆っているような構造をとっている。 As the physical properties of the microbubbles, as shown in FIG. 3, the microbubbles in distilled water have a potential of about −30 to −50 mV regardless of the bubble diameter. Therefore, for example, in water, a structure in which an anion such as OH surrounds the surface of a bubble as shown in FIG. 4 and a cation such as H + (H 3 O + ) is covered around the anion. Have taken.

また、微小気泡は通常の気泡よりも比表面積が大きく、表面張力が効果的に作用するため内圧が高い。なお、微小気泡が消滅する時の内圧は、数千気圧にも達するということが学説で定着している。   In addition, microbubbles have a larger specific surface area than ordinary bubbles, and the internal pressure is high because surface tension acts effectively. The theory is that the internal pressure when the microbubbles disappear can reach several thousand atmospheres.

微小気泡は通常の気泡に比べて上昇速度が緩慢であり、気体の溶解能力(自然溶解)が優れていることが知られている。すなわち、通常の気泡が水中で発生した場合、液面方向へ上昇し、液面で気泡が破裂するのに対し、微小気泡は通常の気泡よりもゆっくりとした速度で上昇し、さらに溶解能力が優れていることから、徐々に気泡の気泡径が縮小し、やがて消滅する。図5は微小気泡が縮小し、やがて消滅するまでの気泡径の時間を測定したものである。微小気泡の気泡径が小さいほど自然溶解によって微小気泡が縮小してから消滅するまでの時間が短くなる。微小気泡において、気体を溶解させるための最大の駆動力は表面張力の作用による自己圧縮効果である。環境圧に対しての微小気泡内部の圧力上昇は理論的にYoung−Laplaceの式により推測される。
(数1)
ΔP=4σ/D
ここで、ΔPは圧力上昇の程度であり、σは表面張力、Dは気泡直径である。室温での蒸留水の場合、直径10μmの微小気泡で約0.3気圧、直径1μmでは、約3気圧の圧力上昇となる。気体はヘンリーの法則に従って水に溶解するため、自己加圧された気泡内の気体は効果的に周囲の水に溶解していく。
It is known that microbubbles have a slower ascending speed than ordinary bubbles and have an excellent gas dissolving ability (natural dissolution). In other words, when normal bubbles are generated in water, they rise in the direction of the liquid surface, and the bubbles burst at the liquid level, whereas microbubbles rise at a slower rate than normal bubbles, and further have a dissolving ability. Since it is excellent, the bubble diameter gradually decreases and eventually disappears. FIG. 5 shows the measurement of the bubble diameter time until the microbubbles shrink and eventually disappear. The smaller the bubble diameter of the microbubbles, the shorter the time from when the microbubbles shrink due to natural dissolution until they disappear. In microbubbles, the maximum driving force for dissolving the gas is a self-compression effect due to the action of surface tension. The pressure rise inside the microbubble with respect to the environmental pressure is theoretically estimated by the Young-Laplace equation.
(Equation 1)
ΔP = 4σ / D
Here, ΔP is the degree of pressure increase, σ is the surface tension, and D is the bubble diameter. In the case of distilled water at room temperature, a pressure increase of about 0.3 atm with a microbubble having a diameter of 10 μm and about 3 atm at a diameter of 1 μm. Since the gas dissolves in water according to Henry's law, the gas in the self-pressurized bubbles effectively dissolves in the surrounding water.

これに対して微小気泡を放電、超音波、渦流等の物理的刺激を与えることで、微小気泡が自然溶解によって縮小する速度が上昇するため、微小気泡が断熱圧縮され、やがて微小気泡は消滅する(圧壊)。このとき、微小気泡は断熱圧縮していたことから、微小気泡が消滅する時に超高温、超高圧の極限反応場が形成される。   On the other hand, by applying physical stimuli such as discharge, ultrasonic waves, and vortex flow to the microbubbles, the speed at which the microbubbles shrink due to natural dissolution increases, so the microbubbles are adiabatically compressed and eventually the microbubbles disappear. (Crush). At this time, since the microbubbles were adiabatically compressed, when the microbubbles disappear, an extreme reaction field of ultrahigh temperature and ultrahigh pressure is formed.

上述したように、水中に存在している気泡はマイナスに帯電しているが、気液界面にはpH等の環境条件に応じて飽和した電荷が存在しており、微小気泡のゼータ電位により観測することができる。この電荷は水中の電解質イオン等によってもたらされるのではなく、水自体の持っている構造的な要因に基づいている。すなわち、気液界面における水素結合ネットワーク構造がバルク中での構造と異なることに起因したOH-やH+の界面吸着による電荷の発生による。この構造の形成は熱分子運動を抑制する作用も併せ持つため、電荷密度の増減が生じた場合に平衡条件に戻るまでに数秒程度の時間を要する。 As mentioned above, bubbles in water are negatively charged, but there is a saturated charge at the gas-liquid interface depending on the environmental conditions such as pH, which is observed by the zeta potential of microbubbles. can do. This charge is not caused by electrolyte ions in the water, but based on structural factors of the water itself. That is, it is due to the generation of electric charges due to the interfacial adsorption of OH and H + resulting from the fact that the hydrogen bond network structure at the gas-liquid interface is different from the structure in the bulk. Since the formation of this structure also has the effect of suppressing the thermal molecular motion, it takes about several seconds to return to the equilibrium condition when the charge density increases or decreases.

微小気泡の自然溶解による気泡の縮小は、気液界面の表面積の減少を伴う。この気液界面の表面積は図5に示すように小さな気泡になるほど加速度的に減少する。気液界面の表面積の減少速度が遅い場合においては、気液界面の電荷密度はほぼ平衡を保った条件で推移する。しかし、図6に示すように気泡径が10μm以下になると電荷の散逸が縮小速度に追いつかなくなり、平衡からの逸脱に伴うゼータ電位の上昇として観測される。ただし、自然溶解による気液界面の表面積の減少はさほど急激でないため、消滅寸前においても電荷密度の値は平衡時の数倍程度にとどまる。   The reduction of bubbles due to the spontaneous dissolution of microbubbles is accompanied by a reduction in the surface area of the gas-liquid interface. As shown in FIG. 5, the surface area of the gas-liquid interface decreases as the bubbles become smaller. When the rate of decrease in the surface area at the gas-liquid interface is slow, the charge density at the gas-liquid interface changes under conditions that are substantially balanced. However, as shown in FIG. 6, when the bubble diameter becomes 10 μm or less, the dissipation of charge cannot catch up with the reduction speed, and is observed as an increase in zeta potential accompanying deviation from equilibrium. However, the decrease in the surface area of the gas-liquid interface due to natural dissolution is not so rapid, so the value of the charge density is only about several times that at equilibrium even before the disappearance.

これに対して、本発明における微小気泡の圧壊時には、気液界面の表面積の減少速度が非常に大きく、電荷は殆ど散逸することなく平衡から逸脱する。その結果、極めて電荷密度の高い領域が形成される。気泡径20μmの微小気泡が0.5μm以下にまで圧壊された場合、電荷密度は平衡時の1000倍以上に至る。   On the other hand, when the microbubbles are collapsed in the present invention, the rate of decrease in the surface area of the gas-liquid interface is very large, and the charge deviates from the equilibrium with almost no dissipation. As a result, a region having an extremely high charge density is formed. When a microbubble having a bubble diameter of 20 μm is crushed to 0.5 μm or less, the charge density reaches 1000 times or more that at equilibrium.

圧壊により形成された極めて高密度な電荷は非平衡条件であるため,極めて不安定であり、単純な散逸とは異なる現象で安定な状態へと復帰する。すなわち、圧壊過程にある気泡界面と周囲との間に極めて急激な電位勾配が形成され、放電などによる電子の移動に伴い、電荷条件の再平衡が実現される。   The extremely high-density charge formed by crushing is a non-equilibrium condition, so it is extremely unstable and returns to a stable state by a phenomenon different from simple dissipation. That is, a very steep potential gradient is formed between the bubble interface in the crushing process and the surroundings, and re-equilibrium of the charge condition is realized with the movement of electrons due to discharge or the like.

これは極めて高密度なエネルギー場の形成を意味しており、水中で行った場合、周囲の水分子の分解によるフリーラジカル種の形成を伴う。また、電荷の担い手がOH-やH+であるため、放電による電荷の中和に伴って、・OHや・Hというフリーラジカル種の生成がなされる。 This means the formation of an extremely high density energy field, which, when carried out in water, involves the formation of free radical species by the decomposition of surrounding water molecules. In addition, since the charge carriers are OH and H + , free radical species such as .OH and .H are generated as the charge is neutralized by discharge.

このフリーラジカル種は反応性が非常に高いため、溶液中に溶解もしくは浮遊している様々な化合物と反応し、溶液中の化合物を組成変化または分解する。また、圧壊時に超高温、超高圧状態の極限反応場が形成されるため、従来には不可能とされてきた、細菌類、ウイルス類等の微生物を分解、死滅させることも可能となり、フェノール等の芳香族を含む化合物も分解できる。圧壊することにより分解することができる物質としては、ほぼ全ての有機化合物、FeSO、CuNO、AgNO、MnOのような無機化合物、ダイオキシン類、PCB、フロン、細菌類、ウイルス類等が挙げられる。 Since this free radical species is very reactive, it reacts with various compounds dissolved or suspended in the solution to change or decompose the composition of the compound in the solution. In addition, since an extreme reaction field of ultra-high temperature and ultra-high pressure is formed at the time of crushing, it becomes possible to decompose and kill microorganisms such as bacteria and viruses that have been impossible in the past, such as phenol A compound containing an aromatic group can also be decomposed. Substances that can be decomposed by crushing include almost all organic compounds, inorganic compounds such as FeSO 4 , CuNO 3 , AgNO 3 , MnO 2 , dioxins, PCBs, chlorofluorocarbons, bacteria, viruses, etc. Can be mentioned.

微小気泡は通常の気泡よりもゆっくりとした速度で上昇するため、微小気泡が消滅する前に例えば渦流を起こす等の刺激を微小気泡に与えることにより、縮小速度を早めることができ、圧壊現象を促進させることができる。これにより、畜養水の殺菌・浄化がより効果的に行われる。   Since microbubbles rise at a slower rate than normal bubbles, by giving the microbubbles a stimulus such as causing vortex before the microbubbles disappear, the reduction speed can be increased and the collapse phenomenon can be prevented. Can be promoted. Thereby, sterilization and purification of livestock water are performed more effectively.

本発明では、下層部32に送られたマイクロオゾンガス気泡含有循環水が下層部パンチング板35を通過させることにより、圧縮、膨張および渦流を生じさせることにより、圧壊を促進させることができる。   In the present invention, the micro-ozone gas bubble-containing circulating water sent to the lower layer portion 32 is allowed to pass through the lower layer punching plate 35, thereby causing compression, expansion and vortex flow, thereby promoting crushing.

中層部33は、気液混合水注入管27と接続しており、気液混合水は気液混合水注入管27から畜養槽31内へ圧入拡散される。   The middle layer portion 33 is connected to the gas-liquid mixed water injection tube 27, and the gas-liquid mixed water is press-fitted and diffused into the animal culturing tank 31 from the gas-liquid mixed water injection tube 27.

中層部33内では、下層部32から下層部パンチング板35を通過して発生してきたマイクロオゾンガス気泡が圧壊により超微細気泡となっており、気液混合水注入管27から圧入拡散された気液混合水と混ざり、マイクロオゾンガスの酸化分解が行われると共に、中層部パンチング板36を通過する。   In the middle layer portion 33, the micro ozone gas bubbles generated from the lower layer portion 32 through the lower layer punching plate 35 become ultrafine bubbles due to the crushing, and the gas-liquid that is press-fitted and diffused from the gas-liquid mixed water injection tube 27. Mixing with the mixed water, the micro ozone gas is oxidatively decomposed and passes through the middle layer punching plate 36.

上層部34にはブロワー38と接続された散気装置39が設置されており、散気装置39はブロワー38から加圧された状態で送られてきた空気を上層部34に送る。ブロワー38と散気装置39により加圧した空気を送るのは、畜養槽31内の富栄養化対策として循環曝気させるためであり、また空気中に含まれる酸素により、畜養槽31内の酸素濃度が上昇し、水質改善にも役立つ。この加圧された空気の圧力は0.3MPa以上が好ましく、効率よく畜養槽31内を循環曝気することができる。この空気は、中層部パンチング板36を通過してきたマイクロオゾンガス気泡と混合し、上層部パンチング板37を通過する。   An air diffuser 39 connected to the blower 38 is installed in the upper layer portion 34, and the air diffuser 39 sends the air sent in a pressurized state from the blower 38 to the upper layer portion 34. The reason why the air pressurized by the blower 38 and the air diffuser 39 is sent is to circulate aeration as a measure for eutrophication in the animal culturing tank 31, and the oxygen concentration in the animal culturing tank 31 by oxygen contained in the air. Will help to improve water quality. The pressure of the pressurized air is preferably 0.3 MPa or more, and the inside of the animal breeding tank 31 can be efficiently circulated and aerated. This air is mixed with the micro ozone gas bubbles that have passed through the middle layer punching plate 36 and passes through the upper layer punching plate 37.

上層部パンチング板37を通過したマイクロオゾンガス気泡と加圧した空気はパンチング板を通過する際の圧縮膨張作用により、加圧した空気は畜養槽31内全体に拡散され、マイクロオゾンガス気泡の圧壊は更に加速され、加圧した空気の拡散の流れに乗り、畜養槽31内全体でマイクロオゾンガスの圧壊が起る。これにより、畜養槽31内の殺菌・浄化作用が全体的に行われる。また、加圧された空気により、畜養槽31内の富栄養化も防止される。   Micro-ozone gas bubbles and pressurized air that have passed through the upper punching plate 37 are compressed and expanded by the compression and expansion action when passing through the punching plate. The micro-ozone gas is crushed throughout the livestock tank 31 by accelerating and accelerating the flow of pressurized air. Thereby, the sterilization and purification action in the livestock tank 31 is performed as a whole. Moreover, eutrophication in the livestock tank 31 is also prevented by the pressurized air.

循環浄化殺菌システム4は、畜養水を循環させる場合、前記畜養水を浄化、殺菌するためのシステムである。   The circulation purification sterilization system 4 is a system for purifying and sterilizing the animal feed water when circulating the animal feed water.

循環浄化殺菌システム4は、畜養槽31内の畜養水を循環水として取り入れ、貯蔵する循環水槽41と、適当量の循環水を濾過処理槽43、2次反応槽44へ送る循環水ポンプ42と、オゾンを発生させる第2オゾン発生装置45と、第2オゾン発生装置45から発生したオゾンガスと2次反応槽44にある循環水を混合させる第3気液攪拌混合装置46と、マイクロオゾンガス気泡を含有した循環水を貯蔵する反応受槽47と、マイクロオゾンガス気泡含有循環水を畜養槽31内へ加圧して送るための加圧ポンプ48とからなる。   The circulation purification sterilization system 4 includes a circulation water tank 41 that takes in and stores animal feed water in the animal breeding tank 31 as circulation water, and a circulation water pump 42 that sends an appropriate amount of circulation water to the filtration treatment tank 43 and the secondary reaction tank 44. A second ozone generator 45 for generating ozone, a third gas-liquid stirring and mixing device 46 for mixing the ozone gas generated from the second ozone generator 45 and the circulating water in the secondary reaction tank 44, and the micro ozone gas bubbles. It consists of a reaction receiving tank 47 for storing the contained circulating water, and a pressurizing pump 48 for pressurizing and sending the circulating water containing micro-ozone gas bubbles into the animal breeding tank 31.

循環水槽41は、畜養水を循環水として取り入れるために畜養槽31と接続されており、畜養槽31内の畜養水が一定量に達すると循環水槽41に流出するように形成されている。   The circulation water tank 41 is connected to the animal cultivation tank 31 in order to take the animal cultivation water as the circulation water, and is configured to flow out to the circulation water tank 41 when the amount of the animal cultivation water in the animal cultivation tank 31 reaches a certain amount.

循環水槽41に流出した循環水は循環水ポンプ42により、適当量を濾過処理槽43へ送られ、濾過処理槽43で、循環水中に含まれていたゴミ等を除去し、2次反応槽44へ送られる。   The circulating water that has flowed out to the circulating water tank 41 is sent to the filtration tank 43 by a circulating water pump 42, and the filtration tank 43 removes dust and the like contained in the circulating water. Sent to.

第2オゾン発生装置45より発生したオゾンガスは、第3気液攪拌混合装置46に圧送される。オゾンガスは循環水と混合攪拌されてマイクロオゾンガス気泡となると共に、気液凝縮混合され、マイクロオゾンガス気泡含有循環水となる。ここで循環水に含まれる微生物や有害物質をマイクロオゾンガス気泡の酸化分解で殺菌・分解し、循環水は殺菌・浄化される。   The ozone gas generated from the second ozone generator 45 is pumped to the third gas-liquid stirring and mixing device 46. The ozone gas is mixed and stirred with circulating water to form micro-ozone gas bubbles, and gas-liquid condensed and mixed to form micro-ozone gas bubble-containing circulating water. Here, microorganisms and harmful substances contained in the circulating water are sterilized and decomposed by oxidative decomposition of micro ozone gas bubbles, and the circulating water is sterilized and purified.

2次反応槽44で殺菌・浄化された循環水は反応受槽47へ送られる。一定量のマイクロオゾンガス気泡含有循環水が貯蔵されると加圧ポンプ48へ送られる。反応受槽47から送られたマイクロオゾンガス気泡含有循環水は加圧ポンプにより、畜養槽31内の下層部32に接続されたマイクロオゾンガス気泡含有循環水注入管を通り、畜養槽31内の下層部32へ高圧圧入される。加圧ポンプ48のマイクロオゾンガス気泡含有循環水を押し出す圧力は特に限定されないが、0.3MPa以上の圧力が好ましい。これにより、マイクロオゾンガス気泡含有循環水を下層部32へ高圧圧入することができ、下層部パンチング板35をマイクロオゾンガス気泡含有循環水が通過する際、圧縮、膨張および渦流を生じさせ、効率よく圧壊現象を起こすことができる。   The circulating water sterilized and purified in the secondary reaction tank 44 is sent to the reaction receiving tank 47. When a certain amount of circulating water containing micro ozone gas bubbles is stored, it is sent to the pressure pump 48. The circulating water containing micro-ozone gas bubbles sent from the reaction receiving tank 47 passes through the micro-ozone gas-containing circulating water injection pipe connected to the lower layer part 32 in the breeding tank 31 by a pressurizing pump, and the lower layer part 32 in the breeding tank 31. High pressure. Although the pressure which extrudes the micro ozone gas bubble containing circulating water of the pressurization pump 48 is not specifically limited, The pressure of 0.3 Mpa or more is preferable. Thereby, the micro ozone gas bubble-containing circulating water can be pressed into the lower layer 32 at a high pressure, and when the micro ozone gas bubble-containing circulating water passes through the lower layer punching plate 35, compression, expansion, and swirl are generated, and the crushing is efficiently performed. Can cause phenomena.

気液攪拌混合装置により、畜養槽31内へ拡散される微細なオゾン気泡について、従来例と対比した具体例により説明する。   The fine ozone bubbles diffused into the animal culturing tank 31 by the gas-liquid stirring and mixing device will be described with reference to a specific example compared with the conventional example.

本発明の特徴は、超微細なオゾン気泡を利用することと、これを圧壊させることである。従来法との効果の比較に関しては、殺菌効果をもたらすフリーラジカル種や活性酸素種の量に基づいて評価できる。まず、微小気泡を利用することの利点であるが、これは水に対するオゾンの溶解能力において比較可能である。直径が1mmの通常気泡と10μmの超微小気泡のガス溶解能力を比較した場合に、後者は前者の20000000倍の溶解効率を持つ。その理由は3つあり、一つは比表面積が直径に反比例して作用すること、もう一つは気泡の自己圧縮効果が同じく直径に反比例することである。3つ目としては、上昇速度が極端に異なる点が挙げられる。小さな気泡はストークスの方式にほぼ基づいており、1mmの気泡が1分間に約6m上昇するのに対して10μmの気泡はわずか3mm程度しか上昇しない。これら3つの要因を単純に掛け合わせた場合に、20000000倍の溶解効率の差が求まる。次に、圧壊によるフリーラジカル種の発生量であるが、予備的な試験によりオゾンが単純に作用する場合に比べて約20倍の効果を持つことを確認している。これはKI溶液の反応による要素析出量により評価したものであり、オゾンの単純作用に比べてマイクロオゾンガス気泡の圧壊を起こさせた条件では、約20倍の速度で反応が進行している。以上の2点を単純に掛け合わせることにより従来法と効果を比較すると、本発明は実に4億倍の殺菌効果を発揮することになる。現実の条件においては、気泡の収縮や圧壊の発生に対する阻害要因も皆無ではないが、いずれにしても桁違いの殺菌効果を発揮することが可能である。また、他の利点として10μm以下の微小気泡は魚介類の体内に容易に取り込まれるため、体内の殺菌にも容易に作用することが上げられる。特にオゾンの発生にPSA方式の装置を利用した場合には酸素濃度が非常に高いので、魚介類の呼吸循環が促進され、より容易にマイクロオゾンガス気泡が体内に取り込まれることになり、効果の違いは歴然としたものとなる。   A feature of the present invention is to use ultrafine ozone bubbles and to crush them. Regarding the comparison of the effect with the conventional method, it can be evaluated based on the amount of free radical species and active oxygen species that bring about a bactericidal effect. First, there is an advantage of utilizing microbubbles, which is comparable in the ability of ozone to dissolve in water. When comparing the gas dissolution capacity of normal bubbles having a diameter of 1 mm and ultrafine bubbles having a diameter of 10 μm, the latter has a dissolution efficiency 20000000 times that of the former. There are three reasons, one is that the specific surface area acts inversely proportional to the diameter, and the other is that the self-compression effect of the bubbles is also inversely proportional to the diameter. The third is that the rising speed is extremely different. Small bubbles are almost based on the Stokes method, and a 1 mm bubble rises about 6 m per minute, whereas a 10 μm bubble rises only about 3 mm. When these three factors are simply multiplied, a difference in dissolution efficiency of 20000000 times is obtained. Next, regarding the amount of free radical species generated by crushing, it has been confirmed by preliminary tests that the effect is approximately 20 times that of the case where ozone simply acts. This is evaluated by the amount of element deposition due to the reaction of the KI solution, and the reaction proceeds at a rate of about 20 times under the condition in which the collapse of the micro ozone gas bubbles is caused compared to the simple action of ozone. When the effect is compared with the conventional method by simply multiplying the above two points, the present invention actually exhibits a sterilization effect of 400 million times. Under actual conditions, there are no obstacles to the occurrence of bubble contraction or crushing, but in any case, it is possible to exhibit an orderly sterilizing effect. Another advantage is that microbubbles of 10 μm or less are easily taken into the body of fish and shellfish, so that they easily act on sterilization of the body. Especially when a PSA system is used to generate ozone, the oxygen concentration is very high, which promotes the respiration and circulation of seafood and makes it easier for micro-ozone gas bubbles to be taken into the body. Will be obvious.

上記のように、気液攪拌混合装置により、マイクロオゾンガス気泡を供給すると共に、これを圧壊させることにより、低エネルギーかつ短時間で魚介類の殺菌が可能となる。   As described above, the micro-ozone gas bubbles are supplied by the gas-liquid stirring and mixing device and are crushed, so that the fish and shellfish can be sterilized with low energy and in a short time.

また、残留オゾンガスは泡沫分離と共に酸化還元コントロールにより厳密に調整される。   Residual ozone gas is strictly adjusted by bubble reduction and redox control.

以上は本発明の一実施の形態であり、本発明がこれに限定される趣旨のものではない。また、第1オゾン発生装置24と第2オゾン発生装置45は一つにまとめて、オゾンをそれぞれ取水浄化殺菌システム2と循環浄化殺菌システム4に発生させてもよい。   The above is one embodiment of the present invention, and the present invention is not limited to this. Alternatively, the first ozone generator 24 and the second ozone generator 45 may be combined into one to cause the intake water purification and sterilization system 2 and the circulation purification and sterilization system 4 to generate ozone, respectively.

加圧多層式浄化殺菌畜養システムの全体構成を説明するための概略図である。It is the schematic for demonstrating the whole structure of a pressurization multilayer type purification | cleaning sterilization livestock raising system. 畜養槽内の平面図である。It is a top view in a stock raising tank. 蒸留水中において、微小気泡のゼータ電位を測定した図である。It is the figure which measured the zeta potential of the microbubble in distilled water. 水中での微小気泡の帯電のメカニズムを表わした図である。It is a figure showing the mechanism of the charge of the microbubble in water. 微小気泡が縮小し消滅するまでの時間と微小気泡の気泡径の関係を表わした図である。It is a figure showing the relationship between time until a microbubble shrink | contracts and extinguishes, and the bubble diameter of a microbubble. 微小気泡の縮小に伴うゼータ電位の上昇を表わした図である。It is a figure showing the raise of the zeta potential accompanying reduction of a microbubble.

符号の説明Explanation of symbols

2 取水浄化殺菌システム
21 取水管
22 取水ポンプ
23 1次反応槽
24 第1オゾン発生装置
25a 第1気液攪拌混合装置
25b 第2気液攪拌混合装置
26 気液混合槽
27 気液混合水注入管
3 殺菌畜養施設
31 畜養槽
32 下層部
33 中層部
34 上層部
35 下層部パンチング板
36 中層部パンチング板
37 上層部パンチング板
38 ブロワー
39 散気装置
4 循環浄化殺菌システム
41 循環水槽
42 循環水ポンプ
43 濾過処理槽
44 2次反応槽
45 第2オゾン発生装置
46 第3気液攪拌装置
47 反応受槽
48 加圧ポンプ
49 マイクロオゾンガス気泡含有循環水注入管
2 Intake purification and sterilization system 21 Intake pipe 22 Intake pump 23 Primary reaction tank 24 First ozone generator 25a First gas-liquid stirring and mixing apparatus 25b Second gas-liquid stirring and mixing apparatus 26 Gas-liquid mixing tank 27 Gas-liquid mixed water injection pipe DESCRIPTION OF SYMBOLS 3 Sterilization breeding facility 31 Breeding tank 32 Lower layer part 33 Middle layer part 34 Upper layer part 35 Lower layer part punching board 36 Middle layer punching board 37 Upper layer punching board 38 Blower 39 Air diffuser 4 Circulation purification sterilization system 41 Circulating water tank 42 Circulating water pump 43 Filtration tank 44 Secondary reaction tank 45 Second ozone generator 46 Third gas-liquid agitator 47 Reaction receiver 48 Pressure pump 49 Micro ozone gas bubble-containing circulating water injection pipe

Claims (7)

取水した原水とオゾンガスを混合させマイクロオゾンガス気泡を含む気液混合原水とし、前記原水を浄化・殺菌し、畜養槽内へ前記気液混合原水を圧入拡散させる取水浄化殺菌システムと、
底部に複数のパンチング板が多層状に形成されている前記畜養槽からなる殺菌畜養施設と、
前記畜養槽内の畜養水を循環させるために前記畜養水を循環水として取り入れ、前記循環水をオゾンガスと混合させ、浄化・殺菌を行い、前記畜養槽へマイクロオゾン含有循環水を高圧圧入させる循環浄化殺菌システムとを有することを特徴とする加圧多層式マイクロオゾン殺菌・浄化・畜養殺菌システム。
Intake water purification and sterilization system that mixes raw water and ozone gas taken into gas-liquid mixed raw water containing micro ozone gas bubbles, purifies and sterilizes the raw water, and presses and diffuses the gas-liquid mixed raw water into the livestock tank;
A sterilization animal breeding facility consisting of the animal breeding tank in which a plurality of punching plates are formed in a multilayer shape at the bottom,
In order to circulate the livestock feed water in the livestock tank, the livestock feedwater is taken as circulating water, the circulating water is mixed with ozone gas, purification and sterilization are performed, and micro ozone-containing circulating water is press-fitted into the livestock tank at a high pressure. A pressurized multi-layer micro ozone sterilization / purification / animal sterilization system characterized by having a purification / sterilization system.
前記取水浄化殺菌システムは、取水ポンプにより取水された原水を1次反応槽へ供給し、第1オゾン発生装置から発生したオゾンガスと前記原水を第1気液攪拌混合装置により混合して前記マイクロオゾンガス気泡を含む気液混合原水とする手段と、
前記第1オゾン発生装置から発生したオゾンガスと前記気液混合原水と前記畜養槽内に有する畜養水と共に、第2気液攪拌混合装置により混合して前記マイクロオゾンガス気泡を含む気液混合水とし、前記中層部へ前記気液混合水を圧入拡散させる手段とからなる請求項1に記載の加圧多層式マイクロオゾン殺菌・浄化・畜養殺菌システム。
The intake water purification and sterilization system supplies raw water taken by a water intake pump to a primary reaction tank, mixes ozone gas generated from a first ozone generator and the raw water with a first gas-liquid stirring and mixing device, and supplies the micro ozone gas. Means for making gas-liquid mixed raw water containing bubbles,
Along with the ozone gas generated from the first ozone generator, the gas-liquid mixed raw water, and the livestock feed water in the livestock tank, mixed with a second gas-liquid stirring and mix device to make the gas-liquid mixed water containing the micro ozone gas bubbles, The pressurized multi-layer micro-ozone sterilization / purification / animal sterilization system according to claim 1, further comprising means for press-fitting and diffusing the gas-liquid mixed water into the middle layer.
前記殺菌畜養施設は、前記畜養槽からなり、前記畜養槽の底部には複数のパンチング板が多層状に形成しており、前記複数のパンチング板の間に下層部と、中層部と上層部の空間を有する請求項1に記載の加圧多層式マイクロオゾン殺菌・浄化・畜養殺菌システム。 The sterilization breeding facility is composed of the breeding tank, and a plurality of punching plates are formed in a multilayer shape at the bottom of the breeding tank, and a space between a lower layer portion, a middle layer portion, and an upper layer portion is formed between the plurality of punching plates. The pressurized multi-layer micro-ozone sterilization / purification / livestock sterilization system according to claim 1. 前記循環浄化殺菌システムは、前記畜養槽内の前記畜養水を循環させるために前記畜養水を循環水として取り入れるために循環水槽に前記循環水を流出させ、前記循環水を循環ポンプで濾過処理槽を通じ、第2反応槽へ送る手段と、
第2オゾン発生装置から発生したオゾンガスと前記循環水を第3気液攪拌混合装置により混合しマイクロオゾン気泡含有循環水とし、前記マイクロオゾン気泡含有循環水を反応受槽へ送る手段と、
前記反応受槽内の前記マイクロオゾン気泡含有循環水を加圧ポンプにより前記下層部に高圧圧入させる手段とからなる請求項1に記載の加圧多層式マイクロオゾン殺菌・浄化・畜養殺菌システム。
The circulation purification sterilization system is configured to cause the circulating water to flow out into the circulating water tank in order to take the livestock feeding water as circulating water in order to circulate the livestock feeding water in the animal breeding tank, and to filter the circulating water with a circulation pump. Through the second reaction tank,
Means for mixing the ozone gas generated from the second ozone generator and the circulating water with a third gas-liquid stirring and mixing device to make micro ozone bubble-containing circulating water, and sending the micro ozone bubble-containing circulating water to the reaction receiving tank;
The pressurized multi-layer micro-ozone sterilization / purification / animal sterilization system according to claim 1, further comprising means for pressurizing the circulating water containing the micro-ozone bubbles in the reaction receiving tank into the lower layer by a pressure pump.
前記下層部において、高圧圧入されて注入された前記マイクロオゾン気泡含有循環水は、前記下層部の上部に位置するパンチング板を通過し中層部へ入るステップと、
前記中層部では、渦流が発生し、前記マイクロオゾンガス気泡の圧壊が促進され、前記取水浄化殺菌システムから前記気液混合水が圧入拡散され、前記気液混合水中に含まれるマイクロオゾンガス気泡の酸化分解が行われると共に、前記中層部の上部に位置するパンチング板を通過し上層部へ入るステップと、
前記上層部には、ブロワーから送られてくる加圧された空気を前記畜養槽内へ送る散気装置が設置されており、前記空気が前記上層部の上に位置するパンチング板を通過する際、前記畜養槽全体で渦流が発生し、前記マイクロオゾンガス気泡と共に、前記畜養槽内全体に拡散されるステップにより、前記畜養槽全体で前記マイクロオゾンガス気泡の圧壊が起り、前記畜養水の浄化・殺菌・富栄養化の防止を行う請求項1または3に記載の加圧多層式マイクロオゾン殺菌・浄化・畜養殺菌システム。
In the lower layer part, the micro ozone bubble-containing circulating water injected by high pressure injection passes through a punching plate located at the upper part of the lower layer part and enters the middle layer part;
In the middle layer, eddy currents are generated, the crushing of the micro ozone gas bubbles is promoted, the gas / liquid mixed water is press-fitted and diffused from the intake water purification sterilization system, and the oxidative decomposition of the micro ozone gas bubbles contained in the gas / liquid mixed water And the step of passing through the punching plate located on the upper part of the middle layer part and entering the upper layer part,
The upper layer part is provided with an air diffuser for sending pressurized air sent from a blower into the animal breeding tank, and when the air passes through a punching plate located on the upper layer part In the step, the vortex flow is generated in the entire animal culturing tank, and the micro ozone gas bubbles are diffused in the entire animal culturing tank together with the micro ozone gas bubbles, so that the micro ozone gas bubbles are crushed in the entire animal culturing tank, and the animal water is purified and sterilized. The pressurized multilayer micro-ozone sterilization / purification / livestock sterilization system according to claim 1 or 3 for preventing eutrophication.
前記加圧ポンプが前記畜養槽の底部に設けられた多層構造のパンチング板の下層部に前記マイクロオゾン気泡含有循環水を高圧圧入させる際の圧力は0.3MPa以上である請求項1または4に記載の加圧多層式マイクロオゾン殺菌・浄化・畜養殺菌システム。 5. The pressure when the pressure pump causes the micro ozone bubble-containing circulating water to be press-fitted into a lower layer portion of a multi-layer punching plate provided at the bottom of the breeding tank is 0.3 MPa or more. Pressurized multilayer micro-ozone sterilization / purification / animal sterilization system. 前記畜養槽の底部に設けられた複数のパンチング板はパンチング板が3枚からなる三層構造である請求項1乃至6のいずれかに記載の加圧多層式マイクロオゾン殺菌・浄化・畜養殺菌システム。 The pressurized multilayer micro-ozone sterilization / purification / animal sterilization system according to claim 1, wherein the plurality of punching plates provided at the bottom of the animal culturing tank have a three-layer structure including three punching plates. .
JP2003347498A 2003-10-06 2003-10-06 Pressurized multilayer micro-ozone sterilization / purification / animal sterilization system Expired - Lifetime JP3645250B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003347498A JP3645250B2 (en) 2003-10-06 2003-10-06 Pressurized multilayer micro-ozone sterilization / purification / animal sterilization system
PCT/JP2004/014560 WO2005032243A1 (en) 2003-10-06 2004-09-28 Pressurized and multilayered micro ozone sytesm for sterilization, purification and farming sterilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347498A JP3645250B2 (en) 2003-10-06 2003-10-06 Pressurized multilayer micro-ozone sterilization / purification / animal sterilization system

Publications (2)

Publication Number Publication Date
JP2005110552A JP2005110552A (en) 2005-04-28
JP3645250B2 true JP3645250B2 (en) 2005-05-11

Family

ID=34419584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347498A Expired - Lifetime JP3645250B2 (en) 2003-10-06 2003-10-06 Pressurized multilayer micro-ozone sterilization / purification / animal sterilization system

Country Status (2)

Country Link
JP (1) JP3645250B2 (en)
WO (1) WO2005032243A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6702949B2 (en) 1997-10-24 2004-03-09 Microdiffusion, Inc. Diffuser/emulsifier for aquaculture applications
JP2008055352A (en) * 2006-08-31 2008-03-13 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for maintaining fine bubble of ozone gas in water, and ballast water treatment method
JP5294370B2 (en) * 2006-10-13 2013-09-18 独立行政法人産業技術総合研究所 Method for producing water containing reactive species and water containing reactive species
AU2007349224B2 (en) 2006-10-25 2014-04-03 Revalesio Corporation Methods of wound care and treatment
WO2008052145A2 (en) 2006-10-25 2008-05-02 Revalesio Corporation Methods of therapeutic treatment of eyes and other human tissues using an oxygen-enriched solution
US8784898B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment
US8609148B2 (en) 2006-10-25 2013-12-17 Revalesio Corporation Methods of therapeutic treatment of eyes
EP3170401B1 (en) 2006-10-25 2019-06-05 Revalesio Corporation Ionic aqueous fluid composition containing oxygen microbubbles
US8784897B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of therapeutic treatment of eyes
US8445546B2 (en) 2006-10-25 2013-05-21 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
WO2009134929A2 (en) 2008-05-01 2009-11-05 Revalesio Corporation Compositions and methods for treating digestive disorders
JP4870174B2 (en) * 2009-01-19 2012-02-08 シャープ株式会社 Water treatment apparatus and water treatment method
US8815292B2 (en) 2009-04-27 2014-08-26 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
WO2011111600A1 (en) * 2010-03-08 2011-09-15 株式会社協和機設 Extraction method using microbubbles and extracting liquid
KR20130114581A (en) 2010-05-07 2013-10-18 레발레시오 코퍼레이션 Compositions and methods for enhancing physiological performance and recovery time
BR112013003110A2 (en) 2010-08-12 2016-06-28 Revalesio Corp compositions and methods for the treatment of taupathy
JP5782628B2 (en) * 2010-11-19 2015-09-24 株式会社Reo研究所 Wastewater treatment method
JP5854502B2 (en) * 2011-11-21 2016-02-09 株式会社アクルス Ozone sterilizer
JP7106089B2 (en) * 2017-09-22 2022-07-26 トスレック株式会社 Microbubble sterilization system and method for sterilizing seafood, beverages and foods
KR102485128B1 (en) * 2020-09-25 2023-01-06 유한회사 대진 sea water supply system for aquaculture farm of land base

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126542A (en) * 1990-09-17 1992-04-27 Nomura Denshi Kogyo Kk Bubbler
JP3397154B2 (en) * 1997-12-30 2003-04-14 博文 大成 Revolving microbubble generator
FR2793996B1 (en) * 1999-05-25 2002-12-13 Air Liquide PROCESS FOR IMPROVING CONDITIONS FOR FARMING FISH ON A CLOSED CIRCUIT
JP4145000B2 (en) * 2000-06-30 2008-09-03 株式会社 多自然テクノワークス Fine bubble feeder
JP2002143885A (en) * 2000-11-14 2002-05-21 Hirobumi Onari Micro bubble

Also Published As

Publication number Publication date
WO2005032243A1 (en) 2005-04-14
JP2005110552A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP3645250B2 (en) Pressurized multilayer micro-ozone sterilization / purification / animal sterilization system
JP4059506B2 (en) Ozone water and method for producing the same
KR101917647B1 (en) Method for manufacturing ultra-fine bubbles having oxidizing radical or reducing radical by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device
Khuntia et al. Microbubble-aided water and wastewater purification: a review
JP4378543B2 (en) How to crush microbubbles
JP6762467B2 (en) Aeration device
US10934179B2 (en) Liquid treatment system and method
JP2006263505A (en) Water treatment method and apparatus therefor
SG184575A1 (en) A microbubble generator
McCarthy et al. A review of ozone and its application to domestic wastewater treatment
JP2009254967A (en) Water treatment system
KR101171854B1 (en) Apparatus for generating micro bubble
Kaushik et al. Microbubble technology: emerging field for water treatment
KR101824240B1 (en) High-density micro-bubble generating device
JP5701648B2 (en) Water treatment equipment
JP2009066467A (en) Manufacturing method of aqueous solution of dissolved ozone and supersaturated dissolved oxygen of three or more times of saturated concentration, and use method thereof
US20210230035A1 (en) Waste Treatment System
JP2008073006A (en) Method for cleaning rearing water of aquatic life and apparatus therefor
US20140050801A1 (en) Gas dissolving apparatus
JP6429827B2 (en) Raw water treatment equipment
US20180015429A1 (en) System and method for generating stabilized, gas infused liquids containing high and ultra-high concentrations of infused gas, and methods using the stabilized, gas infused liquids
RU2355648C1 (en) Drinking water preparation plant
JP7450898B2 (en) Wastewater treatment equipment and wastewater treatment method
KR102489104B1 (en) Nano bubble water manufacturing apparatus
JP2019135043A (en) Wastewater treatment apparatus and wastewater treatment method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

R150 Certificate of patent or registration of utility model

Ref document number: 3645250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term