JP2008073006A - Method for cleaning rearing water of aquatic life and apparatus therefor - Google Patents

Method for cleaning rearing water of aquatic life and apparatus therefor Download PDF

Info

Publication number
JP2008073006A
JP2008073006A JP2006258333A JP2006258333A JP2008073006A JP 2008073006 A JP2008073006 A JP 2008073006A JP 2006258333 A JP2006258333 A JP 2006258333A JP 2006258333 A JP2006258333 A JP 2006258333A JP 2008073006 A JP2008073006 A JP 2008073006A
Authority
JP
Japan
Prior art keywords
water
breeding
bubbles
breeding water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006258333A
Other languages
Japanese (ja)
Other versions
JP4914686B2 (en
Inventor
Takashi Yamada
崇 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2006258333A priority Critical patent/JP4914686B2/en
Publication of JP2008073006A publication Critical patent/JP2008073006A/en
Application granted granted Critical
Publication of JP4914686B2 publication Critical patent/JP4914686B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for cleaning rearing water of an aquatic life, dispensing with the use of chemicals and a complicate operation management, effective for suppressing the increase of the turbidity and color of the water, eliminating proteins, total nitrogen, ammoniacal nitrogen and nitrite-nitrogen from rearing water and automatically keeping the water to neutral state by preventing the lowering of the pH of the water to be treated. <P>SOLUTION: The rearing water cleaning method comprises a filtering step to use sand as the filtering material in the cleaning of rearing water 2, a pH adjusting step to use oyster shell and a foam separation step. The foam separation step performs foam separation treatment of the rearing water 2 by supplying a gas to the rearing water 2 in a separation tank 7, the gas is supplied to the separation tank 7 in the form of fine bubbles, the fine bubbles are formed by generating bubbles by a means for exclusively generating bubbles and then dividing the bubbles generated by a bubble-shearing means and/or formed by the bubble-shearing means itself, and the fine bubbles are used in the step to perform the foam separation treatment of the rearing water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、漁業、水産加工業、食品加工業、活魚輸送、水族館、養殖業等の各種産業における魚類や無脊椎生物等の水中生物の飼育に使用する飼育水の浄化方法及び装置に関するものである。水の浄化については、し尿処理等、広範囲に及ぶが、本発明はし尿処理等の廃棄する水の廃水処理が対象ではなく、特に水中生物の飼育水のように使用し続ける水の浄化方法及び装置に関するものである。   The present invention relates to a purification method and apparatus for breeding water used for breeding aquatic organisms such as fish and invertebrates in various industries such as fishery, fishery processing, food processing, live fish transportation, aquarium, and aquaculture. is there. Water purification covers a wide range, such as human waste treatment, but the present invention is not intended for wastewater treatment of discarded water, such as human waste treatment, and in particular, a water purification method that continues to be used as breeding water for aquatic organisms and It relates to the device.

従来から水中生物の飼育水浄化には、様々な浄化装置が用いられていた。中でもろ過器と、酸化剤投入装置と、泡沫分離装置からなる浄化装置が、水中生物の飼育水浄化に良く用いられており、例えば、図10に示すような浄化装置が、水中生物の飼育水浄化方法として提案されている(特許文献1参照)。さらに近年では、直接酸化剤を使用する浄化方法だけでなく、高電圧パルスを用いて被処理水の水分子を活性化させることで水中生物の飼育水浄化が行われることもあり、例えば図11に示すような浄化装置が、水中生物の飼育水浄化方法として提案されている(特許文献2参照)。   Conventionally, various purification devices have been used for purifying water for breeding aquatic organisms. Among them, a purification device comprising a filter, an oxidizer charging device, and a foam separation device is often used for purifying water for aquatic organisms. For example, a purification device as shown in FIG. It has been proposed as a purification method (see Patent Document 1). Further, in recent years, not only a purification method using a direct oxidant, but also water purification of aquatic organisms may be performed by activating water molecules of water to be treated using a high voltage pulse. For example, FIG. Has been proposed as a method for purifying water for breeding aquatic organisms (see Patent Document 2).

ろ過器と、酸化剤投入装置と、泡沫分離装置からなる浄化装置の構造は、図10に示すように、水産生物飼育水を貯留している貯水槽101と、貯水槽101の被処理水を移送するポンプ102と、貯水槽101内に貯留されている被処理水を濾別する濾過槽103と、オゾナイザー108によって発生させたオゾン含有ガスを散気管109を通して濾過された被処理水と接触させるオゾン溶解槽104と、オゾン接触により被処理水に残留するオキシダントを分解するサンゴ砂槽105および触媒反応槽106と、オゾン含有ガスを分解させるオゾン分解器110と、オキシダントを分解した被処理水を泡沫分離する泡沫分離槽107とで構成されており、濾過手段と、オゾン接触手段と、泡沫分離手段により被処理水を浄化する浄化装置である。   As shown in FIG. 10, the structure of the purification device comprising a filter, an oxidizer charging device, and a foam separation device includes a water storage tank 101 storing water product breeding water, and water to be treated in the water storage tank 101. The pump 102 to be transferred, the filtration tank 103 for filtering the treated water stored in the water storage tank 101, and the ozone-containing gas generated by the ozonizer 108 are brought into contact with the treated water filtered through the air diffuser 109. Ozone dissolution tank 104, coral sand tank 105 and catalyst reaction tank 106 for decomposing oxidant remaining in the water to be treated by contact with ozone, ozone decomposer 110 for decomposing ozone-containing gas, and water to be treated for decomposing oxidant A purification apparatus comprising a foam separation tank 107 for separating foam, and purifying the water to be treated by the filtration means, the ozone contact means, and the foam separation means A.

その効果は、貯水槽101からポンプ102により被処理水を濾過槽103へ導入し濾過した後、オゾナイザー108で発生させたオゾン含有ガスを、散気管109を介してオゾン溶解槽104にて被処理水と接触させて浄化・殺菌を行い、サンゴ砂槽105で被処理水のpH調整をしながら触媒反応槽106にて残留しているオキシダントを分解させ、最後に泡沫分離槽107によって泡沫を生成させることで、水産生物飼育水の被処理水から汚濁成分を浄化するものであった。   The effect is that after the water to be treated is introduced from the water storage tank 101 to the filtration tank 103 by the pump 102 and filtered, the ozone-containing gas generated by the ozonizer 108 is treated in the ozone dissolution tank 104 through the air diffuser 109. Purify and sterilize in contact with water, adjust the pH of the water to be treated in the coral sand tank 105, decompose the remaining oxidant in the catalytic reaction tank 106, and finally generate foam in the foam separation tank 107 By doing so, the contaminated component was purified from the treated water of the aquatic product breeding water.

また高電圧パルスを用いた水中生物の飼育水浄化装置は、図11に示すように、飼育水205と底部に砂利208を収容した絶縁性の水槽204と、高電圧パルス発生器201と電流制限抵抗器202を連結した電極203と、絶縁性の敷物206により構成されている。   In addition, as shown in FIG. 11, an aquatic organism rearing water purification apparatus using high voltage pulses includes rearing water 205, an insulating water tank 204 containing gravel 208 at the bottom, a high voltage pulse generator 201, and a current limiter. The electrode 203 includes a resistor 202 and an insulating covering 206.

その効果は、高電圧パルス発生器201から出力される高電圧パルスが、電流制限抵抗器202を通ることにより、魚体に悪影響を及ぼさない範囲内に微弱電流化され、電極203によって絶縁性の水槽204に誘導印加され、飼育水205内に電界を形成しながら水分子を活性化し、水中の有機物の分解や空気中への放散を促進させ、アンモニアの発生を抑制するものであった。   The effect is that the high-voltage pulse output from the high-voltage pulse generator 201 passes through the current limiting resistor 202 and is weakened within a range that does not adversely affect the fish body. Induced and applied to 204, activated water molecules while forming an electric field in the breeding water 205, promoted decomposition of organic substances in water and emission into the air, and suppressed generation of ammonia.

特開平7−214081号公報Japanese Patent Laid-Open No. 7-214081 特開2000−287580号公報JP 2000-287580 A

しかしながら、前記特許文献1の浄化装置では、被処理水と接触させるオゾンの生成量を調整し難く、調整する為には複雑な運転管理を要するという問題があった。また、残留するオキシダントを分解させる為に必要な触媒を合成しなければならず、手間と費用が嵩むという問題もあった。   However, the purification device of Patent Document 1 has a problem in that it is difficult to adjust the amount of ozone generated to be brought into contact with the water to be treated, and complicated operation management is required for adjustment. In addition, a catalyst necessary for decomposing the remaining oxidant has to be synthesized, and there is a problem that labor and cost are increased.

また前記特許文献2の浄化装置では、高電圧パルスによって発生したラジカルは酸化力に優れているものの、その寿命が短く、折角発生させたラジカルも被処理水に接触した一部しか酸化できない、あるいは被処理水と効率よく混合させる前に消滅してしまうといった、水の活性を維持し難いという問題があった。さらに前記特許文献2にも記載されているように、最も簡易的な浄化手法として飼育水の換水も挙げられるが、これも汚れた使用済みの飼育水を別途浄化しなければならないという問題があった。   Further, in the purification device of Patent Document 2, although radicals generated by high voltage pulses are excellent in oxidizing power, their lifetime is short, and the generated radicals can only oxidize only a part in contact with the water to be treated, or There was a problem that it was difficult to maintain the activity of water, such as disappearing before being efficiently mixed with the water to be treated. Furthermore, as described in Patent Document 2, the simplest purification method includes the replacement of breeding water. However, this also has a problem that dirty spent breeding water must be separately purified. It was.

本発明は、以上のような従来技術の問題点に鑑みなされたものであり、酸化剤などの薬剤の使用や複雑な運転管理を必要とせず、飼育水の濁度及び色度の増加を抑制し、飼育水からタンパク質、全窒素、アンモニア性窒素及び亜硝酸性窒素を除去でき、被処理水のpHが低下しないように自動的に中性に保持することが可能となった水中生物の飼育水浄化方法及び装置を提供するものである。   The present invention has been made in view of the above-described problems of the prior art, and does not require the use of chemicals such as oxidizing agents or complicated operation management, and suppresses the increase in turbidity and chromaticity of breeding water. Breeding of aquatic organisms that can remove protein, total nitrogen, ammonia nitrogen and nitrite nitrogen from the breeding water, and can automatically maintain neutrality so that the pH of the treated water does not decrease A water purification method and apparatus are provided.

さらに水族館などの展示水槽の飼育水浄化に用いた場合には、飼育水のpHが低下しないように中性に保持し、かつ飼育水の濁度や色度の増加を抑制し、あわせて飼育水に蓄積するタンパク質や全窒素、アンモニア性窒素や亜硝酸性窒素の除去も行い、展示水槽の透明度の保持が可能となった水中生物の飼育水浄化方法及び装置を提供するものである。また陸上養殖や活魚輸送に纏わる飼育水槽の飼育水浄化に用いた場合も、飼育水のpHが低下しないように中性に保持し、かつ飼育水に蓄積するタンパク質や全窒素やアンモニア性窒素や亜硝酸性窒素を除去することで、水中生物の飼育を円滑に行うことが可能となった水中生物の飼育水浄化方法及び装置を提供するものである。   In addition, when used for the purification of breeding water in an aquarium or other exhibition tank, keep the pH of the breeding water neutral so that the turbidity and chromaticity of the breeding water are not increased. An object of the present invention is to provide a method and an apparatus for purifying water for aquatic organisms, which can remove proteins accumulated in water, total nitrogen, ammonia nitrogen and nitrite nitrogen, and maintain the transparency of an exhibition tank. In addition, when used for rearing water purification of rearing water tanks for land farming and live fish transportation, it is necessary to maintain neutrality so that the pH of the rearing water does not decrease and to accumulate proteins, total nitrogen, ammonia nitrogen, It is an object of the present invention to provide an aquatic organism rearing water purification method and apparatus that can smoothly breed aquatic organisms by removing nitrite nitrogen.

本発明は、水中生物の飼育に用いる飼育水の浄化方法において、飼育水の浄化工程にろ過工程とpH調整工程と泡沫分離工程を含むことを特徴とし、下記の構成を好ましい態様として含む。   In the method for purifying breeding water used for breeding aquatic organisms, the present invention includes a filtration step, a pH adjustment step, and a foam separation step in the breeding water purification step, and includes the following configuration as a preferred embodiment.

前記ろ過工程に用いるろ材が砂である。   The filter medium used for the filtration step is sand.

前記pH調整工程が、水中生物の飼育水にカキ殻を接触させることにより、該飼育水のpHが低下しないように中性に保持する。   The said pH adjustment process is kept neutral so that the pH of this breeding water may not fall by making oyster shell contact the breeding water of aquatic organisms.

前記pH調整工程が、該飼育水のpHを7≦pH<8.6に保持する。   The pH adjustment step maintains the pH of the breeding water at 7 ≦ pH <8.6.

前記泡沫分離工程が、分離槽内の前記飼育水に気体を供給して該飼育水に泡沫分離処理を施すものであり、該分離槽内に供給する気体が微細気泡であり、該微細気泡が、気泡のみを発生させる手段によって気泡を発生させた後、該気泡を剪断する手段によって気泡が剪断されることによって生じる微細気泡及び/又は該気泡を剪断する手段そのものから発生する微細気泡であり、該微細気泡が飼育水を泡沫分離処理する。   The foam separation step is to supply a gas to the breeding water in the separation tank and subject the breeding water to a foam separation process. The gas supplied into the separation tank is a fine bubble, and the fine bubble is , After generating bubbles by means for generating only bubbles, fine bubbles generated by shearing the bubbles by means for shearing the bubbles and / or fine bubbles generated from the means for shearing the bubbles themselves, The fine bubbles are used for foam separation treatment of breeding water.

水中生物の飼育に用いる飼育水の浄化装置において、浄化装置が、ろ過器とpH調整槽と泡沫分離処理装置で構成される。   In the breeding water purification apparatus used for breeding aquatic organisms, the purification apparatus includes a filter, a pH adjustment tank, and a foam separation treatment apparatus.

前記浄化装置が、ろ材に砂を用いたろ過器と、pH調整材としてカキ殻を充填したpH調整槽と、泡沫分離処理装置とで構成され、該泡沫分離処理装置が、泡沫分離処理を行う分離槽と、該分離槽内に気泡のみを発生させる手段と、気泡を剪断及び/又は微細気泡を発生させる手段を有するものである。   The purification device is composed of a filter using sand as a filter medium, a pH adjusting tank filled with oyster shells as a pH adjusting material, and a foam separation processing device, and the foam separation processing device performs foam separation processing. It has a separation tank, a means for generating only bubbles in the separation tank, and a means for shearing the bubbles and / or generating fine bubbles.

本発明における水中生物の飼育水浄化方法及び装置は、以上説明した構成になっているので、以下のような優れた効果が得られる。   The aquatic organism rearing water purification method and apparatus according to the present invention has the above-described configuration, so that the following excellent effects can be obtained.

(1)飼育水の浄化工程にろ過工程とpH調整工程と泡沫分離工程を含むことにより、飼育水から残餌や水中生物の体表粘液に由来する発泡成分を効率よく除去できるため、浄化工程にろ過工程とpH調整工程だけを含む場合と比べて、飼育水の濁度を1/2、色度を1/3〜1/2、タンパク質を2/3、全窒素を1/10から1/3に低減することができる。また、飼育水の浄化が効率よく行われることから、閉鎖系の浄化装置において、飼育水の換水量を低減できる。   (1) The purification process includes a filtration process, a pH adjustment process, and a foam separation process in the breeding water purification process, so that foaming components derived from residual feed and body surface mucus of aquatic organisms can be efficiently removed from the breeding water. Compared to the case where only the filtration step and the pH adjustment step are included, the turbidity of the breeding water is halved, the chromaticity is 1/3 to 1/2, the protein is 2/3, and the total nitrogen is 1/10 to 1 / 3. In addition, since the breeding water is efficiently purified, the amount of breeding water exchanged can be reduced in the closed purification system.

(2)ろ過工程のろ材に砂を用いると、安価で容易に入手することができる。   (2) When sand is used as a filter medium in the filtration step, it can be easily obtained at a low cost.

(3)pH調整槽のpH調整材としてカキ殻を用いることにより、pH調整する際に薬剤を必要とせず、飼育水のpHを低下させる物質の働きを抑制するに伴いカキ殻が溶解するため、過剰投入による飼育水のpH変動がなく、飼育水のpHを中性に保持することができる。また、廃棄物の再利用という環境負荷低減の観点と、有償処理の廃棄物の有効活用という点からも優れている。   (3) By using oyster shell as a pH adjusting material for the pH adjusting tank, no agent is required when adjusting pH, and oyster shell dissolves as the action of substances that lower the pH of breeding water is suppressed. The pH of the breeding water does not fluctuate due to excessive input, and the pH of the breeding water can be kept neutral. It is also excellent from the viewpoint of reducing the environmental burden of recycling waste and from the effective use of paid waste.

(4)泡沫分離処理装置に用いる微細気泡が、気泡のみを発生させる手段によって気泡を発生させた後、該気泡を剪断する手段によって気泡が剪断されることによって生じる微細気泡及び/又は該気泡を剪断する手段そのものから発生する微細気泡であることから、泡沫分離処理装置内に供給する気泡の径を微細にすることができ、且つ泡沫分離処理装置内に微細気泡を大量に発生させることができるため、飼育水から効率よくタンパク質や界面活性剤等の発泡成分を除去できる。   (4) After the fine bubbles used in the foam separation processing apparatus generate bubbles by means for generating only bubbles, the fine bubbles generated by shearing the bubbles by means for shearing the bubbles and / or the bubbles Since the bubbles are generated from the shearing means itself, the diameter of the bubbles supplied into the foam separation processing apparatus can be made fine, and a large amount of fine bubbles can be generated in the foam separation processing apparatus. Therefore, foaming components such as proteins and surfactants can be efficiently removed from the breeding water.

(5)水中生物の飼育水浄化装置としてろ材に砂を用いたろ過器とpH調整材としてカキ殻を充填したpH調整槽と泡沫分離処理装置内に供給する微細気泡の生成に、気泡を多量に発生する部分と、気泡の微細化を行う部分の二つの工程を有する泡沫分離処理装置を用いることにより、処理設備をコンパクトに設定することができ、運転管理が容易で一定の処理水質を得ることができる。   (5) A large amount of air bubbles are generated in the production of fine bubbles to be supplied to a filter using sand as a filter medium, a pH adjusting tank filled with oyster shells as a pH adjusting material, and a foam separation processing apparatus as a rearing water purification device for aquatic organisms. By using a foam separation processing device that has two steps, a part that generates bubbles and a part that refines bubbles, the processing equipment can be set compactly, operation management is easy, and a certain treated water quality is obtained. be able to.

以下、本発明の実施形態について図1乃至図9を用いて説明するが、本発明が本実施態様に限定されないことは言うまでもない。図1は本発明における実施形態を示した構成図である。図2は泡沫分離処理における実施形態を示した構成図である。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 9, but it goes without saying that the present invention is not limited to the embodiments. FIG. 1 is a block diagram showing an embodiment of the present invention. FIG. 2 is a block diagram showing an embodiment in the foam separation process.

本発明における水中生物とは、魚類や無脊椎生物などの水中を生息の主体として生存する生物のことであり、水中生物の飼育水槽1とは、魚類や無脊椎生物などの水中を生息の主体として生存する生物を飼育する際に使用する水槽である。   The aquatic organisms in the present invention are living organisms that mainly live underwater such as fish and invertebrates, and the aquatic animal breeding tank 1 is the main inhabitants underwater such as fish and invertebrates. It is a water tank used when raising living organisms.

本発明における水中生物の飼育水2とは、汚濁物質、各種窒素、タンパク質や界面活性剤等の起泡作用を有する発泡成分を含むものである。   The aquatic organism breeding water 2 in the present invention includes a foaming component having a foaming action such as a pollutant, various nitrogen, proteins, and a surfactant.

本発明におけるカキ殻6とは、水中生物であるカキから可食部を取り除いたものであり、pH調整槽5内に飼育水槽1で飼育している水中生物の重量に対して50%以上充填され、ろ過器4でろ過された後の飼育水2と接触させるpH調整材である。   The oyster shell 6 in the present invention is obtained by removing an edible portion from an oyster that is an aquatic organism, and is filled in the pH adjustment tank 5 by 50% or more with respect to the weight of the aquatic organism bred in the breeding aquarium 1. And a pH adjuster to be brought into contact with the breeding water 2 after being filtered by the filter 4.

本発明における中性とは、6.4≦pH<9.0である。水中生物の飼育水浄化にpH調整機能を用いず、且つ新たな飼育水の継ぎ足しを抑えた循環型により飼育水浄化を行うと、硝酸性窒素の蓄積により飼育水のpHが6.4未満に低下する。その為、飼育水2とカキ殻6を接触させることにより、飼育水2を水中生物が生息し易いpHである6.4≦pH<9.0に保持し、且つろ過工程に生息する酸化細菌の活性が保たれるpHとなるように飼育水2のpHを6.4≦pH<9.0に保持することが好ましい。   The neutrality in the present invention is 6.4 ≦ pH <9.0. When the breeding water is purified by a circulation type that does not use the pH adjustment function for the purification of breeding water of aquatic organisms and suppresses the addition of new breeding water, the pH of the breeding water becomes less than 6.4 due to the accumulation of nitrate nitrogen. descend. Therefore, by bringing the breeding water 2 and the oyster shell 6 into contact, the breeding water 2 is maintained at 6.4 ≦ pH <9.0, which is a pH at which aquatic organisms are liable to live, and is an oxidizing bacterium that inhabits the filtration process. It is preferable to maintain the pH of the breeding water 2 at 6.4 ≦ pH <9.0 so that the activity is maintained.

本発明における気体とは、酸素などのような呼吸に必要なガスのことである。空気を用いる場合、別途気体を用意する必要がないので、特に空気が好ましい。   The gas in the present invention is a gas necessary for respiration such as oxygen. When air is used, air is particularly preferable because it is not necessary to prepare a separate gas.

本発明における気泡15とは、飼育水2中の直径が1mmを超える気体塊のことであり、微細気泡16とは直径が1mm以下の気体塊のことである。泡沫17とは飼育水2に含まれる発泡成分が気泡15や微細気泡16に接触し、発泡したものである。   The bubble 15 in the present invention is a gas mass having a diameter in the breeding water 2 exceeding 1 mm, and the fine bubble 16 is a gas mass having a diameter of 1 mm or less. The foam 17 is a foamed component contained in the breeding water 2 that comes into contact with the bubbles 15 and the fine bubbles 16 and foams.

本発明において、水中生物の飼育に用いる飼育水の浄化工程にろ過工程とpH調整工程と泡沫分離工程を含むことが好ましい。飼育水2に蓄積される飼育体の排泄物や残餌などの固形物をろ別し、且つ飼育体の排泄物や残餌に由来するアンモニア性窒素を硝酸性窒素まで酸化させるためにろ過工程が必要であり、さらに飼育水2に蓄積する硝酸性窒素によって飼育水2のpHを低下させないようにpHを中性に保持するためのpH調整工程が必要であり、あわせて飼育体の排泄物や残餌や体表粘液に由来するタンパク質等の発泡成分を飼育水2から分離除去させるために泡沫分離工程が必要である。   In this invention, it is preferable to include a filtration process, a pH adjustment process, and a foam separation process in the purification process of the breeding water used for breeding of aquatic organisms. Filtration process to filter out solids such as excrement and residual food of the breeding body accumulated in the breeding water 2 and oxidize ammonia nitrogen derived from the excrement and residual feed of the breeding body to nitrate nitrogen In addition, a pH adjustment step is required to keep the pH neutral so that the pH of the breeding water 2 is not lowered by nitrate nitrogen accumulated in the breeding water 2, and the excrement of the breeding body In order to separate and remove foaming components such as protein derived from residual bait and body surface mucus from the breeding water 2, a foam separation step is necessary.

本発明において、水中生物の飼育水浄化におけるろ過工程のろ材は、砂であることが好ましい。ろ過工程に用いるろ材は、固形物のろ別と、アンモニア性窒素を硝酸性窒素に酸化させる酸化細菌の生息場所としての二つの役割を担う。機能だけであれば樹脂やセラミックもろ材となるが、価格が安価で入手が容易である砂がより好ましい。   In the present invention, it is preferable that the filter medium in the filtration step in the purification of breeding water for aquatic organisms is sand. The filter medium used in the filtration process plays two roles as a solid habitat and a habitat for oxidizing bacteria that oxidize ammoniacal nitrogen to nitrate nitrogen. If it is only a function, it becomes a filter material for resin and ceramic, but sand that is inexpensive and easily available is more preferable.

本発明において、水中生物の飼育水浄化におけるpH調整工程にて、飼育水2のpHを低下させないように飼育水2のpHを中性に保持するためのpH調整材は、カキ殻6であることが好ましい。pH調整材は、サンゴや鉱石などの炭酸カルシウムであっても同様の機能を有するが、カキ殻は廃棄物となることが多いことから、廃棄物の再利用という環境負荷低減の観点と、有償処理の廃棄物の有効活用という点から、pH調整材がカキ殻であることが特に好ましい。   In the present invention, the pH adjusting material for keeping the pH of the breeding water 2 neutral so as not to lower the pH of the breeding water 2 in the pH adjustment step in the purification of the breeding water of aquatic organisms is the oyster shell 6. It is preferable. The pH adjuster has the same function even with calcium carbonate such as coral and ore, but oyster shells often become waste. It is particularly preferable that the pH adjusting material is oyster shell from the viewpoint of effective utilization of waste from the treatment.

本発明において、水中生物の飼育水浄化におけるpH調整工程にて、飼育水2とカキ殻6を接触させて、飼育水2のpHを7≦pH<8.6に保持することが好ましい。さらに好ましくは7.3≦pH<8.4である。ろ過器のろ材に付着しているアンモニア酸化細菌や亜硝酸酸化細菌の活性が著しく低下し、飼育水中にアンモニア性窒素や亜硝酸性窒素が蓄積され、水中生物の飼育に影響を及ぼすことを防ぐためには、7≦pHが好ましい。また、飼育水中に水素イオンが極端に少なくなり、飼育水中のアンモニア性窒素の一部がアンモニアとして存在するのを防ぐためにはpH<8.6が好ましい。   In the present invention, it is preferable to maintain the pH of the breeding water 2 at 7 ≦ pH <8.6 by bringing the breeding water 2 and the oyster shell 6 into contact with each other in the pH adjustment step in the purification of the breeding water of the aquatic organisms. More preferably, 7.3 ≦ pH <8.4. The activity of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria adhering to the filter media is significantly reduced, and ammonia nitrogen and nitrite nitrogen are accumulated in the breeding water, preventing the influence on the breeding of aquatic organisms. For this purpose, 7 ≦ pH is preferable. Moreover, pH <8.6 is preferable in order to prevent hydrogen ions from being extremely reduced in the breeding water and preventing a part of the ammonia nitrogen in the breeding water from being present as ammonia.

本発明において、水中生物の飼育水浄化における泡沫分離工程は、分離槽8内の飼育水2に気体を供給して飼育水2に泡沫分離処理を施すものであり、分離槽8内に供給する気体が微細気泡16であり、微細気泡16が、気泡15のみを発生させる手段によって気泡15を発生させた後、気泡15を剪断する手段によって気泡15が剪断されることによって生じる微細気泡16及び/又は気泡15を剪断する手段そのものから発生する微細気泡16であり、微細気泡16が飼育水2を泡沫分離処理することが好ましい。泡沫分離工程に空気を用いることで別途気体を用意する必要がなく、さらに泡沫分離処理装置7内に供給する微細気泡16の生成に、気泡を多量に発生する部分と、気泡15の微細化を行う部分の二つの工程を導入することにより、大量の空気量かつ微細気泡16を泡沫分離処理装置7に供給することが可能となり、飼育水2から飼育体の排泄物や残餌や体表粘液に由来するタンパク質等の発泡成分を効率よく分離できるため好適である。   In the present invention, the foam separation step in the purification of the aquatic organism's breeding water is to supply gas to the breeding water 2 in the separation tank 8 and to perform the foam separation process on the breeding water 2, and to supply it to the separation tank 8. The gas is a fine bubble 16, and after the fine bubble 16 generates the bubble 15 by means for generating only the bubble 15, the fine bubble 16 generated by shearing the bubble 15 by means for shearing the bubble 15 and / or Or it is the fine bubble 16 which generate | occur | produces from the means itself which shears the bubble 15, and it is preferable that the fine bubble 16 foam-treats the breeding water 2. FIG. It is not necessary to prepare a separate gas by using air in the foam separation process, and further, in the generation of the fine bubbles 16 to be supplied into the foam separation processing device 7, a part that generates a large amount of bubbles and the miniaturization of the bubbles 15 are performed. By introducing the two steps of the portion to be performed, it becomes possible to supply a large amount of air and fine bubbles 16 to the foam separation processing device 7, and excrement, residual food and body surface mucus from the breeding water 2 It is preferable because foaming components such as proteins derived from can be efficiently separated.

本発明において、水中生物の飼育に用いる飼育水の浄化装置は、ろ過器4とpH調整槽5と泡沫分離処理装置7で構成されることが好ましい。これらの浄化装置を組み合わせることにより、固形物のろ別と飼育水2中のアンモニア性窒素を硝酸性窒素に酸化させる機能、飼育水のpHが低下しないように中性に保持する機能、飼育体の排泄物や残餌や体表粘液に由来するタンパク質等の発泡成分を分離させる機能を一連の装置として用いることができ、それぞれの使用条件に即して複雑な運転管理を必要としないで飼育水の浄化が可能となるため好適である。   In the present invention, the rearing water purification device used for rearing underwater organisms is preferably composed of a filter 4, a pH adjustment tank 5, and a foam separation treatment device 7. By combining these purification devices, it is possible to filter solids and to oxidize ammonia nitrogen in the breeding water 2 to nitrate nitrogen, to keep the pH of the breeding water neutral, Can be used as a series of devices to separate foaming components such as protein derived from bodily excrement, residual food and body surface mucus, and reared without the need for complicated operation management according to each usage condition This is preferable because water can be purified.

本発明において、水中生物の飼育に用いる飼育水の浄化装置は、ろ材に砂を用いたろ過器4と、カキ殻6を充填したpH調整槽5と、泡沫分離処理装置7とで構成され、泡沫分離処理装置7が、泡沫分離処理を行う分離槽8と、分離槽8内に気泡15のみを発生させる手段と、気泡15を剪断及び/又は微細気泡16を発生させる手段を有するものであることが好ましい。ろ過器4のろ材に砂、pH調整槽5のpH調整材にカキ殻6を用いることにより廃棄物の再利用という環境負荷の低減ができ、泡沫分離処理装置7内に供給する微細気泡16の生成に、気泡を多量に発生する部分と、気泡15の微細化を行う部分の二つの工程を有する泡沫分離処理装置7を用いることにより、大量の空気量かつ微細気泡16を泡沫分離処理装置7に供給することが可能となり、省スペースで効率よく飼育水2からタンパク質等の発泡成分を除去することができる。   In the present invention, the rearing water purification device used for rearing aquatic organisms is composed of a filter 4 using sand as a filter medium, a pH adjusting tank 5 filled with oyster shells 6, and a foam separation treatment device 7, The foam separation processing device 7 includes a separation tank 8 that performs the foam separation process, a unit that generates only the bubbles 15 in the separation tank 8, and a unit that shears the bubbles 15 and / or generates fine bubbles 16. It is preferable. By using sand as the filter medium of the filter 4 and the oyster shell 6 as the pH adjuster of the pH adjusting tank 5, it is possible to reduce the environmental load of recycling waste, and the fine bubbles 16 to be supplied into the foam separation treatment device 7 can be reduced. By using the foam separation processing device 7 having two steps of generating a large amount of bubbles and a portion for refining the bubbles 15, a large amount of air and the fine bubbles 16 are converted into the foam separation processing device 7. The foaming components such as protein can be efficiently removed from the breeding water 2 in a space-saving manner.

本発明において、pH調整槽5に充填するカキ殻6はpH調整槽5底部に配置し、pH調整槽5に流入させる飼育水2は、pH調整槽5底部から上方に向けての上昇流であることが好ましい。pH調整槽5内の飼育水2の流れを上昇流にすることにより、飼育水2がカキ殻6に充分接触し、飼育水2とカキ殻6の接触効率が向上する。またpH調整槽5内に充填するカキ殻6の形状は無加工の自然の状態でも、粉砕して細かい形状にしても良い。但し何れの場合もpH調整槽5内にカキ殻6を充填する際は、上昇流の飼育水2によってpH調整槽5からカキ殻6が越流しない程度にpH調整槽5の高さを高くするように設定するか、ないしは越流しないようにpH調整槽5を形成することが好ましい。   In the present invention, the oyster shell 6 filled in the pH adjustment tank 5 is disposed at the bottom of the pH adjustment tank 5, and the breeding water 2 flowing into the pH adjustment tank 5 is an upward flow upward from the bottom of the pH adjustment tank 5. Preferably there is. By raising the flow of the breeding water 2 in the pH adjusting tank 5, the breeding water 2 sufficiently contacts the oyster shell 6, and the contact efficiency between the breeding water 2 and the oyster shell 6 is improved. Moreover, the shape of the oyster shell 6 filled in the pH adjustment tank 5 may be crushed into a fine shape even in an unprocessed natural state. However, in any case, when the oyster shell 6 is filled in the pH adjustment tank 5, the height of the pH adjustment tank 5 is increased so that the oyster shell 6 does not overflow from the pH adjustment tank 5 by the upflow breeding water 2. It is preferable to form the pH adjusting tank 5 so that it does not overflow or overflow.

本発明において、泡沫分離処理装置7に供給する空気は微細気泡16であることが好ましい。これは同じ空気量であれば、気泡径が微細であるほど気泡数が多くなり、被処理水中に拡散され易く、泡沫分離処理装置7内で分散され易いため、飼育水2中のタンパク質等の発泡成分と微細気泡16の接触が多くなり、飼育水中の発泡成分を効率よく分離、排出することができるため好適である。   In the present invention, the air supplied to the foam separation processing device 7 is preferably fine bubbles 16. If this is the same amount of air, the finer the bubble diameter, the larger the number of bubbles, the easier it is to diffuse into the water to be treated and the dispersion in the foam separation treatment device 7. The contact between the foam component and the fine bubbles 16 is increased, and the foam component in the breeding water can be efficiently separated and discharged, which is preferable.

本発明において、微細気泡16は、気泡15のみを発生させる手段によって気泡15を発生させた後、気泡15を剪断する手段によって気泡15が剪断されることによって生じる微細気泡16及び/又は気泡15を剪断する手段そのものから発生する微細気泡16であることが好ましい。これは気泡15のみを発生させる手段を、気泡15を剪断し且つ微細気泡16を発生させる手段より下方へ設け、気泡15のみを発生させる手段から発生された気泡15が、気泡15を剪断し且つ微細気泡16を発生させる手段の位置まで浮上して、気泡15を剪断し且つ微細気泡16を発生させる手段より発生する水流によって剪断されることにより、泡沫分離処理装置7に供給する空気量を多くすると共に気泡径を微細にすることができ、泡沫分離処理装置7に微細気泡16を大量に発生させることができるため好適である。   In the present invention, the fine bubbles 16 include the fine bubbles 16 and / or the bubbles 15 generated by generating the bubbles 15 by means for generating only the bubbles 15 and then shearing the bubbles 15 by means for shearing the bubbles 15. The fine bubbles 16 generated from the shearing means itself are preferable. This means that a means for generating only the bubbles 15 is provided below the means for shearing the bubbles 15 and generating the fine bubbles 16, and the bubbles 15 generated from the means for generating only the bubbles 15 shear the bubbles 15 and By floating to the position of the means for generating the fine bubbles 16 and shearing the bubbles 15 by the water flow generated by the means for generating the fine bubbles 16, the amount of air supplied to the foam separation processing device 7 is increased. In addition, the bubble diameter can be made fine, and a large amount of fine bubbles 16 can be generated in the foam separation processing device 7, which is preferable.

以下、本発明の実施形態を図1、図2に基づいて詳細に説明する。1は魚類や無脊椎生物が飼育される飼育水槽、3は飼育水槽1の底部より流出した飼育水2を各装置へ移送するポンプ、4はろ材に砂を用いたろ過器、5はpH調整材としてカキ殻6を用いたpH調整槽、7は泡沫分離処理装置である。泡沫分離処理装置7は、分離槽8と、分離槽8内に供給する微細気泡16の生成に際して、気泡を多量に発生する部分と、気泡15の微細化を行う部分の二つの工程を有する。pH調整槽5は槽内底部にカキ殻6が充填されており、飼育水2を槽の下部から上部へ流すことにより、カキ殻6と飼育水2を効率よく接触させる構造となっている。カキ殻6は、飼育水槽1で飼育している水中生物の重量に対して、50%〜100%充填されている。本発明における%は重量規準である。また、泡沫分離処理装置7の分離槽8は、側面に飼育水2が流入する流入口、上部に泡沫分離水を排出させる排出口、底部に処理後の飼育水2を流出させる流出口が設けられている。分離槽8は、内部の中間部から上部にかけて、中央が貫通され上部に向かって縮径する傾斜部を有する笠状の遮蔽板9が一定間隔を開けて三段設けられている。また、内部の中間部よりやや下方の位置に自給式微細気泡発生装置10が設けられ、自給式微細気泡発生装置10の下方であり分離槽8底部にまで至らない位置に散気板11が設けられている。自給式微細気泡発生装置10は外部空気と連通する吸気口12に連通し、散気板11は、ブロワ14に連通する吸気口13に連通している。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2. 1 is a breeding tank where fish and invertebrates are raised, 3 is a pump for transferring breeding water 2 flowing out from the bottom of the breeding tank 1 to each device, 4 is a filter using sand as a filter medium, and 5 is pH adjustment. A pH adjusting tank 7 using the oyster shell 6 as a material, 7 is a foam separation processing apparatus. The foam separation processing device 7 has two processes of a separation tank 8 and a part that generates a large amount of bubbles and a part that refines the bubbles 15 when generating the fine bubbles 16 to be supplied into the separation tank 8. The pH adjusting tank 5 is filled with oyster shells 6 at the bottom of the tank, and has a structure in which the oyster shells 6 and the breeding water 2 are efficiently brought into contact with each other by flowing the breeding water 2 from the bottom to the top of the tank. The oyster shell 6 is filled 50% to 100% with respect to the weight of the aquatic organisms bred in the breeding aquarium 1. In the present invention,% is a weight standard. Moreover, the separation tank 8 of the foam separation processing apparatus 7 is provided with an inflow port through which the breeding water 2 flows into the side surface, an outlet through which the foam separation water is discharged at the top, and an outflow port through which the treated breeding water 2 flows out at the bottom. It has been. The separation tank 8 is provided with three stages of shade-shaped shielding plates 9 having a sloped portion penetrating through the center and reducing in diameter toward the upper part from the inner middle part to the upper part with a certain interval. Further, a self-contained fine bubble generator 10 is provided at a position slightly below the intermediate portion inside, and a diffuser plate 11 is provided at a position below the self-supplied fine bubble generator 10 and not reaching the bottom of the separation tank 8. It has been. The self-contained microbubble generator 10 communicates with an intake port 12 that communicates with external air, and the diffuser plate 11 communicates with an intake port 13 that communicates with a blower 14.

次に本発明の実施形態の作用について説明する。まず、残餌や水中生物の体表粘液に由来する発泡成分を含む水中生物の飼育水2(以下、飼育水と記す)がポンプ3により飼育水槽1の底部からろ過器4の上部へ圧入される。圧入された飼育水2はろ過器4にてろ過された後、カキ殻6が底部に充填されたpH調整槽5の下部へ流入する。流入された飼育水2は上向流でカキ殻6と接触しながらpH調整槽5の上部より流出し、再び飼育水槽1へ返送される。また飼育水2はポンプ3でろ過器4へ圧入されるのと並列に配置された泡沫分離処理装置7にも移送される。泡沫分離処理装置7の分離槽8の側面より流入した飼育水2は、分離槽8内にて一定時間滞留する。同時にブロア14によって大気中の空気が吸気口13を通して導入されることにより散気板11より気泡15が分離槽8へ供給される。さらに大気中の空気を吸気口12を通して吸引する自給式微細気泡発生装置10によって微細気泡16が分離槽8内へ供給される。この時、気泡15と微細気泡16は泡沫分離処理装置7内にて垂直方向に激しく衝突し、微細気泡16を含む水流によって剪断されて気泡15は微細気泡16となり、飼育水2に溶解している発泡成分と接触して泡沫17となる。泡沫17は遮蔽板9に沿って浮上し、分離槽8内で上昇した泡沫17が再び分離槽8底部へ下降することを抑制されながら水面上に生成される。水面上に生成された泡沫17は泡沫分離水として分離槽8の排出口から排出されて、泡沫分離処理が行われる。一方、飼育水2から泡沫17が除去された飼育水2は、再び飼育水2として分離槽8底部より流出され、飼育水槽1へ流入する。   Next, the operation of the embodiment of the present invention will be described. First, breeding water 2 of aquatic organisms (hereinafter referred to as breeding water) containing foaming components derived from residual feed and body surface mucus of aquatic organisms is pressed into the top of the filter 4 from the bottom of the breeding aquarium 1 by a pump 3. The After the press-fed breeding water 2 is filtered by the filter 4, it flows into the lower part of the pH adjustment tank 5 filled with the oyster shell 6 at the bottom. The inflowing breeding water 2 flows out from the upper part of the pH adjustment tank 5 while coming into contact with the oyster shell 6 in an upward flow, and is returned to the breeding tank 1 again. The breeding water 2 is also transferred to the foam separation processing device 7 arranged in parallel with the pump 3 that is press-fitted into the filter 4. The breeding water 2 that has flowed in from the side surface of the separation tank 8 of the foam separation processing device 7 stays in the separation tank 8 for a certain period of time. At the same time, air in the atmosphere is introduced through the air inlet 13 by the blower 14, whereby the bubbles 15 are supplied from the diffuser plate 11 to the separation tank 8. Further, the microbubbles 16 are supplied into the separation tank 8 by the self-contained microbubble generator 10 that sucks air in the atmosphere through the air inlet 12. At this time, the bubbles 15 and the fine bubbles 16 collide violently in the vertical direction in the foam separation processing device 7 and are sheared by the water flow including the fine bubbles 16 to become the fine bubbles 16 and dissolved in the breeding water 2. It becomes foam 17 in contact with the foaming component. The foam 17 floats along the shielding plate 9 and is generated on the water surface while the foam 17 rising in the separation tank 8 is suppressed from descending again to the bottom of the separation tank 8. The foam 17 produced | generated on the water surface is discharged | emitted from the discharge port of the separation tank 8 as foam separation water, and foam separation processing is performed. On the other hand, the breeding water 2 from which the foam 17 has been removed from the breeding water 2 flows out again from the bottom of the separation tank 8 as the breeding water 2 and flows into the breeding tank 1.

次に飼育水浄化装置に関する処理条件について説明する。飼育水槽1とろ過器4やpH調整槽5や泡沫分離処理装置7の一連の処理設備は閉鎖型に接続されており、飼育水槽1で飼育している水中生物の種類や飼育水槽1に対する水中生物の飼育密度(kg/m3)により変動するが、飼育水槽1内の飼育水2をおよそ1時間で1周する流速で循環させる。あわせて泡沫分離処理装置7内の飼育水2もろ過器4やpH調整槽5と同じ要領で並列に循環させる。泡沫分離処理装置7内の飼育水2の流量は、飼育水槽1で飼育している水中生物の種類や飼育水槽1に対する水中生物の飼育密度(kg/m3)により変動するが、ろ過器4やpH調整槽5を循環する流量よりも小さい方が好ましい。なぜなら泡沫分離処理装置7内を循環させる飼育水2の水量が少なければ少ないほど、泡沫分離処理装置7がコンパクトになり、処理設備に占める設置面積を小さくすることができ、且つ効率の良い飼育水の浄化を行うことができるからである。 Next, processing conditions relating to the breeding water purification apparatus will be described. A series of processing facilities of the breeding aquarium 1, the filter 4, the pH adjustment tank 5, and the foam separation treatment device 7 are connected in a closed type, and the type of aquatic organisms bred in the breeding aquarium 1 and the water in the breeding aquarium 1 Although it varies depending on the breeding density of the organism (kg / m 3 ), the breeding water 2 in the breeding aquarium 1 is circulated at a flow rate that makes one round in about one hour. In addition, the breeding water 2 in the foam separation treatment device 7 is also circulated in parallel in the same manner as the filter 4 and the pH adjustment tank 5. The flow rate of the breeding water 2 in the foam separation treatment device 7 varies depending on the type of aquatic organisms bred in the breeding aquarium 1 and the breeding density (kg / m 3 ) of the aquatic organisms in the breeding aquarium 1, but the filter 4 Or smaller than the flow rate circulating through the pH adjusting tank 5. Because the smaller the amount of breeding water 2 circulating in the foam separation treatment device 7, the smaller the foam separation treatment device 7, the smaller the installation area occupied by the treatment equipment, and more efficient breeding water This is because the purification can be performed.

本実施形態においては、閉鎖型の設備を用いているが、水中生物の飼育水浄化においては、かけ流しをしながら行っても同様の効果を得ることができる。   In this embodiment, closed type equipment is used, but in purifying water for breeding aquatic organisms, the same effect can be obtained even when carried out while pouring.

次に、本発明の水中生物における飼育水浄化の試験を行った。試験の測定方法を以下に示す。   Next, the test of the breeding water purification in the aquatic organism of the present invention was conducted. The measurement method of the test is shown below.

(1)pHの測定
水中生物の飼育水におけるpHはJIS K0102 12に準拠し、東亜DKK製ポータブルpH計WM−22EPにより測定した。
(1) Measurement of pH The pH in breeding water of aquatic organisms was measured with a portable pH meter WM-22EP manufactured by Toa DKK in accordance with JIS K0102.

(2)アンモニア性窒素の測定
水中生物の飼育水におけるアンモニア性窒素は米国HACH社製携帯用多項目水質分析計DR/2400を用い、塩素とアンモニアによりモノクロラミンを生成させてサリチル酸塩と反応後、触媒共存下で発色させて、波長655(nm)における吸光光度法にてアンモニア性窒素(mg/L)として測定した。
(2) Measurement of ammoniacal nitrogen Ammoniaous nitrogen in aquatic animal breeding water is produced using chlorine / ammonia and produced monochloramine by reaction with salicylate using a portable multi-item water quality analyzer DR / 2400 manufactured by HACH. The color was developed in the presence of a catalyst and measured as ammoniacal nitrogen (mg / L) by absorptiometry at a wavelength of 655 (nm).

(3)亜硝酸性窒素の測定
水中生物の飼育水の亜硝酸性窒素はJIS K0102 43に準拠し、米国HACH社製携帯用多項目水質分析計DR/2400を用い、亜硝酸ナトリウムを標準物質とした亜硝酸性窒素(mg/L)として測定した。
(3) Measurement of nitrite nitrogen Nitrite nitrogen in the water of aquatic organisms is based on JIS K010243, using a portable multi-item water quality analyzer DR / 2400 manufactured by HACH USA, and using sodium nitrite as a standard substance Nitrite nitrogen (mg / L) was measured.

(4)濁度の測定
水中生物の飼育水における濁度は、横河電機製の表面散乱形濁度計TB400G−4−1−A2/B/Sにより測定した。表面散乱形濁度計は測定槽と検出部で構成された検出器と変換器で構成されており、濁度測定は、測定槽の下側から4〜6(L/分)の流量で通水した測定水を測定槽上部でオーバーフローさせ、オーバーフローした測定水面にタングステンランプから光を照射し、その散乱光を集光し変換器にて照射光との強度比を計測しながら濁度(mg/L)を算出することで行った。
(4) Measurement of turbidity Turbidity in breeding water of aquatic organisms was measured with a surface scattering turbidimeter TB400G-4-1-1 / B / S manufactured by Yokogawa Electric. The surface scattering turbidimeter is composed of a detector and a converter composed of a measuring tank and a detector, and turbidity measurement is performed at a flow rate of 4 to 6 (L / min) from the lower side of the measuring tank. The measured water is overflowed in the upper part of the measurement tank, light is irradiated from the tungsten lamp to the overflowed measurement water surface, the scattered light is collected, and the turbidity (mg) is measured while measuring the intensity ratio with the irradiated light with a converter. / L).

(5)色度の測定
水中生物の飼育水の色度はJIS K0101 10に準拠し、米国HACH社製携帯用多項目水質分析計DR/2400を用い、白金・コバルトを標準物質とした色度(度)として測定した。
(5) Measurement of chromaticity The chromaticity of breeding water of aquatic organisms is based on JIS K01010, using a portable multi-item water quality analyzer DR / 2400 manufactured by HACH, USA, and chromaticity with platinum and cobalt as standard substances. Measured as (degrees).

(6)タンパク質の測定
水中生物の飼育水におけるタンパク質はLowry−Folin法に基づき、BSA(bovine serum albumin:ウシ血清アルブミン)を標準物質として、波長750(nm)における吸光光度法にてタンパク質(mg/L)として測定した。
(6) Measurement of protein The protein in the breeding water of aquatic organisms is based on the Lowry-Folin method, and BSA (bovine serum albumin) is used as a standard substance with a spectrophotometric method at a wavelength of 750 (nm). / L).

(7)全窒素の測定
水中生物の飼育水における全窒素は米国HACH社製携帯用多項目水質分析計DR/2400を用い、過硫酸分解によって窒素化合物を全て硝酸イオンに酸化させた後、強酸性下にて硝酸イオンとクロモトロプ酸を反応させて、波長410(nm)における吸光光度法にて全窒素(mg/L)として測定した。
(7) Measurement of total nitrogen Total nitrogen in aquatic animal breeding water is obtained by oxidizing all nitrogen compounds to nitrate ions by persulfuric acid decomposition using a portable multi-item water quality analyzer DR / 2400 manufactured by HACH, USA. Under the condition, nitrate ion and chromotropic acid were reacted, and the total nitrogen (mg / L) was measured by absorptiometry at a wavelength of 410 (nm).

[実施例1]
先ず、本発明における水中生物の飼育水浄化において、処理設備にろ過器と泡沫分離処理装置を用い、pH調整槽の組み合わせ有無による飼育水のpH変動、アンモニア性窒素、亜硝酸性窒素を測定した。
[Example 1]
First, in the purification of aquatic organism breeding water in the present invention, using a filter and a foam separation treatment apparatus as a treatment facility, the pH variation of the breeding water due to the presence or absence of a combination of pH adjusting tanks, ammonia nitrogen, and nitrite nitrogen were measured. .

本発明の実施形態に基づいた試験装置としてろ過器とpH調整槽と泡沫分離処理装置を製作し、水中生物として魚類を使用した飼育水を用いて、飼育水のpH、アンモニア性窒素、亜硝酸性窒素を以下の条件で測定した。試験結果を図3〜5に示す。   As a test apparatus based on an embodiment of the present invention, a filter, a pH adjusting tank, and a foam separation treatment apparatus are manufactured, and using breeding water using fish as an aquatic organism, the pH of the breeding water, ammonia nitrogen, nitrous acid Nitrogen was measured under the following conditions. The test results are shown in FIGS.

図3は、pH調整槽の有無における飼育水のpHの推移を示したグラフである。図4はpH調整槽の有無における飼育水のアンモニア性窒素の推移を示したグラフである。図5は、pH調整槽の有無における飼育水の亜硝酸性窒素の推移を示したグラフである。   FIG. 3 is a graph showing the transition of the pH of the breeding water with and without the pH adjustment tank. FIG. 4 is a graph showing the transition of ammoniacal nitrogen in the breeding water with and without the pH adjustment tank. FIG. 5 is a graph showing the transition of nitrite nitrogen in breeding water with and without a pH adjustment tank.

(飼育水浄化の試験条件)
・飼育水槽における魚類の飼育密度:5(kg/m3
・飼育水槽への日間換水量:水量の1(%)
・給餌の種類:アジ、オキアミ、アサリ等の切身
・魚体重:3.7(kg)
・給餌量:魚体重の1〜2(%)
・ろ過器およびpH調整槽への循環流量:0.8(m3/h)
・泡沫分離処理装置への循環流量:0.4(m3/h)
・ろ過器のろ材:φ0.6(mm)のケイ砂
・ろ過器の有効容量:120(L)
・pH調整槽のカキ殻充填量:3.6(kg)
・pH調整槽の有効容量:14(L)
・泡沫分離処理装置の仕様:散気板および自給式微細気泡発生装置の併用
・泡沫分離処理装置の有効容量:14(L)
(Testing conditions for rearing water purification)
-Breeding density of fish in the breeding tank: 5 (kg / m 3 )
・ Daily water change amount to breeding tank: 1% (%) of water amount
・ Type of feeding: fillet such as horse mackerel, krill, clams ・ Fish weight: 3.7 (kg)
・ Feeding amount: 1-2 (%) of fish weight
・ Circulating flow rate to the filter and pH adjustment tank: 0.8 (m 3 / h)
・ Circulating flow rate to the foam separation treatment device: 0.4 (m 3 / h)
-Filter media: φ0.6 (mm) silica sand-Filter effective capacity: 120 (L)
・ Oyster shell filling amount in pH adjustment tank: 3.6 (kg)
・ Effective capacity of pH adjustment tank: 14 (L)
-Specification of foam separation processing device: Combined use of diffuser plate and self-contained fine bubble generator-Effective capacity of foam separation processing device: 14 (L)

(試験条件)
(a)飼育水槽に占める魚類の飼育密度が5(kg/m3)となるように5種15匹の魚類を飼育水槽へ投入し、その飼育水を各試験装置へ所定量通水させて、飼育水の浄化を行った。
(Test conditions)
(A) Put 15 kinds of 15 fish into the breeding tank so that the breeding density of the fish in the breeding tank is 5 (kg / m 3 ), and let the breeding water pass through each test device by a predetermined amount. , Purified the breeding water.

(b)飼育水のpH、アンモニア性窒素、亜硝酸性窒素の測定を1(回/日)行い、飼育水の水質変動を観測した。   (B) The pH of the breeding water, ammonia nitrogen, and nitrite nitrogen were measured 1 (times / day), and the fluctuation of the breeding water quality was observed.

[比較例1]
実施例1の試験設備において、pH調整槽を組み合わせない条件にて、同様に飼育水のpH、アンモニア性窒素、亜硝酸性窒素を測定した。試験結果を図3〜5に示す。
[Comparative Example 1]
In the test facility of Example 1, the pH of the breeding water, ammonia nitrogen, and nitrite nitrogen were measured in the same manner under the condition where the pH adjusting tank was not combined. The test results are shown in FIGS.

飼育水の浄化設備にカキ殻を充填したpH調整槽を用いたことで、40日に渡る閉鎖型の循環浄化において、飼育水のpHは7.8以上で推移した。一方、ろ過器や泡沫分離処理装置を組み合わせた試験設備において、カキ殻によるpH調整が無ければ飼育水のpHは試験日数に応じて緩やかに低下し、40日に渡る閉鎖型の循環浄化において飼育水のpHは6.2まで低下した(図3参照)。   By using a pH adjustment tank filled with oyster shells in the purification equipment for breeding water, the pH of the breeding water remained at 7.8 or higher in the closed circulation purification over 40 days. On the other hand, in a test facility that combines a filter and a foam separation treatment device, the pH of the breeding water gradually decreases according to the number of test days without pH adjustment using oyster shells, and is reared in a closed circulation purification over 40 days. The pH of the water dropped to 6.2 (see Figure 3).

飼育水の浄化設備にカキ殻を充填したpH調整槽を用いたことで、40日に渡る閉鎖型の循環浄化において、飼育水のアンモニア性窒素は0.1(mg/L)以下で推移した。一方、ろ過器や泡沫分離処理装置を組み合わせた試験設備において、カキ殻によるpH調整が無ければ、飼育水のアンモニア性窒素は10日経過から増加し始め、16日経過で試験期間の最大である1.68(mg/L)まで増加した。その後も0.6〜1.1(mg/L)で推移し、飼育水中に占めるアンモニア性窒素が多くなる傾向を示した(図4参照)。   By using a pH adjustment tank filled with oyster shells in the breeding water purification equipment, the ammonia nitrogen in the breeding water remained below 0.1 (mg / L) in a closed circulation purification over 40 days. . On the other hand, in a test facility that combines a filter and a foam separation treatment device, if there is no pH adjustment with oyster shells, the ammoniacal nitrogen of the breeding water starts to increase from 10 days, and the test period is the maximum after 16 days It increased to 1.68 (mg / L). After that, it changed from 0.6 to 1.1 (mg / L), and showed a tendency for ammonia nitrogen to occupy in the breeding water (see FIG. 4).

飼育水の浄化設備にカキ殻を充填したpH調整槽を用いたことで、40日に渡る閉鎖型の循環浄化において、飼育水の亜硝酸性窒素は0.02(mg/L)以下で推移した。一方、ろ過器や泡沫分離処理装置を組み合わせた試験設備において、カキ殻によるpH調整が無ければ、飼育水の亜硝酸性窒素は17日経過から増加し始め、38日経過で試験期間の最大である4.4(mg/L)となり、指数関数的に増加した(図5参照)。   By using a pH adjustment tank filled with oyster shells in the breeding water purification equipment, the nitrite nitrogen in the breeding water remained below 0.02 (mg / L) in a closed circulation purification over 40 days. did. On the other hand, in a test facility that combines a filter and a foam separation treatment device, if there is no pH adjustment with oyster shells, the nitrite nitrogen of the breeding water begins to increase from the 17th day, and the maximum test period is reached after 38 days. It was 4.4 (mg / L), which increased exponentially (see FIG. 5).

このことから、水中生物の飼育水浄化において、ろ過器とpH調整槽と泡沫分離処理装置を用いることにより、飼育水のpH低下およびアンモニア性窒素や亜硝酸性窒素の増加を抑制することができる。   From this, in the purification of breeding water for aquatic organisms, by using a filter, a pH adjustment tank, and a foam separation treatment device, it is possible to suppress a decrease in the pH of the breeding water and an increase in ammonia nitrogen and nitrite nitrogen. .

[実施例2]
次に、本発明における水中生物の飼育水において、処理設備にろ過器とpH調整槽を用い、泡沫分離処理装置の組み合わせ有無による飼育水の各種水質変動を測定した。
[Example 2]
Next, in the breeding water for aquatic organisms in the present invention, various water quality fluctuations of the breeding water depending on the presence or absence of the combination of the foam separation treatment apparatus were measured using a filter and a pH adjusting tank as the treatment equipment.

本発明の実施形態に基づいた試験装置としてろ過器とpH調整槽と泡沫分離処理装置を製作し、水中生物として魚類を使用した飼育水を用いて、飼育水の濁度、色度、タンパク質、全窒素を以下の条件で測定した。試験結果を図6〜9に示す。   As a test apparatus based on an embodiment of the present invention, a filter, a pH adjusting tank, and a foam separation treatment apparatus are manufactured, and using the breeding water using fish as an aquatic organism, the turbidity, chromaticity, protein, Total nitrogen was measured under the following conditions. The test results are shown in FIGS.

図6は、泡沫分離処理装置の有無における飼育水の濁度の推移を示したグラフである。図7は、泡沫分離処理装置の有無における飼育水の色度の推移を示したグラフである。図8は、泡沫分離処理装置の有無における飼育水のタンパク質の推移を示したグラフである。図9は、泡沫分離処理装置の有無における飼育水の全窒素の推移を示したグラフである。   FIG. 6 is a graph showing the transition of the turbidity of breeding water with and without the foam separation treatment device. FIG. 7 is a graph showing the transition of the chromaticity of the breeding water with and without the foam separation processing device. FIG. 8 is a graph showing the transition of the breeding water protein with and without the foam separation treatment apparatus. FIG. 9 is a graph showing the transition of the total nitrogen of the breeding water with and without the foam separation treatment device.

飼育水浄化の試験条件は、実施例1と同様である。   The test conditions for breeding water purification are the same as in Example 1.

(試験条件)
(a)飼育水槽に占める魚類の飼育密度が5(kg/m3)となるように5種15匹の魚類を飼育水槽へ投入し、その飼育水を各試験装置へ所定量通水させて、飼育水の浄化を行った。
(Test conditions)
(A) Put 15 kinds of 15 fish into the breeding tank so that the breeding density of the fish in the breeding tank is 5 (kg / m 3 ), and let the breeding water pass through each test device by a predetermined amount. , Purified the breeding water.

(b)飼育水の濁度、色度、タンパク質、全窒素の測定を1(回/日)行い、飼育水の水質推移を観測した。   (B) The turbidity, chromaticity, protein and total nitrogen of the breeding water were measured 1 (times / day), and the water quality transition of the breeding water was observed.

[比較例2]
実施例2の試験設備において、泡沫分離処理装置を組み合わせない条件にて、同様に飼育水の濁度、色度、タンパク質、全窒素を測定した。試験結果を図6〜9に示す。
[Comparative Example 2]
In the test facility of Example 2, the turbidity, chromaticity, protein, and total nitrogen of the breeding water were similarly measured under the condition that the foam separation treatment apparatus was not combined. The test results are shown in FIGS.

飼育水の浄化設備に泡沫分離処理装置を用いたことで、45日に渡る閉鎖型の循環浄化において、飼育水の濁度は0.06〜0.14(mg/L)で推移した。一方、泡沫分離処理装置が無いろ過器やpH調整槽を組み合わせた試験設備では、飼育水の濁度は0.11〜0.34(mg/L)で推移した(図6参照)。   By using a foam separation treatment apparatus for the purification system of breeding water, the turbidity of breeding water changed from 0.06 to 0.14 (mg / L) in a closed circulation purification over 45 days. On the other hand, the turbidity of the breeding water changed from 0.11 to 0.34 (mg / L) in the test equipment combined with a filter and a pH adjustment tank without a foam separation treatment device (see FIG. 6).

飼育水の浄化設備に泡沫分離処理装置を用いたことで、45日に渡る閉鎖型の循環浄化において、飼育水の色度は2〜8(度)で推移した。一方、泡沫分離処理装置が無いろ過器やpH調整槽を組み合わせた試験設備では、飼育水の色度は4〜25(度)で推移した(図7参照)。   By using the foam separation treatment device for the purification equipment for breeding water, the chromaticity of the breeding water changed from 2 to 8 (degrees) in the closed circulation purification for 45 days. On the other hand, in the test equipment combined with a filter and a pH adjustment tank without a foam separation treatment device, the chromaticity of the breeding water changed from 4 to 25 (degrees) (see FIG. 7).

飼育水の浄化設備に泡沫分離処理装置を用いたことで、45日に渡る閉鎖型の循環浄化において、飼育水のタンパク質は8〜24(mg/L)で推移した。一方、泡沫分離処理装置が無いろ過器やpH調整槽を組み合わせた試験設備では、飼育水のタンパク質は8〜36(mg/L)で推移した(図8参照)。   By using the foam separation treatment apparatus for the purification system of breeding water, the protein of breeding water changed at 8 to 24 (mg / L) in the closed circulation purification over 45 days. On the other hand, in the test equipment combined with a filter and a pH adjustment tank without a foam separation treatment device, the protein of the breeding water changed from 8 to 36 (mg / L) (see FIG. 8).

飼育水の浄化設備に泡沫分離処理装置を用いたことで、45日に渡る閉鎖型の循環浄化において、飼育水の全窒素は10〜180(mg/L)で推移した。一方、泡沫分離処理装置が無いろ過器やpH調整槽を組み合わせた試験設備では、飼育水の全窒素は130〜500(mg/L)で推移した(図9参照)。   By using the foam separation treatment device for the purification system of the breeding water, the total nitrogen of the breeding water changed from 10 to 180 (mg / L) in the closed-type circulation purification over 45 days. On the other hand, in the test equipment combined with a filter and a pH adjustment tank without a foam separation treatment device, the total nitrogen of the breeding water changed from 130 to 500 (mg / L) (see FIG. 9).

このことから、水中生物の飼育水浄化において、ろ過器とpH調整槽と泡沫分離処理装置を用いることにより、飼育水の濁度、色度、タンパク質、全窒素の増加を抑制することができる。   From this, it is possible to suppress the increase in the turbidity, chromaticity, protein, and total nitrogen of the breeding water by using the filter, the pH adjusting tank, and the foam separation treatment device in the purification of the breeding water of the aquatic organisms.

以上のことから、水中生物の飼育水浄化において、ろ過器とpH調整槽と泡沫分離処理装置を用いれば、飼育水のpHが7以下になること、アンモニア性窒素が0.1(mg/L)、亜硝酸性窒素が0.02(mg/L)を超えることを抑制することができる。さらに飼育水中の飼育体の排泄物や残餌や水中生物の体表粘液由来のタンパク質等の発泡成分を効率よく除去できるため、飼育水浄化設備にろ過器とpH調整槽だけを含む場合と比べて、飼育水の濁度を1/2、色度を1/3〜1/2、タンパク質を2/3、全窒素を1/10から1/3に低減することができる。このように閉鎖型の飼育水浄化が行えることから、水中生物の飼育水の換水量を低減することが可能となる。また、本発明は水中生物の飼育の際に薬液やオゾンの添加や、電気分解により生成する酸化剤の添加を行うことなく、安全に水中生物の飼育水浄化を行うことができる。   From the above, in the purification of breeding water for aquatic organisms, if a filter, a pH adjustment tank, and a foam separation treatment device are used, the pH of the breeding water will be 7 or less, and ammonia nitrogen will be 0.1 mg / L. ), Nitrite nitrogen can be suppressed from exceeding 0.02 (mg / L). In addition, since it can efficiently remove foaming components such as excrement and residual food from breeding water in the breeding water and protein derived from body surface mucus of aquatic organisms, compared to the case where the breeding water purification equipment includes only a filter and a pH adjustment tank The turbidity of the breeding water can be reduced to 1/2, the chromaticity to 1/3 to 1/2, the protein to 2/3, and the total nitrogen to 1/10 to 1/3. Since closed breeding water purification can be performed in this way, it is possible to reduce the amount of water exchanged for breeding water of aquatic organisms. In addition, the present invention can safely purify aquatic organisms without adding chemicals or ozone during the breeding of aquatic organisms or adding an oxidizing agent generated by electrolysis.

本発明における実施形態を示した構成図である。It is the block diagram which showed embodiment in this invention. 本発明における泡沫分離処理の実施形態を示した構成図である。It is the block diagram which showed embodiment of the foam separation process in this invention. 本発明の実施例1及び比較例1における飼育水のpHの推移を示したグラフである。It is the graph which showed transition of pH of breeding water in Example 1 and comparative example 1 of the present invention. 本発明の実施例1及び比較例1における飼育水のアンモニア性窒素の推移を示したグラフである。It is the graph which showed transition of the ammonia nitrogen of the breeding water in Example 1 and Comparative Example 1 of this invention. 本発明の実施例1及び比較例1における飼育水の亜硝酸性窒素の推移を示したグラフである。It is the graph which showed transition of the nitrite nitrogen of the breeding water in Example 1 and Comparative Example 1 of this invention. 本発明の実施例2及び比較例2における飼育水の濁度の推移を示したグラフである。It is the graph which showed transition of the turbidity of breeding water in Example 2 and comparative example 2 of the present invention. 本発明の実施例2及び比較例2における飼育水の色度の推移を示したグラフである。It is the graph which showed transition of the chromaticity of breeding water in Example 2 and comparative example 2 of the present invention. 本発明の実施例2及び比較例2における飼育水のタンパク質の推移を示したグラフである。It is the graph which showed transition of the protein of breeding water in Example 2 and comparative example 2 of the present invention. 本発明の実施例2及び比較例2における飼育水の全窒素の推移を示したグラフである。It is the graph which showed transition of the total nitrogen of breeding water in Example 2 and comparative example 2 of the present invention. 従来の酸化剤を用いた水中生物の飼育水を浄化する装置例の概要である。It is the outline | summary of the example of an apparatus which purifies the breeding water of the aquatic organism using the conventional oxidizing agent. 従来の高電圧パルスを用いた水中生物の飼育水を浄化する装置例の概要である。It is the outline | summary of the example of an apparatus which purifies the breeding water of the underwater organism using the conventional high voltage pulse.

符号の説明Explanation of symbols

1 飼育水槽
2 飼育水
3 ポンプ
4 ろ過器
5 pH調整槽
6 カキ殻
7 泡沫分離処理装置
8 分離槽
9 遮蔽板
10 自給式微細気泡発生装置
11 散気板
12 吸気口
13 吸気口
14 ブロワ
15 気泡
16 微細気泡
17 泡沫
101 貯水槽
102 ポンプ
103 濾過槽
104 オゾン溶解槽
105 サンゴ砂槽
106 触媒反応槽
107 泡沫分離槽
108 オゾナイザー
109 散気管
110 オゾン分解槽
201 高電圧パルス発生器
202 電流制限抵抗器
203 電極
204 水槽
205 飼育水
206 絶縁性の敷物
208 砂利
DESCRIPTION OF SYMBOLS 1 Breeding tank 2 Breeding water 3 Pump 4 Filter 5 pH adjustment tank 6 Oyster shell 7 Foam separation processing device 8 Separation tank 9 Shielding plate 10 Self-contained fine bubble generator 11 Air diffuser plate 12 Air inlet 13 Air inlet 14 Blower 15 Air bubble 16 Fine bubbles 17 Foam 101 Water storage tank 102 Pump 103 Filtration tank 104 Ozone dissolution tank 105 Coral sand tank 106 Catalytic reaction tank 107 Foam separation tank 108 Ozonizer 109 Aeration pipe 110 Ozone decomposition tank 201 High voltage pulse generator 202 Current limiting resistor 203 Electrode 204 Water tank 205 Breeding water 206 Insulating rug 208 Gravel

Claims (7)

水中生物の飼育に用いる飼育水の浄化方法において、飼育水の浄化工程にろ過工程、pH調整工程及び泡沫分離工程を含むことを特徴とする水中生物の飼育水浄化方法。   In the method for purifying breeding water used for breeding aquatic organisms, the method for purifying breeding water for aquatic organisms includes a filtration step, a pH adjustment step and a foam separation step in the purification step of the breeding water. 前記ろ過工程に用いるろ材が砂であることを特徴とする請求項1に記載の水中生物の飼育水浄化方法。   The method for purifying water for breeding aquatic organisms according to claim 1, wherein the filter medium used in the filtration step is sand. 前記pH調整工程が、水中生物の飼育水にカキ殻を接触させることにより、該飼育水のpHが低下しないように中性に保持することを特徴とする請求項1または2に記載の水中生物の飼育水浄化方法。   3. The aquatic organism according to claim 1, wherein the pH adjusting step maintains neutrality so that the pH of the breeding water does not decrease by bringing oyster shells into contact with the breeding water of the aquatic organism. Rearing water purification method. 前記pH調整工程が、7≦pH<8.6に保持することを特徴とする請求項1乃至3のいずれかに記載の水中生物の飼育水浄化方法。   4. The method for purifying aquatic organism rearing water according to any one of claims 1 to 3, wherein the pH adjusting step maintains 7 ≦ pH <8.6. 前記泡沫分離処理工程が、分離槽内の前記飼育水に気体を供給して該飼育水に泡沫分離処理を施すものであり、該分離槽内に供給する気体が微細気泡であり、該微細気泡が、気泡のみを発生させる手段によって気泡を発生させた後、該気泡を剪断する手段によって気泡が剪断されることによって生じる微細気泡及び/又は該気泡を剪断する手段そのものから発生する微細気泡であり、該微細気泡が飼育水を泡沫分離処理することを特徴とする請求項1乃至4のいずれかに記載の水中生物の飼育水浄化方法。   The foam separation treatment step is to supply a gas to the breeding water in the separation tank and subject the breeding water to a foam separation process. The gas supplied into the separation tank is a fine bubble, and the fine bubble Is a fine bubble generated by generating bubbles by means for generating only bubbles and then shearing the bubbles by means for shearing the bubbles and / or fine bubbles generated by the means for shearing the bubbles themselves. The method for purifying water for breeding aquatic organisms according to any one of claims 1 to 4, wherein the fine bubbles foam-treat the breeding water. 水中生物の飼育に用いる飼育水の浄化装置において、浄化装置が、ろ過器とpH調整槽と泡沫分離処理装置で構成されることを特徴とする水中生物の飼育水浄化装置。   An apparatus for purifying water for aquatic organisms, wherein the apparatus for purifying water used for breeding aquatic organisms comprises a filter, a pH adjustment tank, and a foam separation treatment apparatus. 前記浄化装置が、ろ材に砂を用いたろ過器と、カキ殻を充填したpH調整槽と、泡沫分離処理装置とで構成され、該泡沫分離処理装置が、泡沫分離処理を行う分離槽と、該分離槽内に気泡のみを発生させる手段と、気泡を剪断及び/又は微細気泡を発生させる手段を有するものであることを特徴とする請求項6に記載の水中生物の飼育水浄化装置。   The purification device is composed of a filter using sand as a filter medium, a pH adjustment tank filled with oyster shells, and a foam separation treatment device, and the foam separation treatment device performs a foam separation treatment, The apparatus for purifying water for breeding aquatic organisms according to claim 6, comprising means for generating only bubbles in the separation tank and means for shearing bubbles and / or generating fine bubbles.
JP2006258333A 2006-09-25 2006-09-25 Method and apparatus for purifying water for breeding underwater organisms Expired - Fee Related JP4914686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258333A JP4914686B2 (en) 2006-09-25 2006-09-25 Method and apparatus for purifying water for breeding underwater organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258333A JP4914686B2 (en) 2006-09-25 2006-09-25 Method and apparatus for purifying water for breeding underwater organisms

Publications (2)

Publication Number Publication Date
JP2008073006A true JP2008073006A (en) 2008-04-03
JP4914686B2 JP4914686B2 (en) 2012-04-11

Family

ID=39345727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258333A Expired - Fee Related JP4914686B2 (en) 2006-09-25 2006-09-25 Method and apparatus for purifying water for breeding underwater organisms

Country Status (1)

Country Link
JP (1) JP4914686B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497863A (en) * 2011-12-19 2013-06-26 Europ Sugar Holdings S A R L Removal of contaminants from an ion exchange regenerant solution or suspension
JP2014138914A (en) * 2013-01-21 2014-07-31 Kyoto Univ Method for removing nitrogen compounds within treatment target water
JP2015503325A (en) * 2011-12-21 2015-02-02 ヘリアエ デベロップメント、 エルエルシー System and method for contaminant removal from microalgal cultures
CN105884000A (en) * 2016-04-26 2016-08-24 大连汇新钛设备开发有限公司 Automatic pH value regulating device of recirculating aquaculture system
CN111081129A (en) * 2019-12-31 2020-04-28 河南科技大学 Subsurface flow layer ecological simulation experiment device and simulation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185329A (en) * 1987-01-26 1988-07-30 追田 哲 Purifying apparatus of water tank for breeding fishes and shellfishes
JPH047028A (en) * 1990-04-26 1992-01-10 Ichikawa Woolen Textile Co Ltd Fine bubble generating apparatus and floating separation apparatus using the generating apparatus
JPH0440842A (en) * 1990-06-07 1992-02-12 Kenji Yoneda Filtration device
JP2002159245A (en) * 2000-11-27 2002-06-04 Matsushita Electric Works Ltd Purifying device of fish or shellfish-keeping device
JP2003144004A (en) * 2001-11-15 2003-05-20 Hitachi Zosen Corp Method for purifying treatment of rearing water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185329A (en) * 1987-01-26 1988-07-30 追田 哲 Purifying apparatus of water tank for breeding fishes and shellfishes
JPH047028A (en) * 1990-04-26 1992-01-10 Ichikawa Woolen Textile Co Ltd Fine bubble generating apparatus and floating separation apparatus using the generating apparatus
JPH0440842A (en) * 1990-06-07 1992-02-12 Kenji Yoneda Filtration device
JP2002159245A (en) * 2000-11-27 2002-06-04 Matsushita Electric Works Ltd Purifying device of fish or shellfish-keeping device
JP2003144004A (en) * 2001-11-15 2003-05-20 Hitachi Zosen Corp Method for purifying treatment of rearing water

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497863A (en) * 2011-12-19 2013-06-26 Europ Sugar Holdings S A R L Removal of contaminants from an ion exchange regenerant solution or suspension
GB2497863B (en) * 2011-12-19 2014-05-21 Europ Sugar Holdings S A R L Removal of components from a starting material
US9682371B2 (en) 2011-12-19 2017-06-20 Globalfoundries Inc. Removal of components from a starting material
JP2015503325A (en) * 2011-12-21 2015-02-02 ヘリアエ デベロップメント、 エルエルシー System and method for contaminant removal from microalgal cultures
JP2014138914A (en) * 2013-01-21 2014-07-31 Kyoto Univ Method for removing nitrogen compounds within treatment target water
CN105884000A (en) * 2016-04-26 2016-08-24 大连汇新钛设备开发有限公司 Automatic pH value regulating device of recirculating aquaculture system
CN105884000B (en) * 2016-04-26 2018-08-31 大连汇新钛设备开发有限公司 Circulating water culture system pH value self-checking device
CN111081129A (en) * 2019-12-31 2020-04-28 河南科技大学 Subsurface flow layer ecological simulation experiment device and simulation method

Also Published As

Publication number Publication date
JP4914686B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP6131342B2 (en) Method for producing sterilized cultured water and method for culturing flowing water-sterilized water fish using the same
JP2007144391A (en) Ballast water treatment apparatus and method
JP4914686B2 (en) Method and apparatus for purifying water for breeding underwater organisms
JP2005110552A (en) System for pressure multilayer type micro ozone sterilization, purification and breeding sterilization
JP2007152264A (en) Apparatus and method for treating ballast water
Brambilla et al. Foam fractionation efficiency in particulate matter and heterotrophic bacteria removal from a recirculating seabass (Dicentrarchus labrax) system
JP2015181973A (en) Membrane filtration system, membrane filtration method, and apparatus of producing rearing water for aquatic organism
JP2007152275A (en) Method and apparatus for treating water
JP4890957B2 (en) Organic wastewater levitation separation treatment method and levitation separation treatment apparatus
JP2015019647A (en) Removal method and removal device for ammonia contained in culture water
US20140346125A1 (en) Desalting Salty Sludge System and Method
JP2003158953A (en) Circulating aquaculture system
JP3887256B2 (en) Closed circulation aquaculture system
JP3840190B2 (en) Seafood culture method
ES2564554T3 (en) Procedure to treat water and treatment plant
KR101599797B1 (en) Water treatment method for sewage disposal tank
JP2006198619A (en) Process for treatment of liquid and apparatus therefor
JP2635432B2 (en) Breeding equipment
JPH0823821A (en) Sterilizing purifier for raising water
JP2002034385A (en) Overland culture method by circulating culture water and apparatus therefor
JP2002335811A (en) Culturing seawater circulating unit
JP3908177B2 (en) Aquaculture equipment for aquaculture
JP4286580B2 (en) Wastewater treatment method incorporating electrochemical treatment
JPH07214081A (en) Method for purifying water for breeding marine living things
JP3586454B2 (en) Seawater circulation device for aquaculture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees