JP3644665B2 - Plastic mold and plastic molding method - Google Patents

Plastic mold and plastic molding method Download PDF

Info

Publication number
JP3644665B2
JP3644665B2 JP31465498A JP31465498A JP3644665B2 JP 3644665 B2 JP3644665 B2 JP 3644665B2 JP 31465498 A JP31465498 A JP 31465498A JP 31465498 A JP31465498 A JP 31465498A JP 3644665 B2 JP3644665 B2 JP 3644665B2
Authority
JP
Japan
Prior art keywords
mold
grooves
groove
plastic
sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31465498A
Other languages
Japanese (ja)
Other versions
JP2000141423A (en
Inventor
俊宏 金松
晋哉 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP31465498A priority Critical patent/JP3644665B2/en
Publication of JP2000141423A publication Critical patent/JP2000141423A/en
Application granted granted Critical
Publication of JP3644665B2 publication Critical patent/JP3644665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
この発明は形状、寸法、表面が高精度に成形されたプラスチック射出成形品及びその成形金型に関するものであり、複写機、ファクシミリなどの精密プラススチック伝動部品、プラスチックレンズなどの高精度プラスチック光学成形品の製造技術に利用して有効なものである。
【0002】
【従来の技術】
高精度なプラスチック成形品の成形技術に関連する従来技術の一つに、プラスチック製歯車について、リムの半径方向内側の部分に幅や深さが一定でない溝を設け、キャビティ内の圧力差を均一化させて歯車外形形状の変形を防止するもの(特開平8−132542号公報)があり、また、ギヤの肉厚なリム、リブを中空成形して当該リム、リブにヒケ、変形が生じることを防止したもの(特開平8−156053号公報)などがある。
従来から高精度な成形品を得るために成形品形状や成形方法に工夫がなされている。例えばギヤを例にあげると、一般的に多点ゲートの射出成形でギヤの成形が行われているが、図1に示すようにキャビティ内の部分的な圧力の差により成形品の外形形状が変形し、高精度な形状が得られず、ギヤのJISB1702で表すと、歯みぞの振れが大きくなり等級が低下するという問題がある。図1(b)は変形がない場合の断面形状を示しているが、圧力が高過ぎるときの断面形状が図1(c)に示すように外周面が半径方向外方に膨らみ、圧力が低く過ぎると断面形状は図1(d)に示すように半径方向内方にくぼむ。このように変形することの主な原因は、図2に示すように、多点ゲートから圧入された溶融樹脂の流れに対する抵抗が部分部分によって違いがあるために成形中のキャビティ内の樹脂圧力の分布が不均一になり、この圧力分布の不均一さのために樹脂の密度分布が不均一になり、収縮率が不均一になって、結果的に各部分の仕上がり寸法が不均一になってしまうということである。この圧力分布の不均一さできるだけ解消するために、特開平8−132542号公報に記載されたもののように断面形状に変化を与えたり、特開平2−66363号公報に記載されたものの様にリブ形状を変えたり、特開平9−166199号公報に記載されたもののようにディスク部肉厚に変化を与えたりする等の様々な工夫がなされている。これらの方法による場合は、求める成形品形状の成形精度を確保することは容易でないので、成形品寸法を基にして、予測を加えつつ試行を繰り返し、補正を繰り返して、所定の成形品が得られるまで金型に修正を加えているのが現状である。このために、補正量を見誤り、キャビティ表面の一部を削り過ぎるなど、最悪の場合は、キャビティ表面の一部を構成する入れ子を作り直す羽目になることもあり、この調整のための時間とコストがかかり過ぎるという問題がある。また、キャビティ内での圧力分布差などによる成形の不均一性を完全に補うことは極めて困難であるので、上記の従来の射出成形方法で高い成形精度を出すことは非常に困難なことである。
他方、成形精度を高めるための成形法として圧縮成形法があるが、しかし、この圧縮成形法による場合は、その金型が複雑になり、またこのために成形品の形状の如何によっては圧縮機構を設けることができず、そのために圧縮成形法を採用できない場合もあるので、これによる成形は比較的単純な形状の成形品に限られるという問題がある。
さらに、近年、ガスアシスト成形や所定の一部に意図的にヒケを発生させる低圧成形法(特開平2−175115号公報、特開平7−100877号公報、特開平6−304973号公報、特開平8−156053号公報)が開発されており、この成形法によるときは、キャビテイ内で樹脂が移動出来るから、圧力分布を均一化することが比較的容易であり、このために比較的簡単に高精度の成形品が得られる。この成形法は技術的に必ずしも十分完成されているわけではない(現段階ではヒケをうまく誘導出来ないこと、ヒケ誘導の装置が複雑であるなど)ので、その利点を必ずしも十分に実現できていないのが現状である。
【解決しようとする問題点】
本発明の課題は、一部にヒケが発生する低圧成形方法の利点をうまく生かしつつ、かつ、金型修正等に時間やコストをかけずに高精度な成形品が得られるように、成形法、成形金型を工夫し、以て高精度な成形品が得られるようにすることである。
【0003】
【課題解決のために講じた手段】
上記課題を解決するために講じた手段の要点は、キャビティの非転写面を構成する入れ子の表面の任意の部分に微細な溝を高密度に設け、この微細な溝の長さ 、溝の数、密度(単位幅当たりの溝の数)を適宜加減して、所定の位置に所定の深さのヒケを確実に誘導することである。
なお、上記の「微細な溝」は、充填された溶融樹脂が当該溝に入り込めない程度の微小幅の溝を意味し、「高密度」は、多数集合した一群の微細な溝が一体として機能して一のヒケを発生させる程度に微細な溝が密集していることを意味する。
【0004】
【作用】
上記の微細な溝にはキャビティ内の溶融樹脂は入り込めないので、この微細な一群の溝が形成されている範囲については、キャビティ表面と樹脂との間に気体層(微細な溝内に閉じ込められた気体による層)が介在することになり、この気体層の介在によって、この部分にヒケが確実に誘導される。そしてこの気体層の範囲(一群の微細な溝が設けられた領域)や、この気体層によるヒケの誘導機能は上記溝の長さ、溝の数(あるいは一群の溝が形成されている領域の幅)、溝の密度を加減することによって調整される。すなわち、溝の長さが長いほど、また溝の数が多いほど、溝の密度が高いほど誘導されたヒケの広がりは広く、深くなる。この溝の長さの調整は簡単であり、また、当該溝は微細なものであるから、これを増加、減少させる加工は簡単、容易に行われ、この溝の長さや、溝の数、溝の密度の修正に拘らず、これによって入れ子のキャビティ表面が著しく損傷される恐れも無い。したがって、この微細な溝の長さの調整、数の増減によって誘導されるヒケの深さは容易、かつ確実に調整される。また、この微細な溝は複雑な形状のキャビティ表面にも容易に形成されるので、成形品の形状の如何に拘らず、これによってヒケを誘導する位置、場所を最適位置に選定することができ、またそのヒケの広がりも簡単・容易に選定される。
【0005】
【実施の形態】
解決手段の技術的意義、作用の意味を具体的に明らかにするために、その実施の形態を説明する。
〔成形品の形状について〕
図3は、転写性が必要な箇所、すなわち歯形とハブを除く他の大部分にヒケが生じている成形品の形状を示しており、任意の箇所でヒケ量を変えたものである。
このもののディスク部においては、平面(図3(a))で見ると、隣合うゲート跡g,gの中間点を通る放線Laに沿った部分のヒケ量を最も大きくし、ゲート跡gを通る放線Lbに沿った部分のヒケ量を最も小さくしたものである。また、放線方向断面(図3(b),(c)で見ると、ゲートが設けられている半径方向内側が最もヒケ量が小さく、半径方向外方ほどヒケ量が大きい。リム部において、歯を外周に設けたリム部については、リム部内周面などの歯形部以外の部分にヒケを生じさせており、リム部内周面のゲート跡gを通る放線上の部分のヒケ量を小さくし、ゲート跡g,gの中間を通る放線上の部分のヒケ量を最も大きくしたものである。
図3に示す成形品を成形するときの射出充填時直後のキャビティ内の圧力分布は図2に示すようになる。圧力差があると、密度差が生じこれが収縮率差を生じ、その結果成形品の寸法のばらつきを大きくするが、上記の様にゲート跡g,g間の放線Laの方向や外周方向の圧力が小さくなる箇所のヒケ量を積極的に大きくすることで、密度差を小さくでき、結果的に寸法ばらつきを小さくすることができる。すなわち、従来の射出成形による場合は、キャビティ容積が一定であるために圧力分布を緩和することが非常に難しいが、本発明のようにヒケ部の量を積極的に制御することにより、ヒケが生じるような低圧な成形の場合でも、圧力分布を緩和することができ、その密度差を小さくでき、結果的にその寸法のばらつきを小さくすることができるのである。
以上、多点ゲートによるギヤ(歯車)を例にして説明したが、図4に示すような圧力バランスが崩れた成形品やレンズなどの高精度成形が要求される成形品にも適応でき、成形品の形状から、寸法精度が小さい箇所のヒケの深さをより積極的に大きくすることで、高精度成形品を得ることができる。
【0006】
〔成形品形状の制御法について〕
形状の制御法を図5,図6を参照しながら説明する。
図5の成形装置は下型1、上型2にそれぞれ入れ子A,Bを挿入して入れ子A,Bによってキャビティの下面、上面を構成して、歯車を成形するものである。
このものは成形品のウエブの下面、上面を形成する入れ子A,Bと、歯形部を形成する入れ子CによってキャビティDを構成したものであり、ヒケを生じさせたい部分に対応させて、入れ子A,入れ子Bの成形面に幅5〜50μmの溝4を設けたものである。多数の一群の溝4は、溝同士が交差することなく独立しており、連絡溝6によって互いに連通している(図6及び図7を参照)。なお、溝の深さは幅と同等以上であれば良い。
また、溝間の間隔は、多数の微細溝が一群のものとして良好にその機能を奏する範囲に適宜選定すればよく、所期の機能からすれば、間隔は小さいほどよいが、溝加工、溝の長さ、数、溝の幅の修正加工に支障がないようにすることを勘案すると、おおよそ10〜70μmの範囲で、上記の諸事情に応じて適宜選択すればよいことである。
また、図6(a)から明らかなように、一群の溝の中のゲート位置から遠いものほど長くしてあり、このことによって、ゲート位置から遠いほどヒケの深さが深くなるようにしている。
この溝4に連通孔5から圧縮ガスを圧入するのであるが、予定するヒケ量が大きいほど溝の長さを増したり、溝の密度、一群の溝が設けられる範囲を大きくする。
個々の溝4の幅は、当該溝に樹脂が入り込まなくするために5〜50μmの範囲内で適宜選択されるが、樹脂の侵入を回避できる溝幅の最大値は樹脂の粘度によって異なる。成形樹脂がPC(ポリカーボネイト)、POM(ポリアセタール)、アモルファスポリオレフィンのときは溝幅が30μm以下であればこれらの樹脂が溝部に入り込むことがないことが実験的に確かめられた。樹脂が入り込まない限度であれば、溝幅は大きい方が実施上は好都合である。
【0007】
溝4の存在により接触面積が減り、樹脂との密着力が低下し、また、樹脂充填中に高圧のガスが溝に圧入され、金型が樹脂で暖められて溝内のガス圧力が一段と高くなるため、樹脂と金型とが離型し易くなる。これらのことによってヒケの誘導、発生するヒケの大きさが、溝の幅、長さ、深さを変えることによって適宜、容易に調節されるのである。
また、予定するヒケの深さに、大きさに応じて簡単に溝を追加工し、あるいは埋めて減じることができる。また、ヒケの深さを加減するための上記溝の調整は僅かな量であり、品質への影響はきわめて小さい。
なお、この実施形態においては、図7に示すように、溝と金型外部との連通孔5を設け、この連通孔を介して上記溝に圧縮ガスを送り込むようにしているが、必ずしも圧縮ガスを用いる必要はない。
【0008】
【発明の効果】
以上のべたとおり、キャビティの高精度転写面以外の面、すなわち非高精度転写面に微細な溝を密に設けて、この溝の長さ、深さ、数を調整し、これによって成形品の非高精度転写面の任意の位置にヒケを誘導することができ、この誘導するヒケの深さ、大きさを溝の長さ、深さ、数の調整によって適宜制御して、高精度転写面へのヒケの発生を回避し、またヒケや歪みの他の部分への影響を容易に回避することができ、したがって、高精度転写面を備え、高精度で成形された成形品が得られる。
また、ゲート位置からの距離が遠いほどヒケの深さが深くなるように、キャビティ表面の上記の一群の溝の形状を調整することは容易であるから、このように上記溝を配置し、その形状を調整することにより、ゲート位置の高精度転写面の転写精度への影響を比較的簡単・容易な手段によって可及的に低減することができる。
また、多点ゲート金型によって射出成形されたプラスチック成形品については、ゲート間放線方向部分のヒケの深さがその間の部分のヒケの深さよりも大きくなるように、キャビティ表面の上記溝の大きさ、深さ、数を調整することは容易であるから、これらの多数のゲートの存在による高精度転写面の転写精度への影響を比較的簡単・容易な手段によって可及的に低減することができる。
また、成形品が歯車である場合、そのウエブと、リムの歯面と反対側の面を形成するキャビティ表面の上記溝の長さ、深さ、数を調整することは容易であるから、これらを調整することにより、ウエブと、リムの歯面と反対側の面に確実に予定どおりのヒケを誘導することができ、したがって、形状の歪みが少なく、高精度転写された歯面を有する歯車を、比較的簡単な手段によって容易に成形することができる。したがって、このようにして成形された歯車は高精度なものである。
また、ウエブのゲート間放線方向部分やリムに他の部分よりも大きなヒケを誘導することにより、一層高精度は歯車が得られる。
さらに、成形品の一部にヒケが発生するようにした成形方法について、外観や寸法精度に影響を与えない成形品の任意の箇所にヒケを生じさせるプラスチック射出成形金型のキャビティ表面に設ける上記溝の幅を5〜50μmにしたことによって、当該溝への溶融樹脂の侵入を確実に回避しつつ、当該溝によるヒケの誘導を効果的に実現することができる。
【図面の簡単な説明】
【図1】(a)は従来の成形方による歯車における多点ゲートと成形品の変形との関係を示す平面図であり、(b)は予定した形状のものの断面図であり、(c)はキャビティ内圧が高すぎる状態で成形したものの断面図であり、(d)はキャビティ内圧が低すぎ状態で成形したものの断面図である。
【図2】は圧力バランスがとれている場合のキャビティの内圧分布と各部の寸法精度との関係を示す平面図である。
【図3】(a)は歯車成形品のおける多点ゲートの位置とヒケの発生状況との関係を示す斜視図であり、(b)はゲートをとおる方線に沿った断面図であり、(c)はゲートの中間をとおる方線に沿った断面図である。
【図4】は圧力バランスがとれていない場合のキャビティの内圧分布と各部の寸法精度との関係を示す平面図である。
【図5】はこの発明の実施の形態を示す金型の断面図である。
【図6】(a)は図5における入れ子Aの斜視図であり、(b)は図6(a)の要部拡大斜視図である。
【図7】(a)は図5における入れ子Aの斜視図であり、(b)は図7(a)の要部拡大斜視図である。
【符号の説明】
1:下型
2:上型
4:溝
5:連通孔
6:連絡溝
A,B,C:入れ子
D:キャビティ
g:ゲート跡
La:ゲート跡の中間をとおる放線
Lb:ゲート跡をとおる放線
H:成形品のハブ
R:成形品のリム
U:成形品のウエブ
[0001]
[Industrial application fields]
TECHNICAL FIELD The present invention relates to a plastic injection molded product whose shape, size, and surface are molded with high accuracy and a molding die thereof, and a high-precision plastic optical molding such as a precision plastic transmission part such as a copying machine and a facsimile and a plastic lens. It is effective when used for manufacturing technology.
[0002]
[Prior art]
One of the conventional technologies related to the molding technology of high-precision plastic molded products is that plastic gears are provided with a groove whose width and depth are not constant in the radially inner part of the rim, so that the pressure difference in the cavity is uniform. To prevent the deformation of the outer shape of the gear (Japanese Patent Laid-Open No. 8-132542), and the thick rim and rib of the gear are hollow-molded to cause the rim and rib to sink and deform. (For example, Japanese Patent Laid-Open No. 8-156053).
Conventionally, in order to obtain a highly accurate molded product, the shape of the molded product and the molding method have been devised. For example, in the case of gears, gears are generally molded by multi-point gate injection molding. However, as shown in FIG. When deformed, a highly accurate shape cannot be obtained, and represented by the gear JISB 1702, there is a problem that the tooth sway increases and the grade decreases. FIG. 1B shows a cross-sectional shape when there is no deformation, but the cross-sectional shape when the pressure is too high swells outward in the radial direction as shown in FIG. After that, the cross-sectional shape is recessed inward in the radial direction as shown in FIG. As shown in FIG. 2, the main cause of the deformation is that the resistance to the flow of the molten resin injected from the multi-point gate differs depending on the portion, so that the resin pressure in the cavity during molding is different. The distribution becomes non-uniform, and this non-uniform pressure distribution makes the density distribution of the resin non-uniform, resulting in non-uniform shrinkage, resulting in non-uniform finished dimensions at each part. It means that. In order to eliminate this non-uniform pressure distribution as much as possible, the cross-sectional shape is changed as described in JP-A-8-132542, or ribs such as those described in JP-A-2-66363 are used. Various contrivances have been made such as changing the shape or changing the thickness of the disk portion as described in JP-A-9-166199. If by these methods, since it is not easy to ensure forming accuracy of a molded article shape for obtaining, by a molded article dimension based, repeated attempts while applying a prediction, by repeating the correction, resulting predetermined molded article What with the modification to the mold at present until et be. For this reason, the correction amount may be incorrect, and a part of the cavity surface may be shaved too much.In the worst case, the nesting that constitutes a part of the cavity surface may be recreated. There is a problem that costs are too high. In addition, it is extremely difficult to completely compensate for the non-uniformity of molding due to the pressure distribution difference in the cavity. Therefore, it is very difficult to achieve high molding accuracy with the conventional injection molding method described above. .
On the other hand, there is a compression molding method as a molding method for improving molding accuracy. However, in this compression molding method, the mold becomes complicated, and for this reason, the compression mechanism depends on the shape of the molded product. For this reason, there is a case where the compression molding method cannot be adopted. Therefore, there is a problem that molding by this is limited to a molded product having a relatively simple shape.
Further, in recent years, gas assist molding and low pressure molding methods that intentionally generate sink marks in a predetermined part (Japanese Patent Laid-Open No. 2-175115, Japanese Patent Laid-Open No. 7-100877, Japanese Patent Laid-Open No. 6-304973, Japanese Patent Laid-Open No. 8-156053) has been developed, and when this molding method is used, since the resin can move within the cavity, it is relatively easy to equalize the pressure distribution. A precision molded product is obtained. This molding method (that can not be successfully induced the sink at this stage, such as the apparatus of shrinkage induction is complex) to the mean are technically always sufficiently complete so, not be necessarily fully realized its benefits is the current situation.
[Problem to be solved]
An object of the present invention is to provide a molding method so that a highly accurate molded product can be obtained while taking advantage of the low-pressure molding method in which sink marks occur in part and without spending time and cost for mold correction and the like. It is to devise a molding die so that a highly accurate molded product can be obtained.
[0003]
[Measures taken to solve the problem]
The main points of the measures taken to solve the above problems are that fine grooves are provided at a high density in any part of the surface of the nest constituting the non-transfer surface of the cavity, and the length of the fine grooves and the number of grooves The density (the number of grooves per unit width) is appropriately adjusted to reliably induce a sink of a predetermined depth at a predetermined position.
The above-mentioned “fine grooves” means grooves having such a small width that the filled molten resin cannot enter the grooves, and “high density” means that a group of many fine grooves are integrated. It means that the minute grooves are dense enough to function and generate one sink.
[0004]
[Action]
Since the molten resin in the cavity cannot enter the fine groove, the gas layer (confined in the fine groove) is formed between the cavity surface and the resin. A layer formed by the gas) is interposed, and sinking is surely induced in this portion by the interposition of the gas layer. And the range of this gas layer (region where a group of fine grooves is provided) and the sinking function of this gas layer are the length of the groove, the number of grooves (or the region where a group of grooves are formed). Width), adjusted by adjusting the density of the groove. That is, the longer the groove length, the greater the number of grooves, and the higher the density of the grooves, the wider and deeper the sink marks that are induced. The adjustment of the length of the groove is simple, and since the groove is fine, the processing for increasing and decreasing the groove is simple and easy. The length of the groove, the number of grooves, the number of grooves In spite of the modification of the density, there is no risk of significant damage to the nested cavity surface. Therefore, the depth of the sink induced by adjusting the length of the fine groove and increasing / decreasing the number can be adjusted easily and reliably. In addition, since these fine grooves are easily formed on the cavity surface having a complicated shape, the position where the sink mark is induced can be selected as the optimum position regardless of the shape of the molded product. In addition, the spread of the sink marks is selected easily and easily.
[0005]
Embodiment
In order to clarify the technical significance of the solution and the meaning of the action, the embodiment will be described.
[About the shape of the molded product]
FIG. 3 shows the shape of a molded product in which sink marks are generated in portions where transferability is necessary, that is, most of the portions other than the tooth profile and the hub, and the amount of sink marks is changed at an arbitrary position.
In the disk portion of this, when viewed in a plane (FIG. 3A), the amount of sink in the portion along the radial line La passing through the intermediate point between the adjacent gate traces g, g is maximized and passes through the gate trace g. The amount of sink marks in the portion along the ray Lb is minimized. Further, actinomycetes cross section (FIG. 3 (b), (c) ) when viewed in the radial inward most shrinkage amount is small the gate is provided, shrinkage amount is large enough radially outward. In the rim portion, the rim portion provided with teeth on the outer periphery causes sink marks in portions other than the tooth profile portion such as the inner peripheral surface of the rim portion, and the sink marks in the part on the line passing through the gate mark g on the inner peripheral surface of the rim portion. The amount of sink marks in the part on the line passing through the middle of the gate marks g and g is maximized by reducing the amount.
The pressure distribution in the cavity immediately after injection filling when molding the molded article shown in FIG. 3 is as shown in FIG. If there is a pressure difference, a density difference will occur, which will cause a shrinkage rate difference, resulting in a large dimensional variation in the molded product. As described above, the pressure in the direction of the line La between the gate marks g and g and the pressure in the outer circumferential direction. By positively increasing the amount of sink at the portion where becomes small, the density difference can be reduced, and as a result, the dimensional variation can be reduced. That is, in the case of the conventional injection molding, it is very difficult to relax the pressure distribution because the cavity volume is constant. However, by actively controlling the amount of the sink part as in the present invention, the sink is Even in the case of low pressure molding that occurs, the pressure distribution can be relaxed, the density difference can be reduced, and as a result, the dimensional variation can be reduced.
As described above, the gear (gear) by the multipoint gate has been described as an example. However, it can be applied to a molded product whose pressure balance is broken as shown in FIG. 4 or a molded product requiring high precision molding such as a lens. From the shape of the product, it is possible to obtain a high-precision molded product by more actively increasing the depth of the sink in the portion where the dimensional accuracy is small.
[0006]
[Regarding the control method of molded product shape]
The shape control method will be described with reference to FIGS.
The molding apparatus shown in FIG. 5 inserts inserts A and B into a lower mold 1 and an upper mold 2, respectively, and forms a gear by forming the lower and upper surfaces of the cavity by the inserts A and B.
In this product, a cavity D is formed by inserts A and B forming the lower surface and the upper surface of the web of the molded product, and inserts C forming the tooth profile portions. The groove 4 having a width of 5 to 50 μm is provided on the molding surface of the insert B. The large number of groups of grooves 4 are independent without intersecting each other , and communicate with each other by connecting grooves 6 (see FIGS. 6 and 7 ). The depth of the groove may be equal to or greater than the width.
In addition, the interval between the grooves may be appropriately selected within a range in which a large number of fine grooves are excellent as a group, and according to the intended function, the smaller the interval, the better. Taking into consideration that there is no hindrance to the modification of the length, number, and width of the groove, it may be appropriately selected in the range of approximately 10 to 70 μm according to the above-mentioned circumstances.
Further, as is clear from FIG. 6A, the distance from the gate position in the group of grooves is longer, so that the depth of sink becomes deeper as the distance from the gate position increases. .
Although than is press-fitted compressed gas from the communicating hole 5 in the groove 4, or increase the length of the groove A larger shrinkage amount of planned size range of density of the groove, a group of grooves provided Kusuru.
The width of each groove 4 is appropriately selected within a range of 5 to 50 μm in order to prevent the resin from entering the groove, but the maximum value of the groove width that can prevent the resin from entering varies depending on the viscosity of the resin. It has been experimentally confirmed that when the molding resin is PC (polycarbonate), POM (polyacetal), or amorphous polyolefin, these resins do not enter the groove if the groove width is 30 μm or less. As long as the resin does not enter, a larger groove width is advantageous in practice.
[0007]
Due to the presence of the groove 4, the contact area is reduced, the adhesion with the resin is reduced, and a high-pressure gas is pressed into the groove during resin filling, and the mold is warmed with the resin, so that the gas pressure in the groove is further increased. Therefore, it becomes easy to release the resin and the mold. Induction of shrinkage by these, the magnitude of the generated sink mark, suitably by changing the groove width, length, depth, they are easily adjusted.
In addition, it is possible to easily add or fill a groove to the planned depth of the sink mark depending on the size. Further, the adjustment of the groove for adjusting the depth of sink marks is a slight amount, and the influence on the quality is extremely small.
In this embodiment, as shown in FIG. 7, a communication hole 5 is provided between the groove and the outside of the mold, and the compressed gas is fed into the groove through this communication hole. There is no need to use.
[0008]
【The invention's effect】
As described above, fine grooves are densely provided on the surface other than the high-precision transfer surface of the cavity, that is, the non-high-precision transfer surface, and the length, depth, and number of the grooves are adjusted. Sink marks can be guided to any position on the non- high-accuracy transfer surface, and the depth and size of the induced sink marks are appropriately controlled by adjusting the length, depth, and number of grooves, and the high-accuracy transfer surface The occurrence of sink marks can be avoided, and the influence of sink marks and distortion on other parts can be easily avoided. Therefore, a molded product having a high precision transfer surface and molded with high precision can be obtained.
In addition, since it is easy to adjust the shape of the group of grooves on the cavity surface so that the depth of sinking increases as the distance from the gate position increases, the grooves are arranged in this way, more adjusting the shape can be reduced as much as possible by a relatively simple, easy means the influence of the high-precision transfer surface transfer precision of the gate position.
In addition, for plastic molded products injection-molded by a multi-point gate mold, the size of the groove on the cavity surface is such that the depth of sink marks in the part between the gates in the direction of radiation is greater than the depth of sink marks in the part between them. Since it is easy to adjust the depth, depth, and number, the influence of the presence of these multiple gates on the transfer accuracy of the high-precision transfer surface should be reduced as much as possible by relatively simple and easy means. Can do.
Further, when the molded product is a gear, it is easy to adjust the length, depth, and number of the grooves on the web and the cavity surface that forms the surface opposite to the tooth surface of the rim. By adjusting the gear, it is possible to surely induce a sink mark as planned on the surface of the web and the side opposite to the tooth surface of the rim. Can be easily formed by relatively simple means. Therefore, the gear formed in this way is highly accurate.
In addition, a gear can be obtained with higher accuracy by inducing a greater sink than the other portions of the web in the radial direction between the gates and the rim.
Further, regarding the molding method in which sink marks are generated in a part of the molded product, the above-described method is provided on the cavity surface of the plastic injection mold that causes sink marks in any part of the molded product that does not affect the appearance and dimensional accuracy. By setting the width of the groove to 5 to 50 μm, it is possible to effectively realize sink induction by the groove while reliably avoiding the penetration of the molten resin into the groove.
[Brief description of the drawings]
FIG. 1A is a plan view showing a relationship between a multi-point gate in a gear according to a conventional molding method and deformation of a molded product, FIG. 1B is a cross-sectional view of a predetermined shape, and FIG. FIG. 4 is a cross-sectional view of the product molded with the cavity internal pressure being too high, and FIG. 4D is a cross-sectional view of the product molded with the cavity internal pressure being too low.
FIG. 2 is a plan view showing the relationship between the internal pressure distribution of the cavity and the dimensional accuracy of each part when the pressure is balanced.
FIG. 3A is a perspective view showing the relationship between the position of a multipoint gate and the occurrence of sink marks in a gear molded product, and FIG. 3B is a cross-sectional view taken along the direction of the gate. (C) is sectional drawing along the direction which goes through the middle of a gate.
FIG. 4 is a plan view showing the relationship between the internal pressure distribution of the cavity and the dimensional accuracy of each part when the pressure is not balanced.
FIG. 5 is a sectional view of a mold showing an embodiment of the present invention.
6 (a) is a perspective view of putting the child A in Fig. 5 is an enlarged perspective view of (b) is 6 (a).
7A is a perspective view of the insert A in FIG. 5, and FIG. 7B is an enlarged perspective view of a main part of FIG. 7A.
[Explanation of symbols]
1: Lower mold 2: Upper mold 4: Groove 5: Communication hole 6: Communication groove A, B, C: Nesting D: Cavity g: Gate trace La: Radiation through the gate trace Lb: Radiation through the gate trace H : Hub of molded product R: Rim of molded product U: Web of molded product

Claims (4)

観や寸法精度に影響を与えない成形品の任意の箇所にヒケを生じさせるヒケ誘導手段を有するプラスチック成形金型において、
上記ヒケ誘導手段は、キャビティを形成する金型(入れ子)の表面に幅5〜50μmの多数の独立したを設て成り、これによってヒケ深さを制御するようにしたことを特徴とするプラスチック成形金型。
In plastic molding mold having a shrinkage inducing means for producing a shrinkage in any part of the molded article which does not affect the appearance and dimensional accuracy,
The sink induction means comprises by only setting the number of independent grooves surface on the width 5~50μm of a mold to form a cavity (nesting), thereby characterized in that so as to control the shrinkage depth Plastic mold.
上記金型(入れ子)の表面に設けられた多数の独立した溝は、連絡溝により連通されている請求項1のプラスチック成形金型 2. The plastic mold according to claim 1, wherein a plurality of independent grooves provided on the surface of the mold (nesting) are communicated with each other through communication grooves . 上記金型(入れ子)の表面の溝の長さ、当該溝の数および溝間の間隔を適宜調整することでヒケの深さを加減する、請求項1又は請求項2のプラスチック成形金型におけるヒケの深さ調整法。The length of the groove in the surface of the mold (nest), to moderate the depth of shrinkage by appropriately adjusting the gap between the number of the grooves and the grooves, plastic configuration of claim 1 or claim 2 Katachikin How to adjust the depth of sink marks in the mold. 上記金型(入れ子)の表面の溝の長さ、当該溝の数および溝間の間隔を適宜選定して設け、これによってヒケの深さを加減している、請求項1又は請求項2のプラスチック成形金型によるプラスチック成形方法。 The length of the groove on the surface of the mold (nesting), the number of the grooves, and the interval between the grooves are appropriately selected, and thereby the depth of sink is adjusted . Plastic molding method using plastic mold.
JP31465498A 1998-11-05 1998-11-05 Plastic mold and plastic molding method Expired - Fee Related JP3644665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31465498A JP3644665B2 (en) 1998-11-05 1998-11-05 Plastic mold and plastic molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31465498A JP3644665B2 (en) 1998-11-05 1998-11-05 Plastic mold and plastic molding method

Publications (2)

Publication Number Publication Date
JP2000141423A JP2000141423A (en) 2000-05-23
JP3644665B2 true JP3644665B2 (en) 2005-05-11

Family

ID=18055939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31465498A Expired - Fee Related JP3644665B2 (en) 1998-11-05 1998-11-05 Plastic mold and plastic molding method

Country Status (1)

Country Link
JP (1) JP3644665B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5005422B2 (en) * 2007-05-09 2012-08-22 株式会社エンプラス Injection molding gear
CN214419308U (en) * 2020-11-10 2021-10-19 瑞声光电科技(常州)有限公司 Vibrating diaphragm mould

Also Published As

Publication number Publication date
JP2000141423A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
JP5746754B2 (en) Optical lens
KR20080082631A (en) Molds for use in contact lens production
JP4108195B2 (en) Plastic molded product and molding method thereof
CN101491927B (en) Die and use method thereof
JP3644665B2 (en) Plastic mold and plastic molding method
JPH0336013B2 (en)
JP3409594B2 (en) High precision gear and its injection molding method
CN1199777C (en) Cyclic resin moulded goods
CN101628464B (en) Method for manufacturing impressing mold insert
CN101537676A (en) Die and adjusting method thereof
JP3959637B2 (en) Weld line generation method
US6838031B2 (en) Method and mold for manufacture of a solid molded article, and a solid molded article manufactured according to the method
JP2961550B2 (en) Rotating polygon mirror
US20020071887A1 (en) Resin molding device, resin molding method and resin molded product
US7374090B2 (en) Optical encoder with resinous code plate
JP4874560B2 (en) Mold
CN210090711U (en) Lens and lens module
JP2006051822A (en) Plastic part and its shaping method
JP2000141381A (en) Disc-shaped plastic molded product
KR102146934B1 (en) Apparatus and Method for Producing Lens
JP2003191288A (en) Plastic molded article
JP2723862B2 (en) Manufacturing method of sliding shaft
JP2017087555A (en) Synthetic resin molded body and manufacturing method therefor
JPH08132542A (en) Gear
JP2002273759A (en) Resin crowning gear molded product and resin gear molding method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees