JP3959637B2 - Weld line generation method - Google Patents

Weld line generation method Download PDF

Info

Publication number
JP3959637B2
JP3959637B2 JP2003015930A JP2003015930A JP3959637B2 JP 3959637 B2 JP3959637 B2 JP 3959637B2 JP 2003015930 A JP2003015930 A JP 2003015930A JP 2003015930 A JP2003015930 A JP 2003015930A JP 3959637 B2 JP3959637 B2 JP 3959637B2
Authority
JP
Japan
Prior art keywords
gear
gate
fiber
gates
weld line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003015930A
Other languages
Japanese (ja)
Other versions
JP2003231156A (en
Inventor
史明 赤羽
秀俊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003015930A priority Critical patent/JP3959637B2/en
Publication of JP2003231156A publication Critical patent/JP2003231156A/en
Application granted granted Critical
Publication of JP3959637B2 publication Critical patent/JP3959637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、複写機、ファクシミリ、コンピュータ、ワードプロセッサ等のプリンタにおける紙送り用駆動歯車等として好適の高精度歯車に係わり、特に具体的には高速、高画質を得るために優れた精密さと強度および寸法安定性、耐摩耗性が要求される精密歯車を繊維強化熱可塑性プラスチック材料の射出成形により形成する方法に関する。
【0002】
【従来の技術】
図5に示すように、従来より射出成形歯車Tは、肉盗みの凹部Vを設けたウエブW面に開口する多点ゲートGからプラスチック材料を注入して成形を行っている。この場合、ガラス繊維やカーボン繊維、あるいはその他の添加物で強化した配向性を有する熱可塑性プラスチックにおいては、隣合うゲート間で材料が合流する方向に放射状にウエルドラインLが発生して、このウエルドラインLには図示のような充填繊維のラジアル方向の配向Hが見られる。
【0003】
従って、冷却時には繊維が配向しているウエルドラインL方向は殆ど収縮せず、一方、ウエルドラインLに挾まれたゲートから半径方向の領域Fでは、符号Sで示す流れ前線に直交する流れは通常のラジアルフローとなるため、混入された繊維は円周方向に配向するのでこの部分には半径方向の大きな収縮が現われる。矢印Rは、円周に不均一に分布する収縮力のベクトル図示である。
【0004】
このウエブW内での場所的に偏った配向の不均一性による収縮率の変化で歯車の外形が変形し、図5に示す歯車TについてJGMA(日本歯車工業会)規格に規定される「かみあい試験」を行うと、図6のグラフで示されるように、ウエルドラインL方向に中心距離の顕著な偏倚が検知される。符号a〜iは「かみあい試験」による偏倚図形における歯車の噛合位置との対応関係を示す。この偏倚図形によれば、最大偏倚を示す山と谷との差は約15μmで、収縮の不均一性の影響が山と谷の偏倚となって顕著に現われている。
【0005】
【発明が解決しようとする課題】
しかしながら、近年におけるプリンタ等における印字ヘッドの解像度の著しい改良に伴い、紙送りにも一段と高い精度の向上が要求される。金属歯車を高精度に製作するには、ホブ切りや歯面研摩等に高度な機械技術を必要とし、量産に適しないばかりか極めて高価なものとなる。従って、生産性を向上し、製品を安価に提供するにはプラスチック成形歯車でこの問題を克服しなければならない。
【0006】
そこで本発明は、繊維強化熱可塑性プラスチック材料による高精度歯車の射出成形において、ウエルドラインを多数発生させることにより繊維の配向を均等化して、ゲートから半径方向領域に生じる収縮量を抑制し、それにより歯車形状の変形、寸法等の精度低下を阻止して歯車の噛合精度を向上させることを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係わる繊維強化熱可塑性プラスチック材料による射出成形におけるウエルドラインの生成方法は、繊維強化熱可塑性プラスチック材料を円周上に等間隔で複数個所設けられたゲートから金型内に流出させ、隣合う前記ゲートから流出させた前記繊維強化熱可塑性プラスチック材料を当該両ゲートの中間で合流させ、この合流により混入繊維を配向させ放射状にウエルドラインを形成させて射出成形するに際し、前記複数のゲートが作る円周と同心円の円周上で、且つ前記各ゲートの放射方向における外側位置に設けた円柱状の障害物により、前記ゲートに基づくウエルドラインとは別に、前記ゲートに基づく隣合うウエルドラインの間に、当該円柱状の障害物に基づくウエルドラインを形成させることを特徴とするものである。
本発明によれば、ゲート数を増加すること無く、ウェルドラインの数を増加することができる。すなわち、寸法的制約からゲート数の増設が物理的に制限される場合でも、ウェルドラインの数を増加することができる
具体的には、繊維強化熱可塑性プラスチック材料による高精度歯車の射出成形方法では、外周に刻設された精密な円形歯車の歯型と、この歯車の中心軸を決定する主軸円柱と、前記歯型と円柱との中間のウエブ部分とで射出成形歯車金型キャビティを画定している。
【0008】
この金型では、中心の円柱近傍におけるウエブ部分で、この円柱と同心円周上の複数個所に等間隔でゲートが設けてある。そこで、これら各ゲートより外側の同心円上に等間隔で、所要の直径の小円柱を前記中心軸と軸線を平行にして前記金型キャビティ内に複数個植設したことを特徴とする。
【0009】
上記金型により製造される本発明の高精度歯車は、外周に歯列が刻設された射出成形による繊維強化熱可塑性プラスチック材料から成る高精度円形歯車であって、該歯車はその中心軸を決定する主軸円柱と上記歯列との中間のウエブ部分において上記円柱と同心円周上の複数個所に等間隔に設けられた射出成形金型のゲートに対応する位置より外側の略同心円上におおむね等間隔で所要の直径の貫通小孔が設けられていることを特徴とする。
【0010】
【発明の実施の態様】
母材となる熱可塑性プラスチック材料として、ポリプロピレン(PP)、ポリエチレンサルファイド(PPS)、ポリアセタール(ポリオキシメチレン:POM)、ポリブチレンテレフタレート(PBT)、変性ポリフェニレンオキサイド(PPO)、ポリカーボネート(PC)、ポリアミド(ナイロン6.6)等が使用に適しており、特にポリチオエーテルスルフォン(PTES)は、寸法安定性、耐熱性、剛性共に優れている。
【0011】
混入する強化用充填材には、ガラス繊維およびカーボン繊維あるいはそのいずれかが20〜50重量%の割合で添加される。好適には平均直径数μ〜40μのガラスビーズを15〜30重量%程度混入する。
【0012】
上記したように、隣合うゲートから流出した繊維含有プラスチック材料は両ゲートの中間で合流し、混入繊維が配向して放射状にウエルドラインを形成する。ウエルドラインより離間する領域では繊維の配向は円周方向となるので離間距離に応じて収縮量が増大する傾向にある。
【0013】
従って、ゲート数を増設することでウエルドラインの本数を増加して収縮量の多い領域を削減し、繊維の配向を放射状配列で均等化することが考えられる。しかしながら、寸法的制約からゲート数の増設は物理的に制限される。一方、ウエルドラインの生成は、繊維含有プラスチック材料の流れの途中に円柱状の障害物を設けても可能であることが判った。
【0014】
本発明の要旨は、歯車ウエブ内のウエルドライン数を増加させることにより、形成材料の繊維の方向性を円周方向に向けて均等化することである。そこで、ゲートの増設に代えて、例えば図1に示すように、金型キャビティ10内でゲート12から歯車14の外周16へ向かう半径線18が交差する同心円19の周上に、ウエルドラインの生成に関して同様の効果をもつ複数の小円柱20を歯車14の軸線22と平行に植設した。23はマニホールドで、ゲート12を8個所に分岐する。
【0015】
このことにより、8個所のゲート12による8本のウエルドライン24以外に、8個所の小円柱20によるウエルドライン25が8本生成して、ウエルドライン24,25の総数は16本に倍増する。通常、ゲート12のノズル内径はφ0.5〜2.0mmであり、小円柱20の外径φdは、繊維含有プラスチック材料の流動圧力に耐えられる寸法であればよく、歯車寸法の諸元、精度、所要の強度、および植設する小円柱の数、配列等に応じて適当な寸法に設定することができる。
【0016】
小円柱20の配列数だけウエルドライン25は増加し、その分、収縮領域(隣合うウエルドライン間の領域)26を減少させることができる。図2に別の例で示すように、小円柱20はさらに外側の同心円周27上に等間隔で16個所の増設を行い、ウエルドライン28を16本追加して、ウエルドライン数を32本に倍増させることができる。これに伴って、外周へ向けての繊維配向は歯車ウエブの全面に亘って均等化され、隣合うウエルドライン間の収縮領域26が縮減するので、収縮は歯車の全周でほぼ均等に生じるようになる。図2中、図1と同様の部分に対しては同一の符号が用いてある。
【0017】
【実施例】
図3は、本発明に係わる高精度歯車の射出成形方法に基づいて成形された歯数(N.T.)=160、モジュール(m)=0.5、ピッチ円直径(P.C.D)=φ80mmの歯車30で、32は同心円33周上に等間隔で8個所設けられたゲート位置の痕跡で、34はゲート32を配列した同心円33より外側の同心円35上の8個所に等間隔で配列された小円柱により生じた貫通小孔である。小円柱の8個所はゲート位置と同一半径線上に設けられている。そして36は、このような金型構成によって生成された16本のウエルドラインである。また37は、歯車30の中心軸を決定する主軸中空円柱である。
【0018】
この歯車30に関するJGMA規格に基づく「両歯面全かみあい試験」の結果は図4にグラフで示すように、その変動域は10μm以内に収まっており、収縮の不均一性に起因する偏倚傾向は顕著ではない。符号A〜Iは上記「かみあい試験」による偏倚図形における歯車の噛合位置との対応関係を示す。
【0019】
JGMA 116−02(平歯車およびはすば歯車のかみあい精度)によれば、モジュールが0.2以上0.6以下の小モジュール歯車の両歯面全かみあい誤差の許容値は、最高精密等級の表記である0級において、ピッチ円直径50mmを超え100mm以下の歯車では20μmであるから、かみあい精度に対する条件は十分に満足されている。なお、結晶化傾向のある、すなわち成形時に配向を容易に生じ易い熱可塑性プラスチックを非強化(強化繊維を混合しない)で成形する場合も同様の結果を得ることができる。
【0020】
以上説明した通り、本発明に係わる高精度歯車の射出成形方法によれば、歯車金型キャビティ内に小円柱を植設する簡単な方法で、成形材料の配向性が均一化して収縮の不均等による歯車の変形が解消されるので、繊維強化熱可塑性プラスチックの射出成形歯車に対して、JGMA規格0級の精度が達成できるとともに、このような強度、耐久性に優れた高精度歯車の量産が可能となる。
【図面の簡単な説明】
【図1】 本発明に係わる高精度歯車の射出成形方法による歯車金型の(a)は平面図で、(b)は(a)の1b−1b線に沿って示した断面図である。
【図2】 本発明に係わる高精度歯車の射出成形方法による歯車金型における小円柱の別の配列を示す平面図である。
【図3】 本発明に係わる高精度歯車の射出成形方法による歯車の平面図である。
【図4】 図3に示した歯車のかみあい試験における中心距離の変動態様を示すグラフである。
【図5】 従来のプラスチック歯車金型の(a)は平面図、(b)は断面図である。
【図6】 図5に示した歯車のかみあい試験における中心距離の変動態様を示すグラフである。
【符号の説明】
10 金型キャビティ
12 ゲート
14 歯車
16 外周
18 半径線
19 同心円
20 小円柱
22 (歯車の)軸線
24,25,36 ウエルドライン
26 収縮領域
27 同心円
30 歯車
32 ゲート痕跡
34 (小円柱による)小孔
35 同心円
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-precision gear suitable as a paper feed drive gear in a printer such as a copying machine, a facsimile machine, a computer, and a word processor, and more specifically, it has excellent precision and strength for obtaining high speed and high image quality. The present invention relates to a method of forming a precision gear that requires dimensional stability and wear resistance by injection molding of a fiber reinforced thermoplastic material.
[0002]
[Prior art]
As shown in FIG. 5, conventionally, an injection-molded gear T is molded by injecting a plastic material from a multi-point gate G that opens on a web W surface provided with a concave portion V for stealing meat. In this case, in a thermoplastic having an orientation reinforced with glass fibers, carbon fibers, or other additives, weld lines L are generated radially in the direction in which the materials merge between adjacent gates. In the line L, the radial orientation H of the filled fibers as shown in the figure is seen.
[0003]
Accordingly, during cooling, the weld line L direction in which the fibers are oriented hardly contracts. On the other hand, in the region F in the radial direction from the gate sandwiched between the weld lines L, the flow perpendicular to the flow front indicated by S is normal. Since the mixed fibers are oriented in the circumferential direction, large shrinkage in the radial direction appears in this portion. An arrow R is a vector illustration of the contractile force distributed unevenly around the circumference.
[0004]
The outer shape of the gear is deformed due to the change in shrinkage due to the locationally biased orientation non-uniformity in the web W, and the gear T shown in FIG. When the “test” is performed, as shown in the graph of FIG. 6, a significant deviation in the center distance in the weld line L direction is detected. Symbols a to i indicate correspondences with the meshing positions of the gears in the biased pattern by the “meshing test”. According to this biased figure, the difference between the peak and the valley showing the maximum bias is about 15 μm, and the influence of the non-uniformity of the shrinkage becomes noticeable as the peak and valley bias.
[0005]
[Problems to be solved by the invention]
However, with the remarkable improvement in the resolution of the print head in printers and the like in recent years, even higher accuracy is required for paper feeding. In order to manufacture a metal gear with high accuracy, advanced mechanical technology is required for hobbing, tooth surface polishing, and the like, which is not only suitable for mass production but also extremely expensive. Therefore, this problem must be overcome with plastic molded gears in order to improve productivity and provide products at low cost.
[0006]
Accordingly, the present invention suppresses the amount of shrinkage that occurs in the radial region from the gate by equalizing the fiber orientation by generating a large number of weld lines in the injection molding of high-precision gears using fiber-reinforced thermoplastic material. Accordingly, it is an object of the present invention to improve the meshing accuracy of the gear by preventing the gear shape from being deformed and the accuracy from being reduced.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for generating a weld line in injection molding using a fiber reinforced thermoplastic material according to the present invention includes a gate provided with a plurality of fiber reinforced thermoplastic materials at equal intervals on a circumference. The fiber-reinforced thermoplastic material that has flowed into the mold from the adjacent gates is merged between the two gates, the mixed fibers are oriented by this merge, and a weld line is formed radially to inject. When molding, by a cylindrical obstacle provided on the outer circumference in the radial direction of each gate on the circumference concentric with the circumference formed by the plurality of gates, apart from the weld line based on the gate, Forming a weld line based on the cylindrical obstacle between adjacent weld lines based on the gate; It is an feature.
According to the present invention, the number of weld lines can be increased without increasing the number of gates. That is, even when the number of gates is physically limited due to dimensional constraints, the number of weld lines can be increased .
Specifically, in a high-precision gear injection molding method using a fiber-reinforced thermoplastic material, a precise circular gear tooth mold engraved on the outer periphery, a main cylinder that determines the central axis of the gear, and the tooth An injection molded gear mold cavity is defined by a web portion intermediate between the mold and the cylinder.
[0008]
In this mold, gates are provided at equal intervals at a plurality of locations on the circumference of the web concentric with the cylinder in the web portion in the vicinity of the center cylinder. Therefore, a plurality of small cylinders having a required diameter are planted in the mold cavity at equal intervals on concentric circles outside the gates, with the central axis and the axis parallel to each other.
[0009]
The high-precision gear of the present invention manufactured by the above-mentioned mold is a high-precision circular gear made of a fiber-reinforced thermoplastic material by injection molding in which teeth are engraved on the outer periphery, and the gear has a central axis thereof. In the intermediate web portion between the main spindle cylinder to be determined and the dentition, generally on a substantially concentric circle outside the position corresponding to the gates of injection molds provided at equal intervals at a plurality of locations on the circumference concentric with the cylinder, etc. Through holes having a required diameter are provided at intervals.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
As a thermoplastic material as a base material, polypropylene (PP), polyethylene sulfide (PPS), polyacetal (polyoxymethylene: POM), polybutylene terephthalate (PBT), modified polyphenylene oxide (PPO), polycarbonate (PC), polyamide (Nylon 6.6) is suitable for use, and polythioether sulfone (PTES) is particularly excellent in dimensional stability, heat resistance, and rigidity.
[0011]
Glass fiber and / or carbon fiber is added to the reinforcing filler to be mixed at a ratio of 20 to 50% by weight. Preferably, about 15 to 30% by weight of glass beads having an average diameter of several μ to 40 μ are mixed.
[0012]
As described above, the fiber-containing plastic material that has flowed out from the adjacent gates merges between the two gates, and the mixed fibers are oriented to form a weld line radially. In the region separated from the weld line, the fiber orientation is in the circumferential direction, and the shrinkage tends to increase according to the separation distance.
[0013]
Therefore, it is conceivable to increase the number of weld lines by increasing the number of gates to reduce the region having a large amount of shrinkage and to equalize the fiber orientation with a radial arrangement. However, the increase in the number of gates is physically limited due to dimensional constraints. On the other hand, it has been found that the generation of the weld line is possible even if a cylindrical obstacle is provided in the middle of the flow of the fiber-containing plastic material.
[0014]
The gist of the present invention is to equalize the directionality of the fibers of the forming material in the circumferential direction by increasing the number of weld lines in the gear web. Therefore, instead of adding gates, for example, as shown in FIG. 1, a weld line is generated on the circumference of a concentric circle 19 where a radius line 18 from the gate 12 toward the outer periphery 16 of the gear 14 intersects in the mold cavity 10. A plurality of small cylinders 20 having the same effect as described above were implanted in parallel with the axis 22 of the gear 14. A manifold 23 branches the gate 12 into eight locations.
[0015]
Thus, in addition to the eight weld lines 24 formed by the eight gates 12, eight weld lines 25 formed by the eight small cylinders 20 are generated, and the total number of the weld lines 24, 25 is doubled to sixteen. Normally, the nozzle inner diameter of the gate 12 is φ0.5 to 2.0 mm, and the outer diameter φd of the small cylinder 20 may be a dimension that can withstand the flow pressure of the fiber-containing plastic material. Depending on the required strength, the number of small cylinders to be implanted, the arrangement and the like, the dimensions can be set appropriately.
[0016]
The weld lines 25 are increased by the number of arrangements of the small cylinders 20, and the shrinkage region (region between adjacent weld lines) 26 can be decreased accordingly. As shown in another example in FIG. 2, the small cylinder 20 is further expanded at 16 locations on the outer concentric circumference 27 at equal intervals, 16 weld lines 28 are added, and the number of weld lines is reduced to 32. Can be doubled. Along with this, the fiber orientation toward the outer periphery is equalized over the entire surface of the gear web, and the contraction region 26 between adjacent weld lines is reduced, so that the contraction occurs almost uniformly over the entire circumference of the gear. become. In FIG. 2, the same reference numerals are used for the same parts as in FIG.
[0017]
【Example】
3 shows the number of teeth (N.T.) = 160, module (m) = 0.5, pitch circle diameter (P.C.D.) formed based on the high-precision gear injection molding method according to the present invention. ) = Φ80 mm gear 30, 32 is a trace of eight gate positions provided at equal intervals on the circumference of the concentric circle 33, and 34 is equally spaced at eight positions on the concentric circle 35 outside the concentric circle 33 on which the gates 32 are arranged. These are through-holes generated by small cylinders arranged in a row. Eight portions of the small cylinder are provided on the same radial line as the gate position. Reference numeral 36 denotes 16 weld lines generated by such a mold configuration. Reference numeral 37 denotes a main hollow cylinder that determines the central axis of the gear 30.
[0018]
As shown in the graph of FIG. 4, the fluctuation range is within 10 μm as a result of the “JGMA standard for the gear 30” based on the JGMA standard. The deviation tendency due to the non-uniform shrinkage is Not noticeable. Reference signs A to I indicate correspondences with the meshing positions of the gears in the biased pattern by the “meshing test”.
[0019]
According to JGMA 116-02 (meshing accuracy of spur gears and helical gears), the allowable value of the total meshing error of both tooth surfaces of small module gears with a module of 0.2 to 0.6 is the highest precision grade. In the grade 0, which is the notation, a gear having a pitch circle diameter of more than 50 mm and not more than 100 mm is 20 μm, so the conditions for the meshing accuracy are sufficiently satisfied. The same result can be obtained when molding a non-reinforcing (without mixing reinforcing fibers) thermoplastic resin that has a tendency to crystallize, that is, easily oriented during molding.
[0020]
As described above, according to the high-precision gear injection molding method according to the present invention, the orientation of the molding material is made uniform and the shrinkage is uneven by a simple method of implanting a small cylinder in the gear mold cavity. This eliminates the deformation of the gear caused by this, so that JGMA standard 0 accuracy can be achieved for fiber-reinforced thermoplastic injection molded gears, and mass production of such high-precision gears with excellent strength and durability can be achieved. It becomes possible.
[Brief description of the drawings]
FIG. 1A is a plan view of a gear mold manufactured by a high-precision gear injection molding method according to the present invention, and FIG. 1B is a cross-sectional view taken along line 1b-1b of FIG.
FIG. 2 is a plan view showing another arrangement of small cylinders in a gear mold by the high-precision gear injection molding method according to the present invention.
FIG. 3 is a plan view of a gear produced by a high precision gear injection molding method according to the present invention.
4 is a graph showing how the center distance varies in the gear meshing test shown in FIG. 3; FIG.
5A is a plan view and FIG. 5B is a cross-sectional view of a conventional plastic gear mold.
6 is a graph showing how the center distance fluctuates in the gear meshing test shown in FIG. 5; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Mold cavity 12 Gate 14 Gear 16 Outer periphery 18 Radial line 19 Concentric circle 20 Small cylinder 22 Axis 24, 25, 36 Weld line 26 Contraction area 27 Concentric circle 30 Gear 32 Gate trace 34 Small hole 35 (by small cylinder) Concentric circles

Claims (1)

繊維強化熱可塑性プラスチック材料を円周上に等間隔で複数個所設けられたゲートから金型内に流出させ、隣合う前記ゲートから流出させた前記繊維強化熱可塑性プラスチック材料を当該両ゲートの中間で合流させ、この合流により混入繊維を配向させ放射状にウエルドラインを形成させて射出成形するに際し、
前記複数のゲートが作る円周と同心円の円周上で、且つ前記各ゲートの放射方向における外側位置に設けた円柱状の障害物により、前記ゲートに基づくウエルドラインとは別に、前記ゲートに基づく隣合うウエルドラインの間に、当該円柱状の障害物に基づくウエルドラインを形成させることを特徴とする繊維強化熱可塑性プラスチック材料による射出成形におけるウエルドラインの生成方法。
The fiber-reinforced thermoplastic plastic material from the gate provided plural positions at equal intervals on the circumference drained into the mold, the adjacent said fiber-reinforced thermoplastic plastic material is flowing out of the gate in the middle of the both gates At the time of injection molding by forming a weld line radially by orienting the mixed fibers by this merge,
Based on the gate, separately from the weld line based on the gate, by a cylindrical obstacle provided on a circumference concentric with the circumference formed by the plurality of gates and at an outer position in the radial direction of each gate. between adjacent weld lines, the method of generating the weld lines in an injection molding with a fiber-reinforced thermoplastic plastic material, characterized in that to form a weld line based on the cylindrical obstacles.
JP2003015930A 2003-01-24 2003-01-24 Weld line generation method Expired - Lifetime JP3959637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015930A JP3959637B2 (en) 2003-01-24 2003-01-24 Weld line generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015930A JP3959637B2 (en) 2003-01-24 2003-01-24 Weld line generation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19085096A Division JP3409594B2 (en) 1996-07-19 1996-07-19 High precision gear and its injection molding method

Publications (2)

Publication Number Publication Date
JP2003231156A JP2003231156A (en) 2003-08-19
JP3959637B2 true JP3959637B2 (en) 2007-08-15

Family

ID=27785734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015930A Expired - Lifetime JP3959637B2 (en) 2003-01-24 2003-01-24 Weld line generation method

Country Status (1)

Country Link
JP (1) JP3959637B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993725B2 (en) * 2007-08-10 2012-08-08 株式会社エンプラス Rotation transmission means and injection mold for rotation transmission means
JP4613971B2 (en) 2008-03-25 2011-01-19 東海ゴム工業株式会社 Resin molding method, resin molded product, and mold
JP2010197078A (en) * 2009-02-23 2010-09-09 Morioka Seiko Instruments Inc Plastic date indicator, mold for date indicator, and plastic date indicator manufacturing method
CN102395453A (en) 2009-09-25 2012-03-28 东海橡胶工业株式会社 Resin molding method and resin molding
JP6214158B2 (en) * 2012-12-28 2017-10-18 Ntn株式会社 Rolling bearing
JP6049487B2 (en) * 2013-02-13 2016-12-21 盛岡セイコー工業株式会社 Mechanical parts, watch movements and watches
JP6108547B2 (en) 2013-07-05 2017-04-05 株式会社エンプラス Fiber reinforced resin gear, fiber reinforced resin gear injection molding method, fiber reinforced resin rotating body, and fiber reinforced resin rotating body injection molding method

Also Published As

Publication number Publication date
JP2003231156A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
JP3409594B2 (en) High precision gear and its injection molding method
JP3959637B2 (en) Weld line generation method
JP4173047B2 (en) Injection molding resin gear, injection molding resin sprocket, injection molding resin pulley, injection molding resin roller, and method of manufacturing injection molding resin gear, injection molding resin sprocket, injection molding resin pulley, injection molding resin roller
JP2010139041A (en) Synthetic resin gear
JP2006070914A (en) Plastic gear
US20040043100A1 (en) Injection molded resin gear, injection molded resin rotating body, and injection molded article
JP6076202B2 (en) Synthetic resin injection molded products
JP2019171858A (en) Toric resin molding and composite member
JP6512794B2 (en) Gear, method of manufacturing gear, copier, and printer
CN1199777C (en) Cyclic resin moulded goods
JPH05104567A (en) Insert molding method and insert molded form and insert member
JP5517345B2 (en) Manufacturing method of resin molded products
JPH10196767A (en) Gear
JP5443089B2 (en) Plastic molded product
US7374090B2 (en) Optical encoder with resinous code plate
JP2003028274A (en) Fiber reinforced resin gear and its manufacturing method
KR101927471B1 (en) Injection mold for plastic gear having improved gate structure
JP4874560B2 (en) Mold
JP2008149502A (en) Injection-molded rotor
JP2003191288A (en) Plastic molded article
JP3395492B2 (en) Injection molded gear
JP2017087555A (en) Synthetic resin molded body and manufacturing method therefor
CN102458793B (en) Method for producing molded article and molding device
JP6039408B2 (en) Resin gear, mold for resin gear, and method for manufacturing resin gear
JP4445655B2 (en) Roller mold

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070501

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term