JP3643866B2 - X-ray focusing method and X-ray focusing apparatus - Google Patents

X-ray focusing method and X-ray focusing apparatus Download PDF

Info

Publication number
JP3643866B2
JP3643866B2 JP2001154623A JP2001154623A JP3643866B2 JP 3643866 B2 JP3643866 B2 JP 3643866B2 JP 2001154623 A JP2001154623 A JP 2001154623A JP 2001154623 A JP2001154623 A JP 2001154623A JP 3643866 B2 JP3643866 B2 JP 3643866B2
Authority
JP
Japan
Prior art keywords
ray
wavelength
plate
ray focusing
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001154623A
Other languages
Japanese (ja)
Other versions
JP2002350593A (en
Inventor
正記 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001154623A priority Critical patent/JP3643866B2/en
Publication of JP2002350593A publication Critical patent/JP2002350593A/en
Application granted granted Critical
Publication of JP3643866B2 publication Critical patent/JP3643866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、X線を用いた分析又は計測装置において用いられ、代表的なものとしては、X線顕微鏡、X線マイクロプローブ等が挙げられる。X線を微小に集光して物体に照射すると、局所的な情報が得られ、定量的な分析を行うことができる。測定される物理量は、透過X線、蛍光X線、光電子等である。さらにそれぞれの元素は、固有のX線吸収端を持ち、吸収端の前後では、わずかなエネルギーの差でも吸収係数(あるいは透過率)が1桁程度異なるという性質があるので、この性質を利用した分析には特に有効に用いられる発明である。
【0002】
【従来の技術】
X線を集光する従来技術としては、フレネル回折を利用した2次元のフレネルゾーンプレートが挙げられる。これは図2に示すように、強度変調型の場合、同心円状に、X線に対して不透明なゾーンと透明なゾーンとが交互に繰り返される円盤状となっている。波長λのX線に対してn番目のゾーンの半径rが近似的に、
=nfλ
の関係にあるとき、隣り合う透明ゾーンから透過するX線の光路差がλ(位相差が2π)となり、集光点で互いに強め合いレンズの役目を果たす。ここで、fは焦点距離である。
【0003】
この式から明らかなように、焦点距離fは、波長λに反比例、すなわち、エネルギーに比例している。
【0004】
【発明が解決しようとする課題】
元素は、固有のX線吸収端を持ち、吸収端の前後では、わずかなエネルギーの差でも吸収係数(あるいは透過率)が1桁程度異なるという性質があるので、この性質を利用すると特定の元素のみを選択して分析できるようになり精密な分析が可能となる。ところが、ゾーンプレートを集光素子に用いると、前述の式に示されるとおり、波長λに反比例(エネルギーに比例)して、焦点距離fが変動するため、波長を変化させるたびに試料位置を変えなければならないという不具合が生じていた。
【0005】
【課題を解決するための手段】
本願発明は、2個の1次元フレネルゾーンプレートを用い、X線のエネルギーの変動に対応して該1次元フレネルゾーンプレートの傾きを調整することにより焦点位置を不動にするものである。図1に示すように2個のゾーンプレートは、直交して配置され、それぞれ入射角を自由に設定できる回転台に保持されている。そしてそれらは、それぞれ、水平方向、垂直方向の集光に用いられる。斜め入射の場合、入射角をθとすると(垂直入射の時θ=90度)、
=(nfλ)1/2/sinθ
と表せるので、波長を短くしても入射角θを小さくすることにより、同じ長さの焦点距離fを得ることができる。
【0006】
【発明の実施の形態】
例えば、波長2.3nmから4.4nmの間のX線は水ではほとんど吸収されないが、蛋白質には1桁以上大きく吸収される。この波長域のX線を用いれば水中の生物や水を含む生物の内部組織を高いコントラストで観察することができる。さらには炭素の吸収端の波長は4.48nmであるが、波長4.4nmのX線は波長4.5nmのX線より1桁程度炭素中で吸収されやすいという性質を持つ。同様に窒素の吸収端の波長は3.16nmであり、3.1nmから4.5nmまでの波長域を一つの素子で集光・分析できれば、炭素と窒素の成分比も分析可能となる。本発明によると全ての元素について同様のことが可能となる。
【0007】
ゾーンプレートの作製は、紫外光ホログラフィック・リソグラフィーあるいは電子ビーム・リソグラフィーによって行うことができる。紫外光ホログラフィック・リソグラフィーとは、ドイツ国のゲッチンゲン大学において開発された手法であり、波長400nm程度の2つのレーザーを光源とし、それらによる干渉縞により直接ゾーンプレートのパターンを作り、フォトレジストを露光し、反応性イオンエッチング等により作製する手法である。
【0008】
電子ビーム・リソグラフィーは、X線ゾーンプレートの作製上、現在、最も多く用いられている方法で、細く絞った電子ビームでゾーンプレートのパターンを走査し、ポリメチルメタクリレート等のレジストを露光し、同様に反応性イオンエッチング等で加工する方法である。
【0009】
ゾーンプレートの材料としては、使用するX線のエネルギーに応じて、金、銀、ニッケル、タンタル、ゲルマニウム等が用いられる。これまでに作製されたゾーンプレートで、最も小さい最外ゾーン幅は、数十nmである。
【0010】
【実施例】
一次元ゾーンプレートで目的とする波長λを4.5nm、焦点距離fを20mmとすると、n=3000程度で線幅は86nm程度になる。この場合ゾーンプレート全体の大きさは約1mmである。ゾーンプレートの材料としてニッケルを用いるとすると、この場合80nm程度の厚さで約15%の集光効率が得られる。これを傾けながら波長を走査すると集光点が一定のまま連続的に変化し34度傾けたところで波長は、3.1nmであった。
【0011】
【発明の効果】
従来のX線の集光は、同心円状の2次元ゾーンプレートにより行われていたが、これでは、入射X線の波長λ(エネルギー)により焦点位置が変動していたが、本願発明の方法によれば、X線の波長が変化しても焦点位置を変化させる必要がない。
【図面の簡単な説明】
【図1】 本願発明の1次元ゾーンプレートの配置図
【図2】 従来の円盤状フレネルゾーンプレートの図
[0001]
BACKGROUND OF THE INVENTION
The present invention is used in an analysis or measurement apparatus using X-rays, and typical examples include an X-ray microscope and an X-ray microprobe. When X-rays are finely condensed and irradiated onto an object, local information can be obtained and quantitative analysis can be performed. The physical quantity to be measured is transmitted X-ray, fluorescent X-ray, photoelectron and the like. Furthermore, each element has its own X-ray absorption edge, and before and after the absorption edge, there is a property that the absorption coefficient (or transmittance) differs by an order of magnitude even with a slight energy difference. This invention is particularly effective for analysis.
[0002]
[Prior art]
As a conventional technique for condensing X-rays, there is a two-dimensional Fresnel zone plate using Fresnel diffraction. As shown in FIG. 2, in the case of the intensity modulation type, this is a disk shape in which an opaque zone and a transparent zone are alternately repeated with respect to the X-ray. The radius rn of the nth zone is approximately the X-ray of wavelength λ,
r n 2 = nfλ
In this relationship, the optical path difference of X-rays transmitted from adjacent transparent zones is λ (phase difference is 2π), strengthening each other at the focal point and serving as a lens. Here, f is a focal length.
[0003]
As is apparent from this equation, the focal length f is inversely proportional to the wavelength λ, that is, proportional to energy.
[0004]
[Problems to be solved by the invention]
An element has a characteristic X-ray absorption edge, and there is a property that the absorption coefficient (or transmittance) differs by an order of magnitude even with a slight energy difference before and after the absorption edge. It becomes possible to select and analyze only, and precise analysis becomes possible. However, when the zone plate is used as a light condensing element, the focal length f varies inversely proportional to the wavelength λ (proportional to energy) as shown in the above equation, so the sample position changes each time the wavelength is changed. There was a problem of having to.
[0005]
[Means for Solving the Problems]
In the present invention, two one-dimensional Fresnel zone plates are used, and the focal position is fixed by adjusting the inclination of the one-dimensional Fresnel zone plate in response to fluctuations in X-ray energy. As shown in FIG. 1, the two zone plates are arranged orthogonally, and are held on a turntable that can freely set the incident angle. They are used for light collection in the horizontal and vertical directions, respectively. In the case of oblique incidence, if the incident angle is θ (θ = 90 degrees for vertical incidence),
r n = (nfλ) 1/2 / sin θ
Therefore, even if the wavelength is shortened, the focal length f of the same length can be obtained by reducing the incident angle θ.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
For example, X-rays having a wavelength between 2.3 nm and 4.4 nm are hardly absorbed by water, but are absorbed by proteins more than an order of magnitude. By using X-rays in this wavelength range, it is possible to observe the internal tissues of living organisms and organisms containing water with high contrast. Furthermore, although the wavelength at the absorption edge of carbon is 4.48 nm, X-rays with a wavelength of 4.4 nm have the property that they are more easily absorbed in carbon by about one digit than X-rays with a wavelength of 4.5 nm. Similarly, the wavelength at the absorption edge of nitrogen is 3.16 nm, and if the wavelength range from 3.1 nm to 4.5 nm can be collected and analyzed by one element, the component ratio of carbon and nitrogen can also be analyzed. According to the present invention, the same can be done for all elements.
[0007]
The zone plate can be produced by ultraviolet holographic lithography or electron beam lithography. Ultraviolet holographic lithography is a technique developed at the University of Goettingen, Germany. Using two lasers with a wavelength of about 400 nm as the light source, the pattern of the zone plate is directly created by the interference fringes, and the photoresist is exposed. In addition, this is a method of manufacturing by reactive ion etching or the like.
[0008]
Electron beam lithography is the most widely used method for the production of X-ray zone plates, and scans the zone plate pattern with a finely focused electron beam to expose resist such as polymethyl methacrylate. This is a method of processing by reactive ion etching or the like.
[0009]
As the material of the zone plate, gold, silver, nickel, tantalum, germanium, or the like is used according to the energy of the X-ray used. In the zone plate produced so far, the smallest outermost zone width is several tens of nm.
[0010]
【Example】
If the target wavelength λ is 4.5 nm and the focal length f is 20 mm in the one-dimensional zone plate, n = about 3000 and the line width is about 86 nm. In this case, the size of the entire zone plate is about 1 mm. If nickel is used as the material of the zone plate, in this case, a light collection efficiency of about 15% is obtained with a thickness of about 80 nm. When the wavelength was scanned while tilting this, the condensing point changed continuously with a constant, and when tilted 34 degrees, the wavelength was 3.1 nm.
[0011]
【The invention's effect】
Conventional condensing of X-rays has been performed by a concentric two-dimensional zone plate, but in this case, the focal position varies depending on the wavelength λ (energy) of incident X-rays. Therefore, it is not necessary to change the focal position even if the wavelength of the X-ray changes.
[Brief description of the drawings]
FIG. 1 is a layout diagram of a one-dimensional zone plate according to the present invention. FIG. 2 is a diagram of a conventional disk-shaped Fresnel zone plate.

Claims (2)

1次元フレネルゾーンプレートを用いたX線集光方法において、2個の1次元フレネルゾーンプレートを直交してX線線路に配置するとともに、入射X線の波長に応じて該プレートをX線線路に対して傾斜させることにより、焦点位置を不動とすることを特徴とするX線集光方法。  In an X-ray condensing method using a one-dimensional Fresnel zone plate, two one-dimensional Fresnel zone plates are orthogonally arranged on an X-ray line, and the plate is used as an X-ray line according to the wavelength of incident X-rays. An X-ray condensing method characterized in that the focal position is fixed by tilting with respect to the surface. 1次元フレネルゾーンプレートを用いたX線集光装置において、2個の1次元フレネルゾーンプレートを直交してX線線路に配置するとともに、該プレートは、該プレートのX線線路に対する傾斜角度を調整する回転台に保持されていることを特徴とするX線集光装置。  In an X-ray concentrator using a one-dimensional Fresnel zone plate, two one-dimensional Fresnel zone plates are arranged orthogonally to the X-ray line, and the plate adjusts the inclination angle of the plate with respect to the X-ray line. An X-ray condensing device, which is held on a rotating table.
JP2001154623A 2001-05-23 2001-05-23 X-ray focusing method and X-ray focusing apparatus Expired - Lifetime JP3643866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001154623A JP3643866B2 (en) 2001-05-23 2001-05-23 X-ray focusing method and X-ray focusing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001154623A JP3643866B2 (en) 2001-05-23 2001-05-23 X-ray focusing method and X-ray focusing apparatus

Publications (2)

Publication Number Publication Date
JP2002350593A JP2002350593A (en) 2002-12-04
JP3643866B2 true JP3643866B2 (en) 2005-04-27

Family

ID=18998933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001154623A Expired - Lifetime JP3643866B2 (en) 2001-05-23 2001-05-23 X-ray focusing method and X-ray focusing apparatus

Country Status (1)

Country Link
JP (1) JP3643866B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101195415B1 (en) 2010-12-29 2012-10-29 포항공과대학교 산학협력단 Manufacturing method of X-ray/Gamma-rayG-ray focusing optics using atomic layer deposition
JP2013002910A (en) * 2011-06-15 2013-01-07 Toshiba Corp Pattern checking method and pattern checking apparatus
CN102881347B (en) * 2012-10-15 2015-05-20 中国科学院上海应用物理研究所 Method for focusing cylindrical wave line source into point light spot by using zone plate

Also Published As

Publication number Publication date
JP2002350593A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
US6262845B1 (en) Apparatus and method for generating partially coherent illumination for photolithography
US4659429A (en) Method and apparatus for production and use of nanometer scale light beams
TWI298824B (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
Jarre et al. Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics
US6052238A (en) Near-field scanning optical microscope having a sub-wavelength aperture array for enhanced light transmission
US8767918B2 (en) X-ray scattering measurement device and X-ray scattering measurement method
JP3399949B2 (en) Latent image detection by alignment device
US4662747A (en) Method and apparatus for production and use of nanometer scale light beams
US4360273A (en) Optical alignment of masks for X-ray lithography
Howells et al. Principles and applications of zone plate X-ray microscopes
JP6312664B2 (en) Near field measurement
JP2014160874A (en) Order selected overlay metrology
TW201224677A (en) Lithography method and apparatus
CN106323981B (en) Microscopic detection device is interfered based on off-axis type position phase zone plate
JP3643866B2 (en) X-ray focusing method and X-ray focusing apparatus
US6259764B1 (en) Zone plates for X-rays
JP2690036B2 (en) X-ray spectroscopic focusing element
JP3643865B2 (en) X-ray focusing method and X-ray focusing apparatus
JPH0616480B2 (en) Reduction projection type alignment method and apparatus
David et al. Diffractive and refractive X-ray optics for microanalysis applications
Kondo et al. Three-dimensional recording by femtosecond pulses in polymer materials
TW552464B (en) A method of measuring parameters relating to a lithography device
JPH02271300A (en) X-ray collector
CN1238687C (en) Determination of center of focus by diffraction signature analysis
Fukui et al. Large-aperture refractive lenses for momentum-resolved spectroscopy with hard X-rays

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3643866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term