JP2002350593A - Method and device for condensing x-ray - Google Patents

Method and device for condensing x-ray

Info

Publication number
JP2002350593A
JP2002350593A JP2001154623A JP2001154623A JP2002350593A JP 2002350593 A JP2002350593 A JP 2002350593A JP 2001154623 A JP2001154623 A JP 2001154623A JP 2001154623 A JP2001154623 A JP 2001154623A JP 2002350593 A JP2002350593 A JP 2002350593A
Authority
JP
Japan
Prior art keywords
ray
wavelength
zone plate
dimensional
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001154623A
Other languages
Japanese (ja)
Other versions
JP3643866B2 (en
Inventor
Masaki Koike
正記 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001154623A priority Critical patent/JP3643866B2/en
Publication of JP2002350593A publication Critical patent/JP2002350593A/en
Application granted granted Critical
Publication of JP3643866B2 publication Critical patent/JP3643866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate inconvenience in measurement with conventional X-ray condensation method performed with coaxial two-dimensional zone plate and resulting fluctuation of focus position according to the wave length λ (energy) of incident X-ray. SOLUTION: Two one-dimensional fresnel zone plates are arranged perpendicularly and the inclination angles of the plates are varied according to the wave length λ (energy) of incident X-ray so that a focus position is made stable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、X線を用いた分
析又は計測装置において用いられ、代表的なものとして
は、X線顕微鏡、X線マイクロプローブ等が挙げられ
る。X線を微小に集光して物体に照射すると、局所的な
情報が得られ、定量的な分析を行うことができる。測定
される物理量は、透過X線、蛍光X線、光電子等であ
る。さらにそれぞれの元素は、固有のX線吸収端を持
ち、吸収端の前後では、わずかなエネルギーの差でも吸
収係数(あるいは透過率)が1桁程度異なるという性質
があるので、この性質を利用した分析には特に有効に用
いられる発明である。
BACKGROUND OF THE INVENTION The present invention is used in an analysis or measurement apparatus using X-rays, and typical examples include an X-ray microscope and an X-ray microprobe. When X-rays are slightly condensed and irradiated on an object, local information is obtained and quantitative analysis can be performed. Physical quantities to be measured include transmitted X-rays, fluorescent X-rays, and photoelectrons. Furthermore, each element has a characteristic X-ray absorption edge, and the absorption coefficient (or transmittance) differs by about one digit even before and after the absorption edge even with a slight energy difference. This is an invention particularly effectively used for analysis.

【0002】[0002]

【従来の技術】X線を集光する従来技術としては、フレ
ネル回折を利用した2次元のフレネルゾーンプレートが
挙げられる。これは図2に示すように、強度変調型の場
合、同心円状に、X線に対して不透明なゾーンと透明な
ゾーンとが交互に繰り返される円盤状となっている。波
長λのX線に対してn番目のゾーンの半径rが近似的
に、 r =nfλ の関係にあるとき、隣り合う透明ゾーンから透過するX
線の光路差がλ(位相差が2π)となり、集光点で互い
に強め合いレンズの役目を果たす。ここで、fは焦点距
離である。
2. Description of the Related Art As a conventional technique for collecting X-rays, there is a two-dimensional Fresnel zone plate utilizing Fresnel diffraction. As shown in FIG. 2, in the case of the intensity modulation type, the intensity modulation type has a disk shape in which zones opaque to X-rays and zones transparent to X-rays are alternately repeated. In radius r n of the n th zone to the X-ray wavelength λ is approximately, when the relation of r n 2 = nfλ, X transmitted through a transparent zone adjacent
The optical path difference of the line becomes λ (the phase difference is 2π), and they strengthen each other at the light condensing point and serve as a lens. Here, f is a focal length.

【0003】この式から明らかなように、焦点距離f
は、波長λに反比例、すなわち、エネルギーに比例して
いる。
As is clear from this equation, the focal length f
Is inversely proportional to wavelength λ, that is, proportional to energy.

【0004】[0004]

【発明が解決しようとする課題】元素は、固有のX線吸
収端を持ち、吸収端の前後では、わずかなエネルギーの
差でも吸収係数(あるいは透過率)が1桁程度異なると
いう性質があるので、この性質を利用すると特定の元素
のみを選択して分析できるようになり精密な分析が可能
となる。ところが、ゾーンプレートを集光素子に用いる
と、前述の式に示されるとおり、波長λに反比例(エネ
ルギーに比例)して、焦点距離fが変動するため、波長
を変化させるたびに試料位置を変えなければならないと
いう不具合が生じていた。
The element has a characteristic X-ray absorption edge, and the absorption coefficient (or transmittance) differs by about one digit before and after the absorption edge, even with a slight difference in energy. By utilizing this property, it becomes possible to select and analyze only a specific element, thereby enabling precise analysis. However, when the zone plate is used for the light-collecting element, the focal length f varies in inverse proportion to the wavelength λ (proportional to the energy) as shown in the above equation, so that the sample position changes every time the wavelength is changed. There was a problem that it had to be done.

【0005】[0005]

【課題を解決するための手段】本願発明は、2個の1次
元フレネルゾーンプレートを用い、X線のエネルギーの
変動に対応して該1次元フレネルゾーンプレートの傾き
を調整することにより焦点位置を不動にするものであ
る。図1に示すように2個のゾーンプレートは、直交し
て配置され、それぞれ入射角を自由に設定できる回転台
に保持されている。そしてそれらは、それぞれ、水平方
向、垂直方向の集光に用いられる。斜め入射の場合、入
射角をθとすると(垂直入射の時θ=90度)、 r=(nfλ)1/2/sinθ と表せるので、波長を短くしても入射角θを小さくする
ことにより、同じ長さの焦点距離fを得ることができ
る。
The present invention uses two one-dimensional Fresnel zone plates, and adjusts the tilt of the one-dimensional Fresnel zone plate in accordance with the fluctuation of the energy of X-rays to thereby adjust the focal position. To immobilize. As shown in FIG. 1, the two zone plates are arranged orthogonally and are held on a turntable that can freely set an incident angle. They are used for light collection in the horizontal and vertical directions, respectively. In the case of oblique incidence, assuming that the incident angle is θ (θ = 90 degrees at normal incidence), it can be expressed as rn = (nfλ) 1/2 / sin θ. As a result, the same focal length f can be obtained.

【0006】[0006]

【発明の実施の形態】例えば、波長2.3nmから4.
4nmの間のX線は水ではほとんど吸収されないが、蛋
白質には1桁以上大きく吸収される。この波長域のX線
を用いれば水中の生物や水を含む生物の内部組織を高い
コントラストで観察することができる。さらには炭素の
吸収端の波長は4.48nmであるが、波長4.4nm
のX線は波長4.5nmのX線より1桁程度炭素中で吸
収されやすいという性質を持つ。同様に窒素の吸収端の
波長は3.16nmであり、3.1nmから4.5nm
までの波長域を一つの素子で集光・分析できれば、炭素
と窒素の成分比も分析可能となる。本発明によると全て
の元素について同様のことが可能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS For example, a wavelength of 2.3 nm to 4.
X-rays with a wavelength of 4 nm are hardly absorbed by water, but are absorbed by an order of magnitude or more by proteins. By using X-rays in this wavelength range, it is possible to observe the organisms in water and the internal tissues of the organisms including water with high contrast. Further, the wavelength at the absorption edge of carbon is 4.48 nm, but the wavelength is 4.4 nm.
X-rays have a property of being more easily absorbed in carbon by about one digit than X-rays having a wavelength of 4.5 nm. Similarly, the wavelength at the absorption edge of nitrogen is 3.16 nm, and is 3.1 nm to 4.5 nm.
If it is possible to collect and analyze the wavelength range up to one element, the component ratio of carbon and nitrogen can also be analyzed. According to the present invention, the same can be performed for all the elements.

【0007】ゾーンプレートの作製は、紫外光ホログラ
フィック・リソグラフィーあるいは電子ビーム・リソグ
ラフィーによって行うことができる。紫外光ホログラフ
ィック・リソグラフィーとは、ドイツ国のゲッチンゲン
大学において開発された手法であり、波長400nm程
度の2つのレーザーを光源とし、それらによる干渉縞に
より直接ゾーンプレートのパターンを作り、フォトレジ
ストを露光し、反応性イオンエッチング等により作製す
る手法である。
[0007] The zone plate can be manufactured by ultraviolet holographic lithography or electron beam lithography. Ultraviolet holographic lithography is a technique developed at the University of Göttingen in Germany. Two lasers with a wavelength of about 400 nm are used as light sources, and the pattern of the zone plate is directly formed by interference fringes from the lasers, exposing the photoresist. Then, it is a method of manufacturing by reactive ion etching or the like.

【0008】電子ビーム・リソグラフィーは、X線ゾー
ンプレートの作製上、現在、最も多く用いられている方
法で、細く絞った電子ビームでゾーンプレートのパター
ンを走査し、ポリメチルメタクリレート等のレジストを
露光し、同様に反応性イオンエッチング等で加工する方
法である。
[0008] Electron beam lithography is a method most widely used at present for producing an X-ray zone plate. The pattern of the zone plate is scanned with a narrowly focused electron beam to expose a resist such as polymethyl methacrylate. Then, similarly, it is a method of processing by reactive ion etching or the like.

【0009】ゾーンプレートの材料としては、使用する
X線のエネルギーに応じて、金、銀、ニッケル、タンタ
ル、ゲルマニウム等が用いられる。これまでに作製され
たゾーンプレートで、最も小さい最外ゾーン幅は、数十
nmである。
As a material for the zone plate, gold, silver, nickel, tantalum, germanium, or the like is used according to the energy of the X-ray used. The smallest outermost zone width of the zone plate manufactured so far is several tens nm.

【0010】[0010]

【実施例】一次元ゾーンプレートで目的とする波長λを
4.5nm、焦点距離fを20mmとすると、n=30
00程度で線幅は86nm程度になる。この場合ゾーン
プレート全体の大きさは約1mmである。ゾーンプレー
トの材料としてニッケルを用いるとすると、この場合8
0nm程度の厚さで約15%の集光効率が得られる。こ
れを傾けながら波長を走査すると集光点が一定のまま連
続的に変化し34度傾けたところで波長は、3.1nm
であった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Assuming that a target wavelength λ is 4.5 nm and a focal length f is 20 mm in a one-dimensional zone plate, n = 30.
At about 00, the line width becomes about 86 nm. In this case, the size of the entire zone plate is about 1 mm. If nickel is used as the material of the zone plate, in this case 8
A light collection efficiency of about 15% can be obtained with a thickness of about 0 nm. When the wavelength is scanned while tilting this, the focal point is continuously changed while being constant, and the wavelength is 3.1 nm when tilted by 34 degrees.
Met.

【0011】[0011]

【発明の効果】従来のX線の集光は、同心円状の2次元
ゾーンプレートにより行われていたが、これでは、入射
X線の波長λ(エネルギー)により焦点位置が変動して
いたが、本願発明の方法によれば、X線の波長が変化し
ても焦点位置を変化させる必要がない。
As described above, the conventional X-ray focusing is performed by a concentric two-dimensional zone plate. In this case, the focal position fluctuates due to the wavelength λ (energy) of the incident X-ray. According to the method of the present invention, it is not necessary to change the focal position even when the wavelength of X-rays changes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本願発明の1次元ゾーンプレートの配置図FIG. 1 is a layout diagram of a one-dimensional zone plate of the present invention.

【図2】 従来の円盤状フレネルゾーンプレートの図FIG. 2 is a diagram of a conventional disk-shaped Fresnel zone plate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 23/227 G01N 23/227 G02B 5/18 G02B 5/18 G21K 7/00 G21K 7/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 23/227 G01N 23/227 G02B 5/18 G02B 5/18 G21K 7/00 G21K 7/00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フレネルゾーンプレートを用いたX線集
光方法において、2個の1次元フレネルゾーンプレート
を直交してX線線路に配置することにより、焦点位置を
不動としたことを特徴とするX線集光方法。
1. An X-ray focusing method using a Fresnel zone plate, wherein two one-dimensional Fresnel zone plates are orthogonally arranged on an X-ray line so that a focal position is fixed. X-ray focusing method.
【請求項2】 請求項1記載のX線集光方法において、
入射X線の波長に応じて、上記1次元ゾーンプレートを
傾斜させたことを特徴とするX線集光方法。
2. The X-ray focusing method according to claim 1, wherein
An X-ray focusing method, wherein the one-dimensional zone plate is inclined according to the wavelength of incident X-rays.
【請求項3】 フレネルゾーンプレートを用いたX線集
光装置において、2個の1次元フレネルゾーンプレート
を直交してX線線路に配置し、焦点位置を不動としたこ
とを特徴とするX線集光装置。
3. An X-ray condensing apparatus using a Fresnel zone plate, wherein two one-dimensional Fresnel zone plates are orthogonally arranged on an X-ray line, and a focal position is fixed. Light collector.
【請求項4】 請求項3記載のX線集光装置において、
入射X線の波長に応じて、上記1次元ゾーンプレートを
傾斜させたことを特徴とするX線集光装置。
4. The X-ray focusing apparatus according to claim 3, wherein
An X-ray focusing apparatus wherein the one-dimensional zone plate is tilted according to the wavelength of incident X-rays.
JP2001154623A 2001-05-23 2001-05-23 X-ray focusing method and X-ray focusing apparatus Expired - Lifetime JP3643866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001154623A JP3643866B2 (en) 2001-05-23 2001-05-23 X-ray focusing method and X-ray focusing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001154623A JP3643866B2 (en) 2001-05-23 2001-05-23 X-ray focusing method and X-ray focusing apparatus

Publications (2)

Publication Number Publication Date
JP2002350593A true JP2002350593A (en) 2002-12-04
JP3643866B2 JP3643866B2 (en) 2005-04-27

Family

ID=18998933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001154623A Expired - Lifetime JP3643866B2 (en) 2001-05-23 2001-05-23 X-ray focusing method and X-ray focusing apparatus

Country Status (1)

Country Link
JP (1) JP3643866B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091269A1 (en) * 2010-12-29 2012-07-05 포항공과대학교 산학협력단 Method for manufacturing x-ray/γ-ray focusing optical system using atomic layer deposition
JP2013002910A (en) * 2011-06-15 2013-01-07 Toshiba Corp Pattern checking method and pattern checking apparatus
CN102881347A (en) * 2012-10-15 2013-01-16 中国科学院上海应用物理研究所 Method for focusing cylindrical wave line source into point light spot by using zone plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091269A1 (en) * 2010-12-29 2012-07-05 포항공과대학교 산학협력단 Method for manufacturing x-ray/γ-ray focusing optical system using atomic layer deposition
KR101195415B1 (en) 2010-12-29 2012-10-29 포항공과대학교 산학협력단 Manufacturing method of X-ray/Gamma-rayG-ray focusing optics using atomic layer deposition
US9366786B2 (en) 2010-12-29 2016-06-14 Postech Academy-Industry Foundation Method for manufacturing X-ray/γ-ray focusing optical system using atomic layer deposition
JP2013002910A (en) * 2011-06-15 2013-01-07 Toshiba Corp Pattern checking method and pattern checking apparatus
CN102881347A (en) * 2012-10-15 2013-01-16 中国科学院上海应用物理研究所 Method for focusing cylindrical wave line source into point light spot by using zone plate
CN102881347B (en) * 2012-10-15 2015-05-20 中国科学院上海应用物理研究所 Method for focusing cylindrical wave line source into point light spot by using zone plate

Also Published As

Publication number Publication date
JP3643866B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
Jarre et al. Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics
US6262845B1 (en) Apparatus and method for generating partially coherent illumination for photolithography
US4659429A (en) Method and apparatus for production and use of nanometer scale light beams
Howells et al. Principles and applications of zone plate X-ray microscopes
US4916721A (en) Normal incidence X-ray mirror for chemical microanalysis
JP2005534183A (en) Optical device
Takeo et al. A highly efficient nanofocusing system for soft x rays
JP2001099994A (en) X-ray concentrating device and x-ray device
JP3643866B2 (en) X-ray focusing method and X-ray focusing apparatus
Behring et al. Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas
US6259764B1 (en) Zone plates for X-rays
Takeuchi et al. Kirkpatrick-Baez type X-ray focusing mirror fabricated by the bent-polishing method
JP2007071615A (en) Surface plasmon resonance angle spectrum measuring device
JP2002039970A (en) X-ray device
JP2690036B2 (en) X-ray spectroscopic focusing element
JP2004333131A (en) Total reflection fluorescence xafs measuring apparatus
CN114994930A (en) Vortex light beam generator based on multi-turn spiral linear nanometer groove structure
JP3643865B2 (en) X-ray focusing method and X-ray focusing apparatus
McCurdy et al. Fabrication and diffraction efficiency of a 160-nm period x-ray reflection grating produced using thermally activated selective topography equilibration
JPH02271300A (en) X-ray collector
JP2005504318A (en) measuring device
JP4668899B2 (en) Refraction type X-ray element
RU2634332C2 (en) X-ray lens based on reflection effect
TW552464B (en) A method of measuring parameters relating to a lithography device
JPH1073698A (en) Vacuum ultra-violet spectroscope for laser plasma x ray

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3643866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term