JP3641840B2 - Horizontal capacitor - Google Patents

Horizontal capacitor Download PDF

Info

Publication number
JP3641840B2
JP3641840B2 JP23003894A JP23003894A JP3641840B2 JP 3641840 B2 JP3641840 B2 JP 3641840B2 JP 23003894 A JP23003894 A JP 23003894A JP 23003894 A JP23003894 A JP 23003894A JP 3641840 B2 JP3641840 B2 JP 3641840B2
Authority
JP
Japan
Prior art keywords
flow rate
bypass pipe
region
heat exchange
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23003894A
Other languages
Japanese (ja)
Other versions
JPH0894266A (en
Inventor
仁志 宮本
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP23003894A priority Critical patent/JP3641840B2/en
Publication of JPH0894266A publication Critical patent/JPH0894266A/en
Application granted granted Critical
Publication of JP3641840B2 publication Critical patent/JP3641840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、横型コンデンサに係り、特に、横置き状態の本体胴部の内部における熱交換により、高温流体を凝縮状態に導く場合の熱効率の向上を図るものである。
【0002】
【従来の技術】
図4は、実開平4−122974号公報に記載されている蒸気の凝縮に使用される熱交換器の例を示している。
図4において、符号1は本体胴部、2は管板、3は熱交換室、4は伝熱管、5はバッフルプレート、6は切欠部、7は基部ケーシング、8は入り口プレナム部、9は出口プレナム部、10は管内流体用入り口、11は管内流体用出口、12は胴内流体用入り口、13Aは上部胴内流体用出口、13Bは下部胴内流体用出口である。
【0003】
このような熱交換器にあっては、管内流体が上下の群に2分割された伝熱管4を実線の矢印で示すように往復するとともに、破線の矢印で示すように挿通する胴内流体が蒸気である場合に、熱交換部3における冷却に伴って一部が凝縮されて、蒸気分が上部胴内流体用出口13Aから排出され、凝縮液分が下部胴内流体用出口13Bから排出される構造となっている。
【0004】
【発明が解決しようとする課題】
しかし、胴内流体を凝縮させる場合であると、凝縮により胴内流体の体積が大幅に減少する(常圧スチームでは約1000分の1に減少する)ために、伝熱性を維持しようとすると、胴内流体の流速を著しく低下させる必要がある。
胴内流体の流速は、バッフルプレート5の間隔を変更することにより調整可能であるものの、上述のように体積変動が大き過ぎる場合には、実質的に不可能である。
その対応案としては、直列接続状態の蒸気凝縮用熱交換器と凝縮液用熱交換器とを二つ使用して、個別に熱交換を行なうことが考えられるが、その場合には、高温流体の方は二つの熱交換器に直列的に送り込むことで対応できるものの、低温流体は、二つの熱交換器に別々に流量の異なるものを送り込む必要があり、非効率的なものとなるのに加えて、種類の異なる熱交換器の準備や設置スペースの確保等の面でも障害が大きくなる。
【0005】
本発明は、これらの事情に鑑みてなされたもので、一つの本体胴部で蒸気の凝縮と凝縮液の冷却とを行ない、小型化を図るとともに、その際の熱交換効率を向上させることを目的としている。
【0006】
【課題を解決するための手段】
横置き状態の本体胴部の内部に、熱交換室の高温流体と熱交換をする複数の伝熱管が収納され、高温流体が熱交換によって凝縮状態に導かれる横型コンデンサとして、熱交換室が、上下隔壁により大容積の凝縮域と小容積のサブクール域とに区画され、凝縮域及びサブクール域に、これらを接続する接続口と、該接続口から離間した状態の高温流体入口及び凝縮液出口とが配され、サブクール域には、複数の伝熱管よりも口径の大きいバイパス管が並列接続状態に配され、バイパス管には、その内部を挿通する流体の流量を調整する流量調整手段が配される構成が採用される。
流量調整手段として、凝縮液の流量を検出する流量計と、該流量計に接続され流量検出信号によりバイパス管の流量を演算する演算部と、該演算部に接続状態にかつバイパス管に配され演算部の指令により開度を調整する制御弁とを具備する構成が採用される。
【0007】
【作用】
熱交換室の内部に送り込まれた高温流体は、大容積の凝縮域において伝熱管に送り込まれた低温流体との間で熱交換を行ない、凝縮により凝縮液となる。
凝縮液は、小容積のサブクール域に送り込まれて、凝縮域に達する前の低温流体との間で熱交換を行なう。
低温流体は、サブクール域において複数の伝熱管と口径の大きいバイパス管とに分流し、流量調整手段によりバイパス管の流量が調整されることにより、サブクール域における熱交換量が制御される。
凝縮液の流量は流量計により検出されて、その検出データにより伝熱管の必要流量が演算され、その演算結果に基づいて、制御弁を介してバイパス管の流量を調整することにより、サブクール域における伝熱管の流量が設定される。
【0008】
【実施例】
以下、本発明に係る横型コンデンサの一実施例を図1ないし図3に基づいて説明する。
【0009】
該一実施例における横型コンデンサには、図1及び図2に示すように、横置き状態に設置される本体胴部1と、該本体胴部1の内部に配され一対の管板2で区画された状態の熱交換室3と、該熱交換室3に配され熱交換を行なうための伝熱管4及び流路を蛇行させるための複数のバッフルプレート5A,5B及び切欠部6と、基部ケーシング7に形成され伝熱管4により接続される入り口プレナム部8及び出口プレナム部9と、伝熱管4への流体送り込み及び流出を行なうための管内流体用入り口10及び管内流体用出口11と、上下の伝熱管4を接続状態とするための中間ケーシング14とが配される。
【0010】
これらの構造に加えて、熱交換室3には、水平状態の上下隔壁21により大容積の凝縮域22と小容積のサブクール域23とが区画形成され、凝縮域22及びサブクール域23には、その一部を中間ケーシング14の近傍で接続状態とする接続口24と、該接続口24から離間した位置で凝縮域22及びサブクール域23に対して接続状態の高温流体入口25及び凝縮液出口26とが配される。
【0011】
前記サブクール域23には、複数の伝熱管4よりも相対的に口径の大きいバイパス管27が、伝熱管4と並列接続状態に配される。
【0012】
前記バイパス管27には、その内部を挿通する流体の流量を調整するための流量調整手段28が配され、該流量調整手段28は、凝縮液排出ライン29の途中に配されて凝縮液の流量を検出する流量計30と、該流量計30に接続され流量検出信号によりバイパス管27に流すべき流量を演算する演算部31と、該演算部31に接続されるとともにバイパス管27に配されて開度を調整する機能を有する制御弁32とを具備するものが採用される。
【0013】
このような横型コンデンサにあっては、凝縮されるべき高温流体が、図1の破線の矢印で示すように、高温流体入口25から、熱交換室3における凝縮域22、接続口24、サブクール域23を経由して凝縮液出口26から排出される挿通状態となり、高温流体を冷却して凝縮状態とするための低温流体が、図1の実線の矢印で示すように、管内流体用入り口10から、入り口プレナム部8、サブクール域23の伝熱管4またはバイパス管27、中間ケーシング14の内部、凝縮域22の伝熱管4、出口プレナム部9を経由して管内流体用出口11から排出される挿通状態となる。
【0014】
したがって、高温流体は、容積の大きい凝縮域22での冷却により凝縮されて凝縮液となり、この凝縮により生成された凝縮液は、小容積のサブクール域23で凝縮域22に達する前の低温流体との熱交換により冷却される。
【0015】
そして、前述したように、高温流体は凝縮されることによって著しく体積が減少するとともに、凝縮液となることによって熱伝達性が高められるため、サブクール域23は、凝縮域22と比較して、その横断面積が著しく小さくなるように設定される。
【0016】
しかし、本体胴部1の中を凝縮域22及びサブクール域23に区画する場合には、サブクール域23と凝縮域22との間で、低温流体を直列的に流す都合上、サブクール域23及び凝縮域22における伝熱管4の総断面積を概略一致させる必要が生じるため、サブクール域23における総伝熱管4の断面積及びバイパス管27の断面積の和が、凝縮域22における総伝熱管4の断面積よりも若干大きくなるように、バイパス管27の口径を設定する。
そして、バイパス管27の流量を流量調整手段28により調整して、低温流体がサブクール域23から凝縮域22に円滑に送り込まれるように設定する。
【0017】
また、図1例では、流量調整手段28において、流量計30による凝縮液排出ライン29の凝縮液量の検出が行なわれ、流量の検出データにより、サブクール域23の伝熱管4に流すべき低温流体の必要流量が演算される。
これらの低温流体の必要流量に基づいて、制御弁32の開度調整を行なって、バイパス管27を流す低温流体の流量を調整することにより、サブクール域23における伝熱管4の流量が設定され、言い換えると、サブクール域23における熱交換量が制御される。
【0018】
図3は、高温流体の凝縮及び凝縮液の冷却と、低温流体の温度上昇との関係モデルを示している。
高温流体入口25の高温流体の温度がT1 である場合、凝縮域22における凝縮時には、潜熱の放出により高温流体がほぼ一定の温度Tc となり、サブクール域23における凝縮液の冷却によって凝縮液出口26の凝縮液の温度がT2 まで低下するものとし、この際に、低温流体が入り口プレナム部8で温度t1 ,出口プレナム部9で温度t2 となり、温度t1 から温度t2 まで円滑に変化して、温度t2 が温度T2 と同程度以上であれば、両者の熱交換が理想的に行なわれたことを意味する。
つまり、前述の図4例の従来技術のように、サブクール域における熱交換が不十分であると、温度Tc と温度T2 との差が少なくなり、熱交換効率が低下するが、図1及び図2例では、温度Tc と温度T2 との差が大きく、サブクール域23の熱交換効率の向上を図ることができる。
【0019】
【発明の効果】
以上説明したように、本発明に係る横型コンデンサによれば、以下のような効果を奏する。
(1) 熱交換室が、上下隔壁により大容積の凝縮域と小容積のサブクール域とに区画される構成の採用により、一つの本体胴部の内部で蒸気の凝縮と凝縮液の冷却とを行なって、小型化と省スペース化とを図り、低コスト化を達成することができる。
また、サブクール域に、複数の伝熱管よりも口径の大きいバイパス管を並列接続状態に配して冷却流体と分流させることにより、全量の冷却流体を直列的に挿通させて、熱交換効率を向上させることができる。
さらに、バイパス管に、その内部を挿通する流体の流量を調整する流量調整手段を配することにより、凝縮域の大容積化とサブクール域の小容積化とを容易にして、一層の熱効率の向上を図ることができる。
) 流量調整手段として、流量計、演算部及び制御弁を付加することにより、凝縮液量に対応してサブクール域の低温流体の流量を設定し、精度の高い熱交換を実施することができる。
【図面の簡単な説明】
【図1】本発明に係る横型コンデンサの一実施例を示す正断面図である。
【図2】本発明に係る横型コンデンサの一実施例を示す横断面図である。
【図3】本発明に係る横型コンデンサの熱交換時における温度変化のモデル図である。
【図4】蒸気凝縮に使用される熱交換器の従来例を示す一部を切欠した正面図である。
【符号の説明】
1 本体胴部
2 管板
3 熱交換室
4 伝熱管
5A,5B バッフルプレート
6 切欠部
7 基部ケーシング
8 入り口プレナム部
9 出口プレナム部
10 管内流体用入り口
11 管内流体用出口
14 中間ケーシング
21 上下隔壁
22 凝縮域
23 サブクール域
24 接続口
25 高温流体入口
26 凝縮液出口
27 バイパス管
28 流量調整手段
29 凝縮液排出ライン
30 流量計
31 演算部
32 制御弁
[0001]
[Industrial application fields]
The present invention relates to a horizontal capacitor, and in particular, aims to improve thermal efficiency when a high-temperature fluid is led to a condensed state by heat exchange inside a horizontally placed main body trunk.
[0002]
[Prior art]
FIG. 4 shows an example of a heat exchanger used for condensing steam described in Japanese Utility Model Laid-Open No. 4-122974.
In FIG. 4, reference numeral 1 is a main body, 2 is a tube plate, 3 is a heat exchange chamber, 4 is a heat transfer tube, 5 is a baffle plate, 6 is a notch, 7 is a base casing, 8 is an inlet plenum, and 9 is The outlet plenum 10 is an inlet for in-pipe fluid, 11 is an outlet for in-pipe fluid, 12 is an inlet for in-cylinder fluid, 13A is an outlet for upper in-cylinder fluid, and 13B is an outlet for lower in-cylinder fluid.
[0003]
In such a heat exchanger, the in-cylinder fluid that reciprocates as shown by the solid line arrow and the pipe fluid that passes through the heat transfer pipe 4 divided into the upper and lower groups as shown by the solid line arrow. In the case of steam, a part of the steam is condensed with cooling in the heat exchanging section 3, the steam is discharged from the upper trunk fluid outlet 13 </ b> A, and the condensate is discharged from the lower trunk fluid outlet 13 </ b> B. It has a structure.
[0004]
[Problems to be solved by the invention]
However, in the case of condensing the in-cylinder fluid, the volume of the in-cylinder fluid is greatly reduced by condensation (decreasing to about 1/1000 in normal pressure steam). The flow rate of the in-cylinder fluid needs to be significantly reduced.
Although the flow rate of the in-cylinder fluid can be adjusted by changing the interval between the baffle plates 5, it is substantially impossible if the volume fluctuation is too large as described above.
As a countermeasure, it is conceivable to use two heat exchangers for vapor condensing and a heat exchanger for condensate connected in series to perform heat exchange separately. Although it is possible to cope with this by sending two heat exchangers in series, the low-temperature fluid must be sent to the two heat exchangers with different flow rates, which is inefficient. In addition, obstacles also increase in terms of preparing different types of heat exchangers and securing installation space.
[0005]
The present invention has been made in view of these circumstances, and condenses steam and cools the condensate in one main body to reduce the size and improve the heat exchange efficiency at that time. It is aimed.
[0006]
[Means for Solving the Problems]
A plurality of heat transfer tubes that exchange heat with the high-temperature fluid in the heat exchange chamber are housed inside the main body of the horizontal installation state, and the heat exchange chamber is a horizontal condenser in which the high-temperature fluid is led to a condensed state by heat exchange. A large volume condensing area and a small volume subcooling area are partitioned by the upper and lower partition walls, a condensing area and a subcooling area are connected to the connection port, and a high temperature fluid inlet and a condensate outlet are separated from the connection port. In the subcool zone, a bypass pipe having a diameter larger than that of the plurality of heat transfer pipes is arranged in parallel, and the bypass pipe is provided with a flow rate adjusting means for adjusting the flow rate of the fluid that passes through the bypass pipe. configuration is adopted that.
As flow rate adjusting means, a flow meter for detecting the flow rate of the condensate, a calculation unit connected to the flow meter for calculating the flow rate of the bypass pipe by a flow rate detection signal, and connected to the calculation unit and arranged in the bypass pipe The structure which comprises the control valve which adjusts an opening degree by the command of a calculating part is employ | adopted.
[0007]
[Action]
The high-temperature fluid sent into the heat exchange chamber exchanges heat with the low-temperature fluid sent into the heat transfer tube in the large-volume condensation zone, and becomes a condensate by condensation.
The condensate is fed into a small-capacity subcooling region to exchange heat with a low-temperature fluid before reaching the condensing region.
The low-temperature fluid is divided into a plurality of heat transfer tubes and a bypass pipe having a large diameter in the subcool region, and the amount of heat exchange in the subcool region is controlled by adjusting the flow rate of the bypass tube by the flow rate adjusting means.
The flow rate of the condensate is detected by a flow meter, and the required flow rate of the heat transfer tube is calculated from the detection data. Based on the calculation result, the flow rate of the bypass tube is adjusted via the control valve. The flow rate of the heat transfer tube is set.
[0008]
【Example】
Hereinafter, an embodiment of a horizontal capacitor according to the present invention will be described with reference to FIGS.
[0009]
As shown in FIGS. 1 and 2, the horizontal capacitor in the embodiment is divided into a main body body portion 1 installed in a horizontally placed state and a pair of tube plates 2 arranged inside the main body body portion 1. A heat exchange chamber 3 in a state of being made, a plurality of baffle plates 5A and 5B and a notch portion 6 for meandering the heat transfer tubes 4 and the flow paths arranged in the heat exchange chamber 3, and a base casing An inlet plenum portion 8 and an outlet plenum portion 9 that are formed in the heat transfer tube 4 and are connected to each other by a heat transfer tube 4, a fluid inlet 10 and a fluid outlet 11 for fluid flow into and out of the heat transfer tube 4, and An intermediate casing 14 for placing the heat transfer tubes 4 in a connected state is disposed.
[0010]
In addition to these structures, the heat exchange chamber 3 is divided into a large-capacity condensation area 22 and a small-capacity subcool area 23 by the upper and lower partition walls 21 in a horizontal state. A connection port 24 in which a part thereof is connected in the vicinity of the intermediate casing 14, and a high-temperature fluid inlet 25 and a condensate outlet 26 that are connected to the condensation region 22 and the subcooling region 23 at a position away from the connection port 24. And are arranged.
[0011]
In the subcool region 23, a bypass pipe 27 having a relatively larger diameter than the plurality of heat transfer tubes 4 is arranged in parallel with the heat transfer tubes 4.
[0012]
The bypass pipe 27 is provided with a flow rate adjusting means 28 for adjusting the flow rate of the fluid passing through the inside of the bypass pipe 27, and the flow rate adjusting means 28 is provided in the middle of the condensate discharge line 29 to flow the condensate flow rate. A flow meter 30 that detects the flow rate, a calculation unit 31 that is connected to the flow meter 30 and calculates a flow rate that should flow through the bypass pipe 27 based on a flow detection signal, and is connected to the calculation unit 31 and arranged in the bypass pipe 27 What comprises the control valve 32 which has the function to adjust an opening degree is employ | adopted.
[0013]
In such a horizontal condenser, the high temperature fluid to be condensed flows from the high temperature fluid inlet 25 to the condensing region 22, the connection port 24, the subcooling region in the heat exchange chamber 3, as indicated by the broken arrow in FIG. As shown by the solid line arrow in FIG. 1, a low temperature fluid for cooling the high temperature fluid into a condensed state is inserted from the condensate outlet 26 through the condensate outlet 26. , The inlet plenum 8, the heat transfer pipe 4 or bypass pipe 27 in the subcool zone 23, the inside of the intermediate casing 14, the heat transfer pipe 4 in the condensing zone 22, and the outlet discharged from the pipe outlet 11 through the outlet plenum 9. It becomes a state.
[0014]
Accordingly, the high-temperature fluid is condensed by cooling in the condensing region 22 having a large volume to become a condensate, and the condensate generated by this condensation is the same as the low-temperature fluid before reaching the condensing region 22 in the small-volume subcool region 23. It is cooled by heat exchange.
[0015]
As described above, the volume of the high-temperature fluid is remarkably reduced by condensing, and heat transferability is improved by becoming a condensate. It is set so that the cross-sectional area is significantly reduced.
[0016]
However, when the inside of the main body 1 is divided into the condensation area 22 and the subcool area 23, the subcool area 23 and the condensation area are arranged for the purpose of flowing a low-temperature fluid in series between the subcool area 23 and the condensation area 22. Since the total cross-sectional area of the heat transfer tube 4 in the region 22 needs to be approximately matched, the sum of the cross-sectional area of the total heat transfer tube 4 in the subcool region 23 and the cross-sectional area of the bypass tube 27 is the sum of the total heat transfer tube 4 in the condensation region 22. The diameter of the bypass pipe 27 is set so as to be slightly larger than the cross-sectional area.
Then, the flow rate of the bypass pipe 27 is adjusted by the flow rate adjusting means 28 so that the low-temperature fluid is smoothly fed from the subcool zone 23 to the condensation zone 22.
[0017]
Further, in the example of FIG. 1, the flow rate adjusting means 28 detects the amount of condensate in the condensate discharge line 29 by the flow meter 30, and the low-temperature fluid to be flowed to the heat transfer tube 4 in the subcool region 23 based on the flow rate detection data. The required flow rate is calculated.
Based on the required flow rate of these low-temperature fluids, the flow rate of the heat transfer pipe 4 in the subcool region 23 is set by adjusting the opening degree of the control valve 32 and adjusting the flow rate of the low-temperature fluid flowing through the bypass pipe 27. In other words, the heat exchange amount in the subcool region 23 is controlled.
[0018]
FIG. 3 shows a relationship model between the condensation of the hot fluid and the cooling of the condensate and the temperature rise of the cold fluid.
When the temperature of the high-temperature fluid at the high-temperature fluid inlet 25 is T 1 , when condensing in the condensation zone 22, the high-temperature fluid becomes a substantially constant temperature T c due to the release of latent heat, and the condensate outlet is cooled by cooling the condensate in the subcool zone 23. assume that the temperature of the condensate 26 is reduced to T 2, when the temperature t 1 cryogen in the inlet plenum section 8 smoothly temperature t 2 becomes from the temperature t 1 to a temperature t 2 at the outlet plenum 9 In other words, if the temperature t 2 is equal to or higher than the temperature T 2 , it means that the heat exchange between them is ideally performed.
In other words, as in the prior art 4 example figure above, the heat exchange in the subcooling region is insufficient, the difference between the temperature T c and temperature T 2 is decreased, the heat exchange efficiency is reduced, FIG. 1 In the example of FIG. 2, the difference between the temperature T c and the temperature T 2 is large, and the heat exchange efficiency of the subcool region 23 can be improved.
[0019]
【The invention's effect】
As described above, the horizontal capacitor according to the present invention has the following effects.
(1) By adopting a configuration in which the heat exchange chamber is divided into a large-capacity condensing area and a small-capacity subcooling area by upper and lower partition walls, condensing steam and cooling condensate inside one main body body. Therefore, it is possible to achieve downsizing and space saving, and to achieve cost reduction.
In addition, by arranging a bypass pipe with a larger diameter than the heat transfer tubes in a parallel connection in the subcooling region and diverting it from the cooling fluid, the entire amount of cooling fluid is inserted in series to improve heat exchange efficiency. Can be made.
Furthermore, by providing a flow rate adjusting means for adjusting the flow rate of the fluid that passes through the inside of the bypass pipe, it is easy to increase the volume of the condensing area and to reduce the volume of the subcooling area, thereby further improving the thermal efficiency. Can be achieved.
( 2 ) By adding a flow meter, calculation unit, and control valve as the flow rate adjusting means, the flow rate of the low-temperature fluid in the subcooling region can be set according to the amount of condensate, and highly accurate heat exchange can be performed. it can.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing an embodiment of a horizontal capacitor according to the present invention.
FIG. 2 is a cross-sectional view showing an embodiment of a horizontal capacitor according to the present invention.
FIG. 3 is a model diagram of a temperature change during heat exchange of the horizontal capacitor according to the present invention.
FIG. 4 is a partially cutaway front view showing a conventional example of a heat exchanger used for steam condensation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Body trunk | drum 2 Tube plate 3 Heat exchange chamber 4 Heat transfer tube 5A, 5B Baffle plate 6 Notch part 7 Base casing 8 Inlet plenum part 9 Outlet plenum part 10 Inlet for in-pipe fluid 11 Outlet for in-pipe fluid 14 Intermediate casing 21 Upper and lower partition walls 22 Condensation zone 23 Subcooling zone 24 Connection port 25 High temperature fluid inlet 26 Condensate outlet 27 Bypass pipe 28 Flow rate adjusting means 29 Condensate discharge line 30 Flow meter 31 Calculation unit 32 Control valve

Claims (2)

横置き状態の本体胴部(1)の内部に、熱交換室(3)の高温流体と熱交換をする複数の伝熱管(4)が収納され、高温流体が熱交換によって凝縮状態に導かれる横型コンデンサであって、熱交換室が、上下隔壁(21)により大容積の凝縮域(22)と小容積のサブクール域(23)とに区画され、凝縮域及びサブクール域に、これらを接続する接続口(24)と、該接続口から離間した状態の高温流体入口(25)及び凝縮液出口(26)とが配され
前記サブクール域(23)に、複数の伝熱管(4)よりも口径の大きいバイパス管(27)が並列接続状態に配され、
該バイパス管(27)に、その内部を挿通する流体の流量を調整する流量調整手段(28)が配されることを特徴とする横型コンデンサ。
A plurality of heat transfer tubes (4) for exchanging heat with the high-temperature fluid in the heat exchange chamber (3) are accommodated in the main body body (1) in the horizontal state, and the high-temperature fluid is led to a condensed state by heat exchange. A horizontal condenser in which a heat exchange chamber is partitioned into a large-capacity condensing region (22) and a small-capacity subcooling region (23) by upper and lower partition walls (21), and these are connected to the condensing region and the subcooling region. A connection port (24), a high-temperature fluid inlet (25) and a condensate outlet (26) spaced from the connection port ,
A bypass pipe (27) having a larger diameter than the plurality of heat transfer pipes (4) is arranged in a parallel connection state in the subcool region (23),
A horizontal capacitor characterized in that the bypass pipe (27) is provided with a flow rate adjusting means (28) for adjusting a flow rate of a fluid passing through the bypass pipe (27) .
流量調整手段(28)が、凝縮液の流量を検出する流量計(30)と、該流量計に接続され流量検出信号によりバイパス管(27)の流量を演算する演算部(31)と、該演算部に接続状態にかつバイパス管に配され演算部の指令により開度を調整する制御弁(32)とを具備することを特徴とする請求項記載の横型コンデンサ。The flow rate adjusting means (28) includes a flow meter (30) that detects the flow rate of the condensate, a calculation unit (31) that is connected to the flow meter and calculates the flow rate of the bypass pipe (27) based on the flow rate detection signal, horizontal capacitor according to claim 1, characterized by comprising control valve disposed in the bypass pipe and the connected state to the arithmetic unit for adjusting the degree of opening by a command calculating section (32).
JP23003894A 1994-09-26 1994-09-26 Horizontal capacitor Expired - Fee Related JP3641840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23003894A JP3641840B2 (en) 1994-09-26 1994-09-26 Horizontal capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23003894A JP3641840B2 (en) 1994-09-26 1994-09-26 Horizontal capacitor

Publications (2)

Publication Number Publication Date
JPH0894266A JPH0894266A (en) 1996-04-12
JP3641840B2 true JP3641840B2 (en) 2005-04-27

Family

ID=16901597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23003894A Expired - Fee Related JP3641840B2 (en) 1994-09-26 1994-09-26 Horizontal capacitor

Country Status (1)

Country Link
JP (1) JP3641840B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014535B1 (en) * 2008-10-24 2011-02-14 기아자동차주식회사 Heat exchanger with cap having fuel cooling pipe
CN106017122B (en) * 2016-05-23 2017-12-08 中国能源建设集团广东省电力设计研究院有限公司 The automatic regulating system and its method of the water inlet flow velocity of Cooling Tubes of Condenser
KR20180001347U (en) * 2016-10-29 2018-05-10 김만철 Fluid cooling device and dehumidification system including the same
KR102436657B1 (en) * 2017-07-24 2022-08-26 현대두산인프라코어 주식회사 Heat exchanger for engine

Also Published As

Publication number Publication date
JPH0894266A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
JPH10176874A (en) Heat-exchanger
JP3641840B2 (en) Horizontal capacitor
CN115574493A (en) Condenser and air conditioning system
EP0216629B1 (en) Air-cooled absorption type water cooling/heating apparatus
CN211041484U (en) Shunting evaporator and air conditioner
CN209495488U (en) Helical heat exchanger
JP2717716B2 (en) refrigerator
CN216011289U (en) Device containing superheated steam heating heat conduction oil in three temperature intervals
CN109579366A (en) A kind of dry type shell and tube evaporator condenser combined system
CN213901546U (en) Heat recovery system and power supply system
KR101060090B1 (en) Pressure switch installation structure of heat exchanger
CN218583480U (en) Condenser and air conditioning system
JPS62252849A (en) Heat exchanger
CN112378120A (en) Heat recovery system and power supply system
JP2003294338A (en) Heat exchanger
JPH10103795A (en) Water cooled refrigerating device
JPH0359364A (en) Refrigerant condensor
CN206235056U (en) A kind of dry evaporator that can improve heat exchange property
JPS602470Y2 (en) Heat exchanger for refrigerator
JPS6215662Y2 (en)
JP2983705B2 (en) Outdoor heat exchanger of air conditioner
JP4107864B2 (en) Plate heat exchanger and absorption refrigerator using the same
KR100300117B1 (en) Refrigerant Heat Exchanger
JPH03255890A (en) Heat exchanger
JPS6284297A (en) Vertical multitublar type heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees