JPH0894266A - Horizontal type condenser - Google Patents

Horizontal type condenser

Info

Publication number
JPH0894266A
JPH0894266A JP23003894A JP23003894A JPH0894266A JP H0894266 A JPH0894266 A JP H0894266A JP 23003894 A JP23003894 A JP 23003894A JP 23003894 A JP23003894 A JP 23003894A JP H0894266 A JPH0894266 A JP H0894266A
Authority
JP
Japan
Prior art keywords
area
flow rate
subcool
condensation
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23003894A
Other languages
Japanese (ja)
Other versions
JP3641840B2 (en
Inventor
Hitoshi Miyamoto
仁志 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP23003894A priority Critical patent/JP3641840B2/en
Publication of JPH0894266A publication Critical patent/JPH0894266A/en
Application granted granted Critical
Publication of JP3641840B2 publication Critical patent/JP3641840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE: To make it possible to condense steam and cool a condensation liquid with one shell body by segmenting a heat exchanger chamber into a large volume of condensation area and a small volume of a subcool area with upper and lower partitions and installing a connection nozzle which connects these areas and a high temperature fluid inlet and a condensation liquid outlet in a separated state therefrom. CONSTITUTION: A heat exchanger chamber 3 is segmented into a large volume of condensation area 22 and a small volume of subcool area 23 with upper and lower partitions 21 in a horizontal state where a connection nozzle 24, which is partially connected thereto near an intermediate casing 14 and a high temperature fluid inlet 25 and a condensation liquid outlet 26 connected to the condensation area 22 and the subcool area 23 at a position separated therefrom, are installed. Furthermore, there is installed a bypass pipeline 27 which is relatively larger than a plurality of heat exchanger tubes 4 in a lined up and connected state in parallel with the heat exchanger tubes 4 in the subcool area 23. This construction makes it possible to condense steam and cool a condensation liquid with one main body shell and reduce the size and enhance the heat exchanger efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、横型コンデンサに係
り、特に、横置き状態の本体胴部の内部における熱交換
により、高温流体を凝縮状態に導く場合の熱効率の向上
を図るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a horizontal condenser, and more particularly to improving the thermal efficiency in the case where a high temperature fluid is brought into a condensed state by heat exchange inside the main body in a horizontal state.

【0002】[0002]

【従来の技術】図4は、実開平4−122974号公報
に記載されている蒸気の凝縮に使用される熱交換器の例
を示している。図4において、符号1は本体胴部、2は
管板、3は熱交換室、4は伝熱管、5はバッフルプレー
ト、6は切欠部、7は基部ケーシング、8は入り口プレ
ナム部、9は出口プレナム部、10は管内流体用入り
口、11は管内流体用出口、12は胴内流体用入り口、
13Aは上部胴内流体用出口、13Bは下部胴内流体用
出口である。
2. Description of the Related Art FIG. 4 shows an example of a heat exchanger used for steam condensation disclosed in Japanese Utility Model Laid-Open No. 4-122974. In FIG. 4, reference numeral 1 is a main body portion, 2 is a tube plate, 3 is a heat exchange chamber, 4 is a heat transfer tube, 5 is a baffle plate, 6 is a notch portion, 7 is a base casing, 8 is an inlet plenum portion, and 9 is Outlet plenum portion, 10 is an inlet for fluid in the pipe, 11 is an outlet for fluid in the pipe, 12 is an inlet for fluid in the body,
13A is an upper body fluid outlet, and 13B is a lower body fluid outlet.

【0003】このような熱交換器にあっては、管内流体
が上下の群に2分割された伝熱管4を実線の矢印で示す
ように往復するとともに、破線の矢印で示すように挿通
する胴内流体が蒸気である場合に、熱交換部3における
冷却に伴って一部が凝縮されて、蒸気分が上部胴内流体
用出口13Aから排出され、凝縮液分が下部胴内流体用
出口13Bから排出される構造となっている。
In such a heat exchanger, a body in which the fluid inside the tube reciprocates through the heat transfer tubes 4 divided into upper and lower groups as shown by solid arrows and is inserted as shown by broken arrows. When the inner fluid is steam, a part of it is condensed as it cools in the heat exchange unit 3, the vapor component is discharged from the upper in-body fluid outlet 13A, and the condensed liquid component is in the lower in-body fluid outlet 13B. The structure is such that it is discharged from.

【0004】[0004]

【発明が解決しようとする課題】しかし、胴内流体を凝
縮させる場合であると、凝縮により胴内流体の体積が大
幅に減少する(常圧スチームでは約1000分の1に減
少する)ために、伝熱性を維持しようとすると、胴内流
体の流速を著しく低下させる必要がある。胴内流体の流
速は、バッフルプレート5の間隔を変更することにより
調整可能であるものの、上述のように体積変動が大き過
ぎる場合には、実質的に不可能である。その対応案とし
ては、直列接続状態の蒸気凝縮用熱交換器と凝縮液用熱
交換器とを二つ使用して、個別に熱交換を行なうことが
考えられるが、その場合には、高温流体の方は二つの熱
交換器に直列的に送り込むことで対応できるものの、低
温流体は、二つの熱交換器に別々に流量の異なるものを
送り込む必要があり、非効率的なものとなるのに加え
て、種類の異なる熱交換器の準備や設置スペースの確保
等の面でも障害が大きくなる。
However, in the case of condensing the in-body fluid, the volume of the in-body fluid is greatly reduced by the condensation (at atmospheric pressure steam, it is reduced to about 1/1000). In order to maintain heat conductivity, it is necessary to significantly reduce the flow velocity of the fluid in the body. The flow velocity of the in-body fluid can be adjusted by changing the interval between the baffle plates 5, but it is substantially impossible if the volume fluctuation is too large as described above. One possible solution is to use two steam condensing heat exchangers and a condensate heat exchanger that are connected in series, and perform heat exchange individually. Can be handled by feeding two heat exchangers in series, but the cryogenic fluid needs to be fed with different flow rates to the two heat exchangers, which is inefficient. In addition, obstacles become large in terms of preparing different types of heat exchangers and securing installation space.

【0005】本発明は、これらの事情に鑑みてなされた
もので、一つの本体胴部で蒸気の凝縮と凝縮液の冷却と
を行ない、小型化を図るとともに、その際の熱交換効率
を向上させることを目的としている。
The present invention has been made in view of these circumstances, and condenses vapor and cools the condensate in one main body to reduce the size and improve the heat exchange efficiency at that time. The purpose is to let.

【0006】[0006]

【課題を解決するための手段】横置き状態の本体胴部の
内部に、熱交換室の高温流体と熱交換をする複数の伝熱
管が収納され、高温流体が熱交換によって凝縮状態に導
かれる横型コンデンサとして、熱交換室が、上下隔壁に
より大容積の凝縮域と小容積のサブクール域とに区画さ
れ、凝縮域及びサブクール域に、これらを接続する接続
口と、該接続口から離間した状態の高温流体入口及び凝
縮液出口とが配される構成が採用される。サブクール域
には、複数の伝熱管よりも口径の大きいバイパス管が並
列接続状態に配される。バイパス管には、その内部を挿
通する流体の流量を調整する流量調整手段が配される。
流量調整手段として、凝縮液の流量を検出する流量計
と、該流量計に接続され流量検出信号によりバイパス管
の流量を演算する演算部と、該演算部に接続状態にかつ
バイパス管に配され演算部の指令により開度を調整する
制御弁とを具備する構成が採用される。
A plurality of heat transfer tubes for exchanging heat with a high temperature fluid in a heat exchange chamber are housed inside a main body body in a horizontal state, and the high temperature fluid is introduced into a condensed state by heat exchange. As a horizontal condenser, the heat exchange chamber is divided into a large-volume condensation area and a small-volume subcool area by upper and lower partition walls, and a state where the condensation area and the subcool area are connected to each other and are separated from the connection opening. The configuration in which the high temperature fluid inlet and the condensate outlet are arranged is adopted. In the subcool area, bypass pipes having a larger diameter than the heat transfer pipes are arranged in parallel. The bypass pipe is provided with flow rate adjusting means for adjusting the flow rate of the fluid passing through the inside thereof.
As a flow rate adjusting means, a flow meter that detects the flow rate of the condensate, a calculation unit that is connected to the flow meter and calculates the flow rate of the bypass pipe based on a flow rate detection signal, and a calculation unit that is connected to the calculation unit and is arranged in the bypass pipe. A configuration including a control valve that adjusts the opening degree according to a command from the calculation unit is adopted.

【0007】[0007]

【作用】熱交換室の内部に送り込まれた高温流体は、大
容積の凝縮域において伝熱管に送り込まれた低温流体と
の間で熱交換を行ない、凝縮により凝縮液となる。凝縮
液は、小容積のサブクール域に送り込まれて、凝縮域に
達する前の低温流体との間で熱交換を行なう。低温流体
は、サブクール域において複数の伝熱管と口径の大きい
バイパス管とに分流し、流量調整手段によりバイパス管
の流量が調整されることにより、サブクール域における
熱交換量が制御される。凝縮液の流量は流量計により検
出されて、その検出データにより伝熱管の必要流量が演
算され、その演算結果に基づいて、制御弁を介してバイ
パス管の流量を調整することにより、サブクール域にお
ける伝熱管の流量が設定される。
The high-temperature fluid sent into the heat exchange chamber exchanges heat with the low-temperature fluid sent to the heat transfer tube in the large-volume condensation area and becomes a condensed liquid by condensation. The condensate is fed into a small-volume subcooled region to exchange heat with the low temperature fluid before reaching the condensing region. The low-temperature fluid is divided into a plurality of heat transfer tubes and a bypass pipe having a large diameter in the subcool region, and the flow rate of the bypass pipe is adjusted by the flow rate adjusting means, so that the heat exchange amount in the subcool region is controlled. The flow rate of the condensate is detected by the flow meter, the required flow rate of the heat transfer tube is calculated from the detected data, and the flow rate of the bypass tube is adjusted via the control valve based on the calculation result. The flow rate of the heat transfer tube is set.

【0008】[0008]

【実施例】以下、本発明に係る横型コンデンサの一実施
例を図1ないし図3に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the horizontal capacitor according to the present invention will be described below with reference to FIGS.

【0009】該一実施例における横型コンデンサには、
図1及び図2に示すように、横置き状態に設置される本
体胴部1と、該本体胴部1の内部に配され一対の管板2
で区画された状態の熱交換室3と、該熱交換室3に配さ
れ熱交換を行なうための伝熱管4及び流路を蛇行させる
ための複数のバッフルプレート5A,5B及び切欠部6
と、基部ケーシング7に形成され伝熱管4により接続さ
れる入り口プレナム部8及び出口プレナム部9と、伝熱
管4への流体送り込み及び流出を行なうための管内流体
用入り口10及び管内流体用出口11と、上下の伝熱管
4を接続状態とするための中間ケーシング14とが配さ
れる。
The lateral capacitor in the one embodiment includes
As shown in FIGS. 1 and 2, a main body portion 1 installed horizontally and a pair of tube plates 2 arranged inside the main body portion 1.
A heat exchange chamber 3 in a state of being partitioned by, heat transfer tubes 4 arranged in the heat exchange chamber 3 for heat exchange, and a plurality of baffle plates 5A, 5B for meandering a flow path and notches 6
An inlet plenum portion 8 and an outlet plenum portion 9 formed in the base casing 7 and connected by the heat transfer tube 4, an in-pipe fluid inlet 10 and an in-pipe fluid outlet 11 for feeding and discharging the fluid to and from the heat transfer tube 4. And an intermediate casing 14 for connecting the upper and lower heat transfer tubes 4 to each other.

【0010】これらの構造に加えて、熱交換室3には、
水平状態の上下隔壁21により大容積の凝縮域22と小
容積のサブクール域23とが区画形成され、凝縮域22
及びサブクール域23には、その一部を中間ケーシング
14の近傍で接続状態とする接続口24と、該接続口2
4から離間した位置で凝縮域22及びサブクール域23
に対して接続状態の高温流体入口25及び凝縮液出口2
6とが配される。
In addition to these structures, the heat exchange chamber 3 has
The horizontal partition wall 21 divides and forms a large-volume condensation area 22 and a small-volume subcool area 23.
In the sub-cooling area 23, a connection port 24, a part of which is connected in the vicinity of the intermediate casing 14, and the connection port 2
4, the condensation area 22 and the subcool area 23
High temperature fluid inlet 25 and condensate outlet 2 connected to
6 and 6 are arranged.

【0011】前記サブクール域23には、複数の伝熱管
4よりも相対的に口径の大きいバイパス管27が、伝熱
管4と並列接続状態に配される。
In the subcool area 23, a bypass pipe 27 having a relatively larger diameter than the plurality of heat transfer tubes 4 is arranged in parallel with the heat transfer tubes 4.

【0012】前記バイパス管27には、その内部を挿通
する流体の流量を調整するための流量調整手段28が配
され、該流量調整手段28は、凝縮液排出ライン29の
途中に配されて凝縮液の流量を検出する流量計30と、
該流量計30に接続され流量検出信号によりバイパス管
27に流すべき流量を演算する演算部31と、該演算部
31に接続されるとともにバイパス管27に配されて開
度を調整する機能を有する制御弁32とを具備するもの
が採用される。
The bypass pipe 27 is provided with flow rate adjusting means 28 for adjusting the flow rate of the fluid passing through the inside thereof, and the flow rate adjusting means 28 is provided in the middle of the condensate discharge line 29 to condense the fluid. A flow meter 30 for detecting the flow rate of the liquid,
It has a function of being connected to the flow meter 30 and calculating a flow rate to be flown to the bypass pipe 27 by a flow rate detection signal, and being connected to the calculation unit 31 and arranged in the bypass pipe 27 to adjust the opening degree. The one provided with the control valve 32 is adopted.

【0013】このような横型コンデンサにあっては、凝
縮されるべき高温流体が、図1の破線の矢印で示すよう
に、高温流体入口25から、熱交換室3における凝縮域
22、接続口24、サブクール域23を経由して凝縮液
出口26から排出される挿通状態となり、高温流体を冷
却して凝縮状態とするための低温流体が、図1の実線の
矢印で示すように、管内流体用入り口10から、入り口
プレナム部8、サブクール域23の伝熱管4またはバイ
パス管27、中間ケーシング14の内部、凝縮域22の
伝熱管4、出口プレナム部9を経由して管内流体用出口
11から排出される挿通状態となる。
In such a horizontal condenser, the high temperature fluid to be condensed is, as shown by the broken line arrow in FIG. 1, from the high temperature fluid inlet 25 to the condensation area 22 and the connection port 24 in the heat exchange chamber 3. , A low-temperature fluid for cooling the high-temperature fluid to a condensed state is discharged from the condensate outlet 26 via the sub-cooling area 23, as shown by a solid arrow in FIG. Discharge from the inlet 10 through the inlet plenum 8, the heat transfer pipe 4 or the bypass pipe 27 in the subcool region 23, the inside of the intermediate casing 14, the heat transfer pipe 4 in the condensation region 22, and the outlet plenum 9 from the in-pipe fluid outlet 11. The inserted state is reached.

【0014】したがって、高温流体は、容積の大きい凝
縮域22での冷却により凝縮されて凝縮液となり、この
凝縮により生成された凝縮液は、小容積のサブクール域
23で凝縮域22に達する前の低温流体との熱交換によ
り冷却される。
Therefore, the high-temperature fluid is condensed by the cooling in the condensing zone 22 having a large volume to be a condensate, and the condensate produced by this condensing is before reaching the condensing zone 22 in the sub-cooling zone 23 having a small volume. It is cooled by heat exchange with the cryogenic fluid.

【0015】そして、前述したように、高温流体は凝縮
されることによって著しく体積が減少するとともに、凝
縮液となることによって熱伝達性が高められるため、サ
ブクール域23は、凝縮域22と比較して、その横断面
積が著しく小さくなるように設定される。
As described above, the volume of the high temperature fluid is remarkably reduced by being condensed, and the heat transfer property is enhanced by becoming the condensed liquid. Therefore, the subcool region 23 is compared with the condensing region 22. The cross-sectional area is set to be extremely small.

【0016】しかし、本体胴部1の中を凝縮域22及び
サブクール域23に区画する場合には、サブクール域2
3と凝縮域22との間で、低温流体を直列的に流す都合
上、サブクール域23及び凝縮域22における伝熱管4
の総断面積を概略一致させる必要が生じるため、サブク
ール域23における総伝熱管4の断面積及びバイパス管
27の断面積の和が、凝縮域22における総伝熱管4の
断面積よりも若干大きくなるように、バイパス管27の
口径を設定する。そして、バイパス管27の流量を流量
調整手段28により調整して、低温流体がサブクール域
23から凝縮域22に円滑に送り込まれるように設定す
る。
However, when the main body 1 is divided into the condensation area 22 and the subcool area 23, the subcool area 2
3 and the condensing zone 22, the heat transfer tubes 4 in the subcool zone 23 and the condensing zone 22 for the purpose of flowing the low temperature fluid in series.
Therefore, the sum of the cross-sectional area of the total heat transfer tube 4 in the subcool area 23 and the cross-sectional area of the bypass tube 27 is slightly larger than the cross-sectional area of the total heat transfer tube 4 in the condensation area 22. The diameter of the bypass pipe 27 is set so that Then, the flow rate of the bypass pipe 27 is adjusted by the flow rate adjusting means 28 so that the low temperature fluid is smoothly fed from the subcool area 23 to the condensation area 22.

【0017】また、図1例では、流量調整手段28にお
いて、流量計30による凝縮液排出ライン29の凝縮液
量の検出が行なわれ、流量の検出データにより、サブク
ール域23の伝熱管4に流すべき低温流体の必要流量が
演算される。これらの低温流体の必要流量に基づいて、
制御弁32の開度調整を行なって、バイパス管27を流
す低温流体の流量を調整することにより、サブクール域
23における伝熱管4の流量が設定され、言い換える
と、サブクール域23における熱交換量が制御される。
Further, in the example of FIG. 1, the flow rate adjusting means 28 detects the amount of condensate in the condensate discharge line 29 by the flow meter 30, and the flow rate detection data causes it to flow to the heat transfer tube 4 in the subcool area 23. The required flow rate of the low temperature fluid to be calculated is calculated. Based on the required flow rate of these cryogenic fluids,
By adjusting the opening degree of the control valve 32 and adjusting the flow rate of the low temperature fluid flowing through the bypass pipe 27, the flow rate of the heat transfer tube 4 in the subcool region 23 is set, in other words, the heat exchange amount in the subcool region 23 is changed. Controlled.

【0018】図3は、高温流体の凝縮及び凝縮液の冷却
と、低温流体の温度上昇との関係モデルを示している。
高温流体入口25の高温流体の温度がT1 である場合、
凝縮域22における凝縮時には、潜熱の放出により高温
流体がほぼ一定の温度Tc となり、サブクール域23に
おける凝縮液の冷却によって凝縮液出口26の凝縮液の
温度がT2 まで低下するものとし、この際に、低温流体
が入り口プレナム部8で温度t1 ,出口プレナム部9で
温度t2 となり、温度t1 から温度t2 まで円滑に変化
して、温度t2 が温度T2 と同程度以上であれば、両者
の熱交換が理想的に行なわれたことを意味する。つま
り、前述の図4例の従来技術のように、サブクール域に
おける熱交換が不十分であると、温度Tc と温度T2
の差が少なくなり、熱交換効率が低下するが、図1及び
図2例では、温度Tc と温度T2 との差が大きく、サブ
クール域23の熱交換効率の向上を図ることができる。
FIG. 3 shows a model of the relationship between the condensation of the hot fluid and the cooling of the condensate and the temperature rise of the cold fluid.
When the temperature of the hot fluid at the hot fluid inlet 25 is T 1 ,
At the time of condensation in the condensing zone 22, the temperature of the high temperature fluid becomes almost constant Tc due to the release of latent heat, and the cooling of the condensate in the subcool zone 23 lowers the temperature of the condensate at the condensate outlet 26 to T 2. when the temperature t 1 cryogen in the inlet plenum section 8, next the temperature t 2 in the outlet plenum section 9, changes smoothly from the temperature t 1 to a temperature t 2, the temperature t 2 is temperature T 2 and more comparable If so, it means that the heat exchange between them was ideally performed. That is, if the heat exchange in the subcool region is insufficient as in the prior art of the example of FIG. 4 described above, the difference between the temperature T c and the temperature T 2 is reduced, and the heat exchange efficiency is reduced. Further, in the example of FIG. 2, the difference between the temperature T c and the temperature T 2 is large, and the heat exchange efficiency in the subcool region 23 can be improved.

【0019】[0019]

【発明の効果】以上説明したように、本発明に係る横型
コンデンサによれば、以下のような効果を奏する。 (1) 熱交換室が、上下隔壁により大容積の凝縮域と
小容積のサブクール域とに区画される構成の採用によ
り、一つの本体胴部の内部で蒸気の凝縮と凝縮液の冷却
とを行なって、小型化と省スペース化とを図り、低コス
ト化を達成することができる。 (2) サブクール域に、複数の伝熱管よりも口径の大
きいバイパス管を並列接続状態に配して冷却流体と分流
させることにより、全量の冷却流体を直列的に挿通させ
て、熱交換効率を向上させることができる。 (3) バイパス管に、その内部を挿通する流体の流量
を調整する流量調整手段を配することにより、凝縮域の
大容積化とサブクール域の小容積化とを容易にして、一
層の熱効率の向上を図ることができる。 (4) 流量調整手段として、流量計、演算部及び制御
弁を付加することにより、凝縮液量に対応してサブクー
ル域の低温流体の流量を設定し、精度の高い熱交換を実
施することができる。
As described above, the horizontal capacitor according to the present invention has the following effects. (1) By adopting a configuration in which the heat exchange chamber is divided into a large-volume condensing region and a small-volume subcooling region by upper and lower partition walls, vapor condensation and condensate cooling can be performed inside one main body. Therefore, it is possible to achieve miniaturization, space saving, and cost reduction. (2) By arranging bypass pipes having a larger diameter than a plurality of heat transfer pipes in a parallel connection in the subcool region and dividing the flow with the cooling fluid, the entire amount of cooling fluid is inserted in series to improve heat exchange efficiency. Can be improved. (3) By arranging a flow rate adjusting means for adjusting the flow rate of the fluid inserted through the bypass pipe, it is easy to increase the volume of the condensation region and decrease the volume of the subcool region, and to further improve the thermal efficiency. It is possible to improve. (4) By adding a flow meter, an arithmetic unit and a control valve as the flow rate adjusting means, the flow rate of the low temperature fluid in the subcool region can be set in accordance with the amount of condensed liquid, and highly accurate heat exchange can be performed. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る横型コンデンサの一実施例を示す
正断面図である。
FIG. 1 is a front sectional view showing an embodiment of a horizontal capacitor according to the present invention.

【図2】本発明に係る横型コンデンサの一実施例を示す
横断面図である。
FIG. 2 is a cross-sectional view showing an example of a horizontal capacitor according to the present invention.

【図3】本発明に係る横型コンデンサの熱交換時におけ
る温度変化のモデル図である。
FIG. 3 is a model diagram of a temperature change during heat exchange of the horizontal capacitor according to the present invention.

【図4】蒸気凝縮に使用される熱交換器の従来例を示す
一部を切欠した正面図である。
FIG. 4 is a partially cutaway front view showing a conventional example of a heat exchanger used for vapor condensation.

【符号の説明】[Explanation of symbols]

1 本体胴部 2 管板 3 熱交換室 4 伝熱管 5A,5B バッフルプレート 6 切欠部 7 基部ケーシング 8 入り口プレナム部 9 出口プレナム部 10 管内流体用入り口 11 管内流体用出口 14 中間ケーシング 21 上下隔壁 22 凝縮域 23 サブクール域 24 接続口 25 高温流体入口 26 凝縮液出口 27 バイパス管 28 流量調整手段 29 凝縮液排出ライン 30 流量計 31 演算部 32 制御弁 1 Main Body 2 Tube Plate 3 Heat Exchange Chamber 4 Heat Transfer Tube 5A, 5B Baffle Plate 6 Notch 7 Base Casing 8 Inlet Plenum 9 Outlet Plenum 10 Inlet Fluid Inlet 11 Inlet Fluid Outlet 14 Intermediate Casing 21 Upper and Lower Partition 22 Condensation area 23 Subcool area 24 Connection port 25 High temperature fluid inlet 26 Condensate outlet 27 Bypass pipe 28 Flow rate adjusting means 29 Condensate discharge line 30 Flow meter 31 Computing section 32 Control valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 横置き状態の本体胴部(1)の内部に、
熱交換室(3)の高温流体と熱交換をする複数の伝熱管
(4)が収納され、高温流体が熱交換によって凝縮状態
に導かれる横型コンデンサであって、熱交換室が、上下
隔壁(21)により大容積の凝縮域(22)と小容積の
サブクール域(23)とに区画され、凝縮域及びサブク
ール域に、これらを接続する接続口(24)と、該接続
口から離間した状態の高温流体入口(25)及び凝縮液
出口(26)とが配されることを特徴とする横型コンデ
ンサ。
1. Inside the main body (1) in a horizontal state,
A horizontal condenser in which a plurality of heat transfer tubes (4) for exchanging heat with the high temperature fluid in the heat exchange chamber (3) are housed, and the high temperature fluid is introduced into a condensed state by heat exchange, and the heat exchange chamber includes upper and lower partition walls ( 21) is divided into a large-volume condensation area (22) and a small-volume subcool area (23), and the condensation area and the subcool area are connected to the connection port (24) and separated from the connection opening. A horizontal condenser having a hot fluid inlet (25) and a condensate outlet (26) of
【請求項2】 サブクール域(23)に、複数の伝熱管
(4)よりも口径の大きいバイパス管(27)が並列接
続状態に配されることを特徴とする請求項1記載の横型
コンデンサ。
2. The horizontal capacitor according to claim 1, wherein a bypass pipe (27) having a larger diameter than the plurality of heat transfer pipes (4) is arranged in parallel in the subcool region (23).
【請求項3】 バイパス管(27)に、その内部を挿通
する流体の流量を調整する流量調整手段(28)が配さ
れることを特徴とする請求項2記載の横型コンデンサ。
3. The horizontal capacitor according to claim 2, wherein the bypass pipe (27) is provided with flow rate adjusting means (28) for adjusting the flow rate of the fluid passing through the inside thereof.
【請求項4】 流量調整手段(28)が、凝縮液の流量
を検出する流量計(30)と、該流量計に接続され流量
検出信号によりバイパス管(27)の流量を演算する演
算部(31)と、該演算部に接続状態にかつバイパス管
に配され演算部の指令により開度を調整する制御弁(3
2)とを具備することを特徴とする請求項3記載の横型
コンデンサ。
4. A flow rate adjusting means (28), a flow meter (30) for detecting the flow rate of the condensate, and a calculation section (for calculating the flow rate of the bypass pipe (27) connected to the flow meter according to the flow rate detection signal. 31) and a control valve (3) which is connected to the arithmetic unit and is arranged in the bypass pipe to adjust the opening degree according to a command from the arithmetic unit.
2. The horizontal capacitor according to claim 3, comprising:
JP23003894A 1994-09-26 1994-09-26 Horizontal capacitor Expired - Fee Related JP3641840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23003894A JP3641840B2 (en) 1994-09-26 1994-09-26 Horizontal capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23003894A JP3641840B2 (en) 1994-09-26 1994-09-26 Horizontal capacitor

Publications (2)

Publication Number Publication Date
JPH0894266A true JPH0894266A (en) 1996-04-12
JP3641840B2 JP3641840B2 (en) 2005-04-27

Family

ID=16901597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23003894A Expired - Fee Related JP3641840B2 (en) 1994-09-26 1994-09-26 Horizontal capacitor

Country Status (1)

Country Link
JP (1) JP3641840B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014535B1 (en) * 2008-10-24 2011-02-14 기아자동차주식회사 Heat exchanger with cap having fuel cooling pipe
CN106017122A (en) * 2016-05-23 2016-10-12 中国能源建设集团广东省电力设计研究院有限公司 Automatic adjusting system and method for water inflow flow speed of condenser cooling pipes
KR20180001347U (en) * 2016-10-29 2018-05-10 김만철 Fluid cooling device and dehumidification system including the same
KR20190010941A (en) * 2017-07-24 2019-02-01 두산인프라코어 주식회사 Heat exchanger for engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014535B1 (en) * 2008-10-24 2011-02-14 기아자동차주식회사 Heat exchanger with cap having fuel cooling pipe
CN106017122A (en) * 2016-05-23 2016-10-12 中国能源建设集团广东省电力设计研究院有限公司 Automatic adjusting system and method for water inflow flow speed of condenser cooling pipes
KR20180001347U (en) * 2016-10-29 2018-05-10 김만철 Fluid cooling device and dehumidification system including the same
KR20190010941A (en) * 2017-07-24 2019-02-01 두산인프라코어 주식회사 Heat exchanger for engine

Also Published As

Publication number Publication date
JP3641840B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
EP0844453B1 (en) Low pressure drop heat exchanger
CN106196755B (en) Shell and tube condenser and air-conditioning system
BRPI1007042B1 (en) HEAT EXCHANGER
WO2022089661A1 (en) Heat exchanging device and air conditioner
JP4130636B2 (en) Refrigerator built-in showcase
KR100479781B1 (en) Evaporator and refrigerator
JPH0894266A (en) Horizontal type condenser
CN110966730A (en) Control method of water chilling unit
CN106052200A (en) Novel condenser and evaporator
WO2021114541A1 (en) Droplet evaporation device for water chilling unit, and water chilling unit
CN211625782U (en) A liquid drop evaporation plant and cooling water set for cooling water set
CN211041484U (en) Shunting evaporator and air conditioner
JPH0642885Y2 (en) Refrigerator Evaporator
JPH03211391A (en) Falling film evaporator
CN205843138U (en) A kind of Novel condenser, vaporizer
CN216011289U (en) Device containing superheated steam heating heat conduction oil in three temperature intervals
CN218583480U (en) Condenser and air conditioning system
CN219914034U (en) Fin type oil-gas condenser
WO2024031318A1 (en) Stepped natural-convection condenser
JPH10103795A (en) Water cooled refrigerating device
JPH03152365A (en) Refrigerator
CN115325731B (en) Stepped self-convection condenser
JP2019163893A (en) Heat exchanger and refrigeration cycle device
CN209588437U (en) A kind of refrigerator
JPS58140597A (en) Flat pipe for heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050104

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees