KR100300117B1 - Refrigerant Heat Exchanger - Google Patents

Refrigerant Heat Exchanger Download PDF

Info

Publication number
KR100300117B1
KR100300117B1 KR1019980028400A KR19980028400A KR100300117B1 KR 100300117 B1 KR100300117 B1 KR 100300117B1 KR 1019980028400 A KR1019980028400 A KR 1019980028400A KR 19980028400 A KR19980028400 A KR 19980028400A KR 100300117 B1 KR100300117 B1 KR 100300117B1
Authority
KR
South Korea
Prior art keywords
heat exchanger
refrigerant
heat
air
heat exchange
Prior art date
Application number
KR1019980028400A
Other languages
Korean (ko)
Other versions
KR20000008532A (en
Inventor
박현연
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1019980028400A priority Critical patent/KR100300117B1/en
Publication of KR20000008532A publication Critical patent/KR20000008532A/en
Application granted granted Critical
Publication of KR100300117B1 publication Critical patent/KR100300117B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

본 발명은, 공기의 유동간격을 두고 상호 평행하게 적층 배열된 다수의 핀플레이트를 갖는 공기조화기용 열교환기에 관한 것으로서, 상기 핀플레이트의 길이방향에 대해 가로로 통과하며, 상호 분리된 다수의 냉매유동용 전열관과; 상기 분기된 각 전열관의 일지점을 상호 연통하도록 연결하는 압력평형관을 포함하는 것을 특징으로 한다. 이에 의하여, 각 전열관을 통과하는 냉매유량이 상호 균일하게 되어 열교환기의 효율을 향상시킬 수 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for an air conditioner having a plurality of fin plates arranged in parallel with each other with a flow interval of air therebetween, and transversely transversely with respect to the longitudinal direction of the fin plates, for separating a plurality of refrigerant flows. Heat pipes; Characterized in that it comprises a pressure balance tube for connecting the branch of each of the heat transfer pipes to communicate with each other. As a result, the flow rate of the refrigerant passing through the heat transfer tubes becomes uniform to each other, thereby improving the efficiency of the heat exchanger.

Description

냉매용 열교환기Refrigerant Heat Exchanger

본 발명은, 공조기기에 관한 것으로서, 보다 상세하게는, 각 전열관을 통과하는 냉매유량이 상호 균일하게 되어 열교환기의 효율을 향상시킬 수 있도록 한 냉매용 열교환기에 관한 것이다.The present invention relates to an air conditioner, and more particularly, to a heat exchanger for a refrigerant in which the flow rates of refrigerant passing through each heat pipe are equalized to each other to improve the efficiency of the heat exchanger.

도 3은 종래의 열교환기가 장착되어 있는 공조기기의 측단면도이며, 도 4는 도 3의 열교환기의 측단면도이다. 이들 도면에 도시된 바와 같이, 종래의 열교환기가 장치되어 있는 공조기기는 전면과 상면에 공기흡입구(103)와 하부에 위치한 공기토출구(105)가 형성되어 있는 케이싱(101)을 가지며, 케이싱(101)내에는 공기흡입구(103)에 인접하도록 설치되어 있는 열교환기(107)와, 공기흡입구(103)에서 흡입되는 공기가 열교환기(107)를 거쳐 공기토출구(105)로 향하도록 공기흐름을 발생시키는 송풍팬(109)이 설치되어 있다. 열교환기(107)의 하부영역에는 열교환기(1O7)로부터 발생하는 응축수를 회수하여 케이싱(101) 외부로 배출시키는 물받이(111)가 설치되어 있다.Figure 3 is a side cross-sectional view of an air conditioner equipped with a conventional heat exchanger, Figure 4 is a side cross-sectional view of the heat exchanger of FIG. As shown in these figures, the air conditioner equipped with the conventional heat exchanger has a casing 101, the air inlet 103 and the lower air outlet 105 is formed on the front and upper surfaces, the casing 101 ) Generates an air flow such that the heat exchanger 107 disposed adjacent to the air inlet 103 and the air sucked from the air inlet 103 are directed to the air outlet 105 via the heat exchanger 107. A blowing fan 109 is provided. In the lower region of the heat exchanger 107, a drip tray 111 for collecting condensate generated from the heat exchanger 107 and discharging it to the outside of the casing 101 is provided.

한편, 열교환기(lO7)는 소정의 공기유동간격을 두고 적층된 다수의 핀플레이트(108)와, 핀플레이트의 길이방향에 대해 가로로 제1냉매유입구(113a)를 통해 제1냉매유출구(115a)로 유출되는 제1열교환부(119)와, 제2냉매유입구(113b)를 통해 유입되어 제2냉매유출구(ll5b)로 냉매가 유동하는 제2열교환부(121)와, 제3냉매유입구(113c)를 통해 유입되어 제3냉매유출구(115c)로 유출되는 제3열교환부(123)를 가진다.On the other hand, the heat exchanger 107 is a plurality of fin plates 108 stacked with a predetermined air flow interval, and the first refrigerant outlet 115a through the first refrigerant inlet 113a horizontally with respect to the longitudinal direction of the pin plate. 2) the second heat exchanger 121 and the third refrigerant inlet (119) flowing through the first heat exchange unit 119, the second refrigerant inlet (113b) flows to the second refrigerant outlet (ll5b) and the third refrigerant inlet ( The third heat exchange part 123 flows through 113c and flows out to the third refrigerant outlet 115c.

이상과 같은 구성에 의하여, 시스템이 가동되면 열교환기(107)내를 유동하는 냉매와 송풍팬(109)에 의해 열교환기(107)를 통과하는 공기가 상호 열전달을 일으키게 된다. 이때, 케이싱(101)의 내부구조에 의해 열교환기(107)를 통과하는 공기의 양이 열교환기(107)의 각 부분별로 다르게 되어 열교환기(107)의 각 열교환부(1l9,121,123)를 유동하는 냉매의 열전달량도 다르게 된다. 본 도면에서는 열교환기(107)의 제1열교환부(119)와 제2열교환부(121)를 통과하는 공기유량이 제3열교환부(123)를 통과하는 공기유량보다 크다. 이에 따라 제1열교환부(l19)와 제2열교환부(121)를 통과하는 냉매가 제3열교환부(123)를 통과하는 냉매보다 공기와의 열전달량이 크게된다.With the above configuration, when the system is operated, the refrigerant flowing in the heat exchanger 107 and the air passing through the heat exchanger 107 by the blower fan 109 cause mutual heat transfer. At this time, the amount of air passing through the heat exchanger 107 is different for each part of the heat exchanger 107 due to the internal structure of the casing 101 to flow through each heat exchanger 111, 121, 123 of the heat exchanger 107. The heat transfer amount of the refrigerant is also different. In this drawing, the air flow rate passing through the first heat exchange part 119 and the second heat exchange part 121 of the heat exchanger 107 is greater than the air flow rate passing through the third heat exchange part 123. Accordingly, the amount of heat transfer with air is greater than that of the refrigerant passing through the first heat exchange part l19 and the second heat exchange part 121 through the third heat exchange part 123.

그런데, 이러한 종래의 냉매용 열교환기에서는, 각 열교환부(119,121,123)를 통과하는 냉매의 열전달량에 의해 냉매의 상변화정도가 변하게 되어 비체적의 차이에 의해 각 열교환부(119,121,123)의 전열관을 통과하는 냉매유량이 변하게 된다. 증발기를 예로 들면 열전달량이 큰 열교환부를 통과하는 냉매유량이 상대적으로 열전달량이 적은 열교환부를 통과하는 냉매유량보다 작다. 이렇게, 냉매유량의 차이가 발생하면 각 열교환부를(119,121,123) 지나 유출되는 냉매압력차가 발생할 뿐만 아니라 열전달이 적게 일어난 열교환부에서 유출되는 냉매는 충분한 증발이 이루어지지 않아 기체와 액체상태가 공존하는 이상(二狀)상태로 유출되어 전체적으로 열교환기(107)의 효율이 저하되는 문제점이 있다.By the way, in the conventional heat exchanger for refrigerant, the degree of phase change of the refrigerant is changed by the amount of heat transfer of the refrigerant passing through the heat exchange parts 119, 121, 123, and passes through the heat transfer tubes of the heat exchange parts 119, 121, 123 due to the difference in specific volume. The refrigerant flow rate is changed. Taking the evaporator as an example, the flow rate of the refrigerant passing through the heat exchange portion having a large heat transfer amount is smaller than the refrigerant flow rate passing through the heat exchange portion having a relatively small heat transfer amount. As such, when a difference in the refrigerant flow rate occurs, not only a difference in the refrigerant pressure flowing out through each of the heat exchange parts 119, 121, and 123 occurs, but also the refrigerant flowing out of the heat exchange part with less heat transfer does not evaporate sufficiently, so that gas and liquid state coexist ( There is a problem that the efficiency of the heat exchanger 107 is reduced as a whole flows out in a second state.

따라서, 본 발명의 목적은, 각 전열관을 통과하는 냉매유량이 상호 균일하게 되어 열교환기의 효율을 향상시킬 수 있는 냉매용 열교환기를 제공하는 것이다.Accordingly, an object of the present invention is to provide a heat exchanger for a refrigerant in which the refrigerant flow rates passing through the heat transfer tubes become uniform to each other, thereby improving the efficiency of the heat exchanger.

제1도는 본 발명에 따른 열교환기가 장착되어 있는 공조기기의 측단면도,1 is a side cross-sectional view of an air conditioner equipped with a heat exchanger according to the present invention;

제2도는 제1도의 열교환기의 측단면도,2 is a side cross-sectional view of the heat exchanger of FIG.

제3도는 종래의 열교환기가 장착되어 있는 공조기기의 측단면도,3 is a side cross-sectional view of an air conditioner equipped with a conventional heat exchanger,

제4도는 제3도의 열교환기의 측단면도이다.4 is a side cross-sectional view of the heat exchanger of FIG.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : 케이싱 3 : 공기흡입구1: casing 3: air intake

5 : 공기유출구 7 : 열교환기5: air outlet 7: heat exchanger

9 : 송풍팬 11 : 물받이9: blowing fan 11: drip tray

13 : 냉매유입구 15 : 냉매유출구13: refrigerant inlet 15: refrigerant outlet

17 : 압력평형관 19 : 제1열교환부17: pressure balance tube 19: the first heat exchange unit

21 : 제2열교환부 23 : 제3열교환부21: second heat exchanger 23: third heat exchanger

상기 목적은, 본 발명에 따라, 공기의 유동간격을 두고 상호 평행하게 적층 배열된 다수의 핀플레이트로 이루어진 핀을 갖는 공기조화기용 열교환기에 있어서, 상기 핀플레이트의 길이방향에 대해 가로로 통과하며, 상호 분리된 다수의 냉매유동용 전열관과; 상기 분리된 각 전열관의 일지점을 상호 연통하도록 연결하는 압력평형관을 포함하는 것을 특징으로 하는 냉매용 열교환기에 의해 달성된다.The object, according to the present invention, in a heat exchanger for an air conditioner having a fin consisting of a plurality of fin plates stacked in parallel with each other at intervals of flow of air, passing horizontally with respect to the longitudinal direction of the pin plate, A plurality of refrigerant flow pipes separated from each other; It is achieved by a heat exchanger for a refrigerant, characterized in that it comprises a pressure balance tube for connecting one point of each of the separated heat transfer tubes to communicate with each other.

여기서, 상기 압력평형관이 연결되는 지점은 상기 각 전열관 전체길이의 중간인 것이 바람직하다.Here, the point where the pressure balance tube is connected is preferably in the middle of the total length of each heat pipe.

이하에서는 첨부도면을 참조하여 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 열교환기가 장착되어 있는 공조기기의 측단면도이며, 도 2는 도 1의 열교환기의 측단면도이다. 본 발명에 따른 열교환기가 장착된 공조기기는 종래의 공조기기와 마찬가지로 전면과 상면에 공기흡입구(3)와, 배면에 공기토출구(5)가 형성되어 있는 케이싱(1)과, 케이싱(1)내에 설치되는 열교환기(7)와, 공기흡입구(3)로부터 유입된 공기가 열교환기(7)를 거쳐 공기토출구(5)로 향하도록 공기흐름을 발생시키는 송풍팬(9)을 갖는다. 열교환기(7)의 하부에는 공기와 열교환기(7) 내의 냉매가 열교환함에 따라 발생하는 응축수를 모아 케이싱(1) 외부로 배출할 수 있도록 물받이(11)가 설치되어 있다.1 is a side cross-sectional view of an air conditioner equipped with a heat exchanger according to the present invention, Figure 2 is a side cross-sectional view of the heat exchanger of FIG. An air conditioner equipped with a heat exchanger according to the present invention has a casing (1) and a casing (1) in which an air inlet (3) is formed on the front and an upper surface, and an air outlet (5) is formed on the back, similarly to a conventional air conditioner. And a blower fan 9 for generating an air flow such that the air introduced from the air inlet 3 is directed to the air outlet 5 via the heat exchanger 7. At the lower part of the heat exchanger 7, a drip tray 11 is installed to collect condensed water generated by the heat exchange between the air and the refrigerant in the heat exchanger 7 and discharge it to the outside of the casing 1.

한편, 열교환기(7)는 소정의 간격을 두고 적층된 다수의 핀플레이트(8)와, 제1냉매유입구(13a)를 통해 제1냉매유출구(l5a)로 유출되는 제1열교환부(19)와, 제2냉매유입구(13b)를 통해 유입되어 제2냉매유출구(15b)로 냉매가 유동하는 제2열교환부(21)와, 제3냉매유입구(13c)를 통해 유입되어 제3냉매유출구(15c)로 유출되는 제3열교환부(23)를 가진다. 또한, 이들 각 열교환부(19,21,23)의 중간지점을 상호 연결하는 압력평형관(17)이 설치되어 있다.Meanwhile, the heat exchanger 7 includes a plurality of fin plates 8 stacked at predetermined intervals and the first heat exchanger 19 flowing out to the first refrigerant outlet l5a through the first refrigerant inlet 13a. And a second heat exchanger 21 through which the refrigerant flows through the second refrigerant inlet 13b and flows into the second refrigerant outlet 15b, and through the third refrigerant inlet 13c, thereby allowing the third refrigerant outlet ( And a third heat exchange part 23 flowing out to 15c). In addition, a pressure balance tube 17 is provided which interconnects the intermediate points of the heat exchange parts 19, 21, 23.

이상과 같은 구성에 의하여, 시스템이 가동되면, 각 열교환부(19,21,23)내 전열관에는 냉매가 유동하며, 송풍팬(9)에 의해 케이싱(1)의 공기흡입구(3)를 통해 유입된 공기가 각 열교환부(19,21,23)를 통과하여 공기토출구(5)를 향해 유동하면서 열교환부(19,21,23)내의 냉매와 상호 열전달을 일으킨다. 이때, 열교환부(19,21,23)내의 냉매는 열전달이 잘 일어날수록 기체상태로 잘 증발하여 비체적이 커짐에 따라 냉매유량이 적어지며, 압력강하폭이 크게된다. 본 실시 예에서는 케이싱(1)내부의 구조에 의해 제1열교환부(19)와, 제2열교환부(21)를 통과하는 공기유량이 제3열교환부(23)를 통과하는 공기유량보다 많게 되어 제3열교환부(23)를 통과하는 냉매량이 제1열교환부(19)와 제2열교환부(21)를 통과하는 냉매량보다 많게 된다. 또한, 열전달량의 차이에 의해 제1열교환부(19)와 제2열교환부(21)를 통과하여 냉매유출구(15a,15b)에서 유출되는 냉매는 과열된 기체상태의 냉매로 유출되며, 제3열교환부(23)를 통과하여 냉매유출구(15c)로 유출되는 냉매는 충분한 증발이 이루어지지 않아 기체와 액체상태가 공존하는 이상(二狀)상태로 유출된다.By the above configuration, when the system is operated, the refrigerant flows in the heat transfer tubes in the heat exchange parts 19, 21, and 23, and the blower fan 9 flows in through the air intake port 3 of the casing 1. The generated air flows through each of the heat exchange parts 19, 21, 23 and flows toward the air discharge port 5 to generate mutual heat transfer with the refrigerant in the heat exchange parts 19, 21, 23. At this time, the coolant in the heat exchange unit (19, 21, 23) is evaporated well in the gas state as the heat transfer occurs well, the refrigerant flow rate decreases as the specific volume increases, the pressure drop width is large. In this embodiment, due to the structure inside the casing 1, the air flow rate passing through the first heat exchange part 19 and the second heat exchange part 21 is greater than the air flow rate passing through the third heat exchange part 23. The amount of refrigerant passing through the third heat exchange unit 23 is greater than the amount of refrigerant passing through the first heat exchange unit 19 and the second heat exchange unit 21. In addition, the refrigerant flowing out of the refrigerant outlets 15a and 15b through the first heat exchanger 19 and the second heat exchanger 21 due to the difference in heat transfer amount flows out into the superheated gaseous refrigerant, and the third The refrigerant flowing through the heat exchange unit 23 and flowing into the refrigerant outlet 15c is not sufficiently evaporated and flows out in an abnormal state where gas and liquid state coexist.

이렇게, 각 열교환부(19,21,23)내 전열관을 통과하는 냉매유량이 다른 경우, 각 열교환부(19,21,23)를 상호 연결하는 압력평형관(17)을 통해 냉매가 상호 유동함에 따라 각 열교환부(19,21,23)를 흐르는 냉매유량이 균일하게 되어 열교환기(7)의 효율을 향상시킬 수 있다.Thus, when the flow rate of the refrigerant passing through the heat pipes in each of the heat exchange parts (19, 21, 23) is different, the refrigerant flows through the pressure balance tube (17) interconnecting each heat exchange part (19, 21, 23) Accordingly, the flow rate of the refrigerant flowing through each of the heat exchange parts 19, 21, and 23 is uniform, thereby improving the efficiency of the heat exchanger 7.

본 실시 예에서는 증발기를 예로 들어 설명하였으나 복수의 전열관을 가지는 응축기에도 압력평형관을 적용하여 응축기내 열교환기의 효율을 향상시킬 수 있다.In this embodiment, the evaporator has been described as an example, but the pressure balance tube may be applied to the condenser having a plurality of heat transfer tubes to improve the efficiency of the heat exchanger in the condenser.

이상에서 설명한 바와 같이, 본 발명에 따르면, 각 전열관을 통과하는 냉매유량이 상호 균일하게 되어 열교환기의 효율을 향상시킬 수 있는 냉매용 열교환기가 제공된다.As described above, according to the present invention, the refrigerant flow rate passing through each heat pipe is uniform to each other is provided a refrigerant heat exchanger that can improve the efficiency of the heat exchanger.

Claims (2)

공기의 유동간격을 두고 상호 평행하게 적층 배열된 다수의 핀플레이트를 갖는 공기조화기용 열교환기에 있어서, 상기 핀플레이트의 길이방향에 대해 가로로 통과하며, 상호 분리된 다수의 냉매유동용 전열관과; 상기 분리된 각 전열관의 일지점이 상호 연통하도록 연결하는 압력평형관을 포함하는 것을 특징으로 하는 냉매용 열교환기.A heat exchanger for an air conditioner having a plurality of fin plates stacked in parallel to each other with a flow interval of air, the heat exchanger comprising: a plurality of heat exchanger tubes passing transversely with respect to the longitudinal direction of the fin plates and separated from each other; Refrigerant heat exchanger characterized in that it comprises a pressure balancing tube connected to one point of each of the separated heat transfer pipes communicate with each other. 제1항에 있어서, 상기 압력평형관이 연결되는 지점은 상기 각 전열관 전체길이의 중간인 것을 특징으로 하는 냉매용 열교환기.The heat exchanger for a refrigerant according to claim 1, wherein a point at which the pressure balance tubes are connected is a middle length of each of the heat transfer tubes.
KR1019980028400A 1998-07-14 1998-07-14 Refrigerant Heat Exchanger KR100300117B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980028400A KR100300117B1 (en) 1998-07-14 1998-07-14 Refrigerant Heat Exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980028400A KR100300117B1 (en) 1998-07-14 1998-07-14 Refrigerant Heat Exchanger

Publications (2)

Publication Number Publication Date
KR20000008532A KR20000008532A (en) 2000-02-07
KR100300117B1 true KR100300117B1 (en) 2001-11-22

Family

ID=19544138

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980028400A KR100300117B1 (en) 1998-07-14 1998-07-14 Refrigerant Heat Exchanger

Country Status (1)

Country Link
KR (1) KR100300117B1 (en)

Also Published As

Publication number Publication date
KR20000008532A (en) 2000-02-07

Similar Documents

Publication Publication Date Title
US5314013A (en) Heat exchanger
EP0844453B1 (en) Low pressure drop heat exchanger
JP2008534894A (en) Refrigeration system with saving cycle
EP3042127B1 (en) Integrated separator-distributor for falling film evaporator
EP3805687B1 (en) Refrigerant distributor, heat exchanger, and air conditioner
US4057977A (en) Reverse cycle heat pump circuit
US6557372B1 (en) Refrigerating unit having plural air cooled condensers
JPH06257892A (en) Parallel flow heat exchanger for heat pump
KR100300117B1 (en) Refrigerant Heat Exchanger
CN115638481A (en) Heat exchange structure, condenser and air conditioner
JPS5815001B2 (en) Multi-stage flash evaporator
EP1618344A1 (en) Evaporator and heat exchanger with external loop, as well as heat pump system and air conditioning system comprising said evaporator or heat exchanger
JP4300502B2 (en) Parallel flow type heat exchanger for air conditioning
JPH08200886A (en) Heat exchanger air conditioning
CN210004632U (en) Evaporator for compression refrigerator and compression refrigerator provided with same
USRE30745E (en) Reverse cycle heat pump circuit
KR100327551B1 (en) Airconditioner for vehicle with dual evaporator ASS&#39;Y
JP2005337688A (en) Refrigeration device
JP2019211138A (en) Air conditioner
CN111617511B (en) Condensing device
KR102138509B1 (en) Air conditioner
JPH0411781B2 (en)
JPH04240364A (en) Heat exchanger
JP3624445B2 (en) Water heat source air conditioner
JP2008095989A (en) Condenser and refrigerating cycle device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080529

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee