JP3641765B2 - Epoxy resin and curable composition containing the epoxy resin - Google Patents

Epoxy resin and curable composition containing the epoxy resin Download PDF

Info

Publication number
JP3641765B2
JP3641765B2 JP10267896A JP10267896A JP3641765B2 JP 3641765 B2 JP3641765 B2 JP 3641765B2 JP 10267896 A JP10267896 A JP 10267896A JP 10267896 A JP10267896 A JP 10267896A JP 3641765 B2 JP3641765 B2 JP 3641765B2
Authority
JP
Japan
Prior art keywords
epoxy resin
bisphenol
tertiary
resin
curable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10267896A
Other languages
Japanese (ja)
Other versions
JPH09286839A (en
Inventor
一彦 吉田
恭幸 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohto Kasei Co Ltd
Original Assignee
Tohto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohto Kasei Co Ltd filed Critical Tohto Kasei Co Ltd
Priority to JP10267896A priority Critical patent/JP3641765B2/en
Publication of JPH09286839A publication Critical patent/JPH09286839A/en
Application granted granted Critical
Publication of JP3641765B2 publication Critical patent/JP3641765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Epoxy Resins (AREA)

Description

【0001】
【本発明の属する技術分野】
本発明は、常温に於いて高引火点の炭化水素系溶剤に完全に溶解し、塗料、接着剤、絶縁材料、積層板材料、電子材料、注型材料、結晶化防止材料、等の広範な分野に使用できるエポキシ樹脂とその組成物に関するものであり、とりわけ、耐食性、耐水性、強度等に優れる硬化物が得られる硬化性組成物を提供するものである。
【0002】
【従来の技術】
従来より、エポキシ樹脂はその優れた耐食性、密着性、耐薬品性等の特徴により橋梁、タンク、船舶等の重防食塗料用に広く用いられているが、一般的にはビスフェノール型のエポキシ樹脂をキシレン、トルエン等の低引火点、低沸点の有機溶剤に溶解して使用されている。このため、塗装時の溶剤臭による作業環境悪化の問題や火災の危険性、更には旧塗膜に塗装した場合旧塗膜を膨潤させ、リフティングさせる等の問題があった。
これらの問題を改善するためには、塗装時の臭気が少なく高引火点の溶剤を用いる必要があるが、従来のエポキシ樹脂ではこれら溶剤への溶解性が低いために塗料が濁ったり粘度が高くなる等の問題があった。また、これらの問題を改善する方法として、特開平4−11623号公報、特公平7−68491号公報にはソルベッソ100のように炭素数9〜11の混合芳香族炭化水素類溶剤に溶解する変性エポキシ樹脂が報告されているが、芳香族系溶剤では塗装作業時の臭気をなくすことができない問題があった。このためミネラルスピリッツのように高引火点の脂肪族炭化水素類に溶解し、かつ密着性、耐食性に優れる塗膜が得られるエポキシ樹脂塗料の出現が望まれていた。
【0003】
【本発明が解決しようとする課題】
本発明者らはこのような現状に鑑み、高引火点で臭気の少ない脂肪族系溶剤に可溶であるエポキシ樹脂を開発すべく検討した結果、本発明を完成するに至ったものである。即ち、本発明は引火点40℃以上の脂肪族系溶剤に常温で完全に溶解し、かつ密着性、耐食性、耐水性に優れた塗膜を与えるエポキシ樹脂及びその硬化性組成物を提供するものである。
【0004】
【課題を解決する為の手段】
本発明者らは、かかる問題を解決するために鋭意検討した結果、下記一般式(1)で表される、エポキシ当量180〜2,000g/eqの(ターシャリー)ブチル化ビスフェノール型エポキシ樹脂とエポキシ硬化剤を必須成分として含有するエポキシ樹脂組成物がこれらの問題点を解決するのに最適な手段であることを見い出し本発明を完成するに至った。
【0005】
【化2】

Figure 0003641765
【0006】
(式中、n≧0、m≧0、R1(ターシャリー)ブチル基を示し、1≦(a+a′)≦4、R2(ターシャリー)ブチル基、又は水素原子からなり、1≦(b+b′)≦4である。Xは、−CH(CH32 −基を表す)
【0007】
本発明に用いるアルキル基置換ビスフェノール類として代表的なものとしては、ジターシャリーブチルビスフェノールA、テトラターシャリーブチルビスフェノールA、ジセコンダリーブチルビスフェノールA、及びこれらの混合物が挙げられるが、好ましくはターシャリーブチル化ビスフェノールAである。
【0008】
本発明のエポキシ樹脂は(ターシャリー)ブチル化ビスフェノールをエピハロヒドリンでアルカリ金属水酸化物の存在下でエポキシ化する従来公知の方法により得ることができる。エピハロヒドリンとしてはエピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン等が挙げられるが、エピクロロドリンが望ましい。
アルキル化ビスフェノール類のフェノール性水酸基1モルに対してエピハロヒドリンを1.5〜15モル、より好ましくは3〜8モルの過剰量を用い、アルカリ金属水酸化物の使用量はアルキル化ビスフェノール類の水酸基当量1に対して0.8〜1.3モルの範囲で固形又は水溶液として加える。
反応温度は40〜120℃、圧力50〜760mmHgで生成した水を系外に除去しながら0.5〜15時間反応させる。反応終了後に過剰のエピハロヒドリンを留去した後、メチルイソブチルケトンやトルエン等の溶剤に溶解して、さらに生成したエポキシ樹脂の加水分解性塩素に対して1〜50モルのアルカリ金属水酸化物を添加して精製反応を行った後、副生成した塩を水性又は濾過等により除去し、溶媒を留去することにより本発明のエポキシ樹脂を得ることができる。
【0009】
前述のターシャリー)ブチル化ビスフェノール型エポキシ樹脂はさらにビスフェノール類又はアルキル基置換ビスフェノール類及びそれらの混合物との重付加反応によりエポキシ当量200〜2,000g/eqの任意の分子量のエポキシ樹脂を得ることができる。エポキシ当量200g/eq以下のものは合成が困難であり、エポキシ当量が2,000g/eqを超えるものは架橋密度が踈になり耐食性、耐薬品性が損なわれミネラルスピリッツに対する溶解性も悪くなる為であり、好ましくは250〜1,000g/eqである。かかるエポキシ樹脂の合成法は、特に限定されることなく従来より知られている公知の方法に従って行われる。公知の方法として上記原料を一括投入後80〜220℃にて触媒存在下において1〜20時間で反応させる。かかる触媒としては、トリエチルアミン、ジメチルベンジルアミン、ピリジンなどの3級アミン、テトラメチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、トリフェニルホスホニウムブロマイドなどの4級アンモニウム塩、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物、トリフェニルホスフィン、トリエチルホスフィンなどの有機リン化合物などが用いられる。
【0010】
本発明の組成物には、50〜100重量%以上のアルキル基置換ビスフェノール型エポキシ樹脂とビスフェノール型エポキシ樹脂とを混合して用いることができる。ビスフェノール型エポキシ樹脂の含有量が50重量%を超えるとミネラルスピリッツに対する溶解性が落ちるためである。ここで用いられるビスフェノール型エポキシ樹脂としてはビスフェノールA型エポキシ樹脂,ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂,ビスフェノールAD型エポキシ樹脂及びこれらの混合物が挙げられるが、好ましくはビスフェノールA型及びビスフェノールF型エポキシ樹脂である。またエポキシ樹脂の分子量範囲としては320から1,500程度のものまで用いることができる。これらの市販のエポキシ樹脂としては東都化成社製のYD−128,YD−134,YD−011,YDF−170,YDF−2001等が挙げられる。
【0011】
本発明の組成物で用いることのできる硬化剤としては、アミン系硬化剤、メルカプタン系硬化剤、酸無水物系硬化剤等が挙げられるが、重防食用途にはアミン系硬化剤が最も好ましい。アミン系硬化剤としては、ポリアミノアミド類、エポキシ樹脂アミンアダクト、脂肪族ポリアミン、変性ポリアミン、第3アミン、ヒドラジド、イミダゾール等通常のエポキシ樹脂に使用される硬化剤が使用可能であるが、特にポリアミノアミド類、エポキシ樹脂アミンアダクトが好ましい。
【0012】
本発明の組成物で用いられる溶剤としては、引火点40℃以上の脂肪族系溶剤(ミネラルスピリッツ)の他に、必要に応じてトルエン、キシレン、及び高沸点ナフサなどの芳香族系溶剤、ケトン類、アルコール類、エステル類、グリコールエーテル類及びそれらの混合物も用いることができる。
【0013】
本発明のエポキシ樹脂による組成物はエポキシ樹脂単独で用いることも出来るが、必要に応じて石油樹脂、クマロンインデン樹脂、キシレン樹脂、ケトン樹脂等より選ばれた1種又は2種以上の樹脂を所望の目的範囲で含有せしめることが出来る。
本発明の組成物には、各種用途に応じてタルク、炭酸カルシウム、シリカ、カーボンなどの充填材や、ベンガラ、酸化チタン、硫化亜鉛、酸化鉄などの顔料及び増粘剤、消泡剤、可塑剤などの添加剤適量配合することが出来る。塗装手段としては硬化剤成分を除く前記成分の混合物2本ロール、ボールミル、サンドグラインドミル等の分散装置にて混合分散することにより塗料を調整することが出来る。これを塗装直前に硬化剤と混合し、吹き付け塗り、ローラー塗り、刷毛塗り等の通常の塗装手段により塗装し、自然乾燥、強制乾燥により硬化塗膜が形成される。
【0014】
【発明の効果】
本発明のエポキシ樹脂は高引火点の脂肪族溶剤に可溶であり、該樹脂を用いた硬化性組成物は、塗装時の作業環境を改善することができ、また旧塗膜上に塗装したときに旧塗膜を溶解又は膨潤させる等のリフティングを防ぐことが出来る。
【0015】
【実施例及び比較例】
以下、実施例及び比較例に基づき本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。得られた樹脂については、次の試験法によって行った。
(1)エポキシ当量(固形分値)はJIS K7236により測定した。
(2)低温溶解性は、各樹脂をミネラルスピリッツに溶解して樹脂分70%のエポキシ樹脂ワニスとして、5℃で24時間静置した後分離の有無を目視で判定した。
○ 分離なし、:× 分離(3)GPC測定は、東ソー(株)製HLC−802A型高速GPC装置で内蔵のRI検出器を使用した。移動相にはテトラヒドロフランを用いて、流速1.0mL/minで測定を行った。GPCカラムは同じく東ソー(株)製G4000H8、G3000H8、G2000H8各1本を用いた。分子量測定はポリスチレン検量線により求めた。
参考例
撹拌噐、温度計、窒素ガス導入装置、滴下装置、冷却管及び油水分離装置を備えた内容量1のガラスフラスコに本州化学工業社製BisOTBP−A(ターシャリーブチル化ビスフェノールA;フェノール性水酸基当量170g/eq,融点115℃)150部、エピクロロヒドリン308部を仕込み、窒素ガスを流しながら70℃まで加熱して溶解した。その後同温度に保ちながら、48%水酸化ナトリウム水溶液3.7部を1時間毎に3回添加後一時間同温度で反応を行った。その後窒素ガスの導入を中止して、系内を240mmHgの減圧にして75℃まで加熱して計内の水分をエピクロロヒドリンと共沸留出水させ油水分離装置を用いて系外に分離除去した。その後同条件を保ちながら48%水酸化ナトリウム水溶液55.8部を3時間で滴下した。この間系内の水分はエピクロロヒドリンと共沸留出水させ系外に分離除去した。水酸化ナトリウム滴下終了後さらに30分反応を継続した後、未反応のエピクロロヒドリンを10mmHgの減圧下、180℃の温度で5分間保持して減圧回収した。次にメチルイソブチルケトンを390部加え、生成したエポキシ樹脂を溶解した後15%水酸化ナトリウム水溶液20部を加え80℃で2時間反応させた。次に水260部を加えて反応で生成した食塩を溶解させて分液、除去した後、リン酸水溶液で中和し、水洗水が中性になるまで樹脂溶液を数回水洗した。さらに5mmHg以下の減圧下、180℃の温度で5分間保持してメチルイソブチルケトンを留去しエポキシ樹脂を得た。得られた樹脂のエポキシ当量は265g/eqで低温溶解性は○印であった。また、該エポキシ樹脂のGPCチャ−ト、溶出時間(min)と応答量(mV)及び溶出時間(min)と分子量の対数(LogM)を同時にプロットしたもの図1に示した。同時に赤外吸収スペクトルを図2に示した。
【0016】
参考例
参考例1で得られた(ターシャリー)ブチル化ビスフェノールAのジグリシジルエーテル875部にBPA125部仕込み120℃まで昇温してトリフェニルホスフィンをBPAに対して1000ppm添加し、150℃まで昇温、同温度で反応を行いエポキシ当量が設定値以上になったところで反応終了とした。得られた樹脂のエポキシ当量は478g/eqで、低温溶解性は○印であった。
【0017】
参考例
参考例1で得られた(ターシャリー)ブチル化ビスフェノールAのジグリシジルエーテル750部に東都化成社製YD−128(ビスフェノールA型液状エポキシ樹脂;エポキシ当量187g/eq、粘度12,800mPa・s/25℃)を250部を加えて80℃まで昇温、溶解して全体が均一になるのを確認して抜き出した。得られた樹脂のエポキシ当量は239g/eqで、低温溶解性は○印であった。
【0018】
比較参考例1
参考例1の(ターシャリー)ブチル化ビスフェノールAをビスフェノールAに変更した以外は同じ条件でエポキシ化を行いエポキシ樹脂を得た。得られた樹脂のエポキシ当量は187g/eqで、低温溶解性は×印であった。
【0019】
比較参考例2
参考例1の(ターシャリー)ブチル化ビスフェノールAをビスフェノールC(メチル化ビスフェノールA)に変更した以外は同じ条件でエポキシ化を行いエポキシ樹脂を得た。得られた樹脂のエポキシ当量は210g/eqで、低温溶解性は×印であった。
【0020】
比較参考例3
参考例1で得られた(ターシャリー)ブチル化ビスフェノールAのジグリシジルエーテル400部にYD−128を600部を加えて80℃まで昇温、溶解して混合エポキシ樹脂を得た。得られた樹脂のエポキシ当量は212g/eqで、低温溶解性は×印であった。
【0021】
実施例及び比較例
参考例1〜3及び比較参考例1〜3で得られたエポキシ樹脂をミネラルスピリッツに樹脂分70%で溶解した。このエポキシ樹脂ワニス100部に表−1に示す量でアミン系硬化剤(東都化成社製ポリアミノアミドZX−1478;アミン価106mgKOH/g)を配合した。更に酸化チタン22部、沈降性硫酸バリウム18部、燐酸亜鉛6部を配合して塗料を調整した。
得られた塗料を軟鋼板SPCC−SB(1.6×70×150mm)のメチルエチルケトンでの脱脂後にサンドブラスト処理を行ったものにバーコーターで乾燥膜厚100μmになるように塗布し、20℃、7日間乾燥させた。得られた塗膜の外観、密着性、耐食性の各性能試験を評価した結果を表1に示した。
尚、塗膜の外観は目視で判定した○:良好△:やや良好×:不良。
また、密着性は、JIS K−5400の付着性の碁盤目テープ剥離試験法により評価し、ゴバン目100個をカッターナイフで切り込み、セロハンテープにて剥離試験を行い、塗膜残存数を測定した。また、耐食性についてはJIS K5400−7,8に準拠して300時間塩水噴霧試験をした後、塗膜の外観について目視により発錆性を評価した○:良好△:錆発生により若干の膨れあり×:錆発生により著しい膨れあり。
【0022】
【表1】
Figure 0003641765
【0023】
表1から明らかなように、本発明の(ターシャリー)ブチル化ビスフェノールA型エポキシ樹脂と硬化剤より成る硬化性組成物はミネラルスピリッツに対する溶解性に優れ、得られる塗膜は従来のビスフェノール型エポキシ樹脂と同等の密着性、耐食性を有している。
【図面の簡単な説明】
【図1】 参考例1で得られた(ターシャリー)ブチル化ビスフェノールA型エポキシ樹脂のGPCチャートであり、溶出時間(min)と応答量(mV)及び溶出時間(min)と分子量の対数(LogM)を同時にブロットしたものである。
【図2】 参考例1で得られた(ターシャリー)ブチル化ビスフェノールA型エポキシ樹脂の赤外吸収スペクトルチャートであり、縦軸は吸収強度を、横軸は吸収波長を示す。[0001]
[Technical field to which the present invention pertains]
The present invention completely dissolves in a hydrocarbon-based solvent having a high flash point at room temperature, and includes a wide range of paints, adhesives, insulating materials, laminated plate materials, electronic materials, casting materials, anti-crystallization materials, etc. The present invention relates to an epoxy resin that can be used in the field and a composition thereof, and more particularly, to provide a curable composition from which a cured product having excellent corrosion resistance, water resistance, strength, and the like can be obtained.
[0002]
[Prior art]
Conventionally, epoxy resins have been widely used for heavy anticorrosion paints for bridges, tanks, ships, etc. due to their excellent corrosion resistance, adhesion, chemical resistance, etc., but in general, bisphenol type epoxy resins are used. It is used by being dissolved in a low flash point, low boiling point organic solvent such as xylene or toluene. For this reason, there have been problems such as deterioration of working environment due to solvent odor at the time of painting, fire hazard, and swelling and lifting of the old paint film when applied to the old paint film.
In order to improve these problems, it is necessary to use a solvent with a low flash point and a high flash point. However, conventional epoxy resins have low solubility in these solvents, so the paint is cloudy and has a high viscosity. There was a problem of becoming. Moreover, as a method for improving these problems, JP-A-4-11623 and JP-B-7-68491 disclose modification by dissolving in a mixed aromatic hydrocarbon solvent having 9 to 11 carbon atoms such as Solvesso 100. Epoxy resins have been reported, but there was a problem that aromatic solvents could not eliminate odor during painting work. For this reason, there has been a demand for the appearance of an epoxy resin coating that can be dissolved in an aliphatic hydrocarbon having a high flash point, such as mineral spirits, and that can provide a coating having excellent adhesion and corrosion resistance.
[0003]
[Problems to be solved by the present invention]
In view of the current situation, the present inventors have studied to develop an epoxy resin that is soluble in an aliphatic solvent with a high flash point and a low odor, and as a result, the present invention has been completed. That is, the present invention provides an epoxy resin that completely dissolves in an aliphatic solvent having a flash point of 40 ° C. or higher at room temperature and gives a coating film excellent in adhesion, corrosion resistance, and water resistance, and a curable composition thereof. It is.
[0004]
[Means for solving the problems]
As a result of intensive studies to solve such problems, the present inventors have (tertiary) butylated bisphenol A type epoxy tree having an epoxy equivalent of 180 to 2,000 g / eq represented by the following general formula (1). The present inventors have found that an epoxy resin composition containing a fat and an epoxy curing agent as essential components is an optimal means for solving these problems, and has completed the present invention.
[0005]
[Chemical formula 2]
Figure 0003641765
[0006]
(Wherein n ≧ 0, m ≧ 0, R 1 represents a (tertiary) butyl group , 1 ≦ (a + a ′) ≦ 4, R 2 is a (tertiary) butyl group or a hydrogen atom, ≦ (b + b ′) ≦ 4, X represents a —CH (CH 3 ) 2 — group )
[0007]
As typical example of the alkyl group substituted bisphenols used in the present invention, di-tert-butyl bisphenol A, tetra-tertiary-butyl bisphenol A, Jise Con Daly butyl bisphenol A, but Beauty mixtures thereof, preferably tertiary butylated Bisphenol A.
[0008]
The epoxy resin of the present invention can be obtained by a conventionally known method in which (tertiary) butylated bisphenol A is epoxidized with epihalohydrin in the presence of an alkali metal hydroxide. Examples of the epihalohydrin include epichlorohydrin, epibromohydrin, epiiodohydrin, and the like, but epichlorohydrin is preferable.
An excess of 1.5 to 15 mol, more preferably 3 to 8 mol of epihalohydrin is used per 1 mol of the phenolic hydroxyl group of the alkylated bisphenol, and the amount of alkali metal hydroxide used is the hydroxyl group of the alkylated bisphenol. It is added as a solid or an aqueous solution in the range of 0.8 to 1.3 mol per equivalent of 1.
The reaction temperature is 40 to 120 ° C. and the pressure is 50 to 760 mmHg, and the reaction is carried out for 0.5 to 15 hours while removing water generated outside the system. Excess epihalohydrin is distilled off after completion of the reaction, then dissolved in a solvent such as methyl isobutyl ketone or toluene, and 1-50 mol of alkali metal hydroxide is added to the hydrolyzable chlorine of the epoxy resin produced. Then, after carrying out the purification reaction, the by-produced salt is removed by aqueous or filtration and the solvent is distilled off to obtain the epoxy resin of the present invention.
[0009]
The above-mentioned tertiary) butylated bisphenol A type epoxy resin further obtains an epoxy resin having an arbitrary molecular weight of an epoxy equivalent of 200 to 2,000 g / eq by polyaddition reaction with bisphenols or alkyl group-substituted bisphenols and mixtures thereof. be able to. Those having an epoxy equivalent of 200 g / eq or less are difficult to synthesize, and those having an epoxy equivalent of more than 2,000 g / eq have a cross-linking density that is inferior in corrosion resistance and chemical resistance, resulting in poor solubility in mineral spirits. And preferably 250 to 1,000 g / eq. The method for synthesizing such an epoxy resin is not particularly limited, and is performed according to a conventionally known method. As a known method, the raw materials are reacted together at 80 to 220 ° C. in the presence of a catalyst for 1 to 20 hours. Such catalysts include tertiary amines such as triethylamine, dimethylbenzylamine and pyridine, quaternary ammonium salts such as tetramethylammonium chloride, benzyltrimethylammonium chloride and triphenylphosphonium bromide, sodium hydroxide, potassium hydroxide and lithium hydroxide. Alkali metal hydroxides such as organic phosphorus compounds such as triphenylphosphine and triethylphosphine are used.
[0010]
In the composition of the present invention, 50 to 100% by weight or more of an alkyl group-substituted bisphenol type epoxy resin and a bisphenol type epoxy resin can be mixed and used. This is because if the content of the bisphenol-type epoxy resin exceeds 50% by weight, the solubility in mineral spirits decreases. Examples of the bisphenol type epoxy resin used here include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, and mixtures thereof, preferably bisphenol A type and bisphenol F. Type epoxy resin. The molecular weight range of the epoxy resin can be from 320 to 1,500. Examples of these commercially available epoxy resins include YD-128, YD-134, YD-011, YDF-170, and YDF-2001 manufactured by Tohto Kasei Co., Ltd.
[0011]
Examples of the curing agent that can be used in the composition of the present invention include amine-based curing agents, mercaptan-based curing agents, acid anhydride-based curing agents, and the like, and amine-based curing agents are most preferable for heavy anticorrosion applications. As the amine-based curing agent, polyaminoamides, epoxy resin amine adducts, aliphatic polyamines, modified polyamines, tertiary amines, hydrazides, imidazoles, and other curing agents used for ordinary epoxy resins can be used. Amides and epoxy resin amine adducts are preferred.
[0012]
As the solvent used in the composition of the present invention, in addition to an aliphatic solvent (mineral spirit) having a flash point of 40 ° C. or higher, an aromatic solvent such as toluene, xylene, and high-boiling naphtha, a ketone, if necessary , Alcohols, esters, glycol ethers and mixtures thereof can also be used.
[0013]
The epoxy resin composition of the present invention can be used alone, but if necessary, one or more resins selected from petroleum resin, coumarone indene resin, xylene resin, ketone resin, etc. may be used. It can be contained in a desired target range.
The composition of the present invention includes fillers such as talc, calcium carbonate, silica and carbon, pigments and thickeners such as bengara, titanium oxide, zinc sulfide and iron oxide, antifoaming agents, plastics, etc. An appropriate amount of additives such as an agent can be blended. As the coating means, the paint can be adjusted by mixing and dispersing in a dispersing device such as a two-roll mixture of the above components excluding the curing agent component, a ball mill, a sand grind mill or the like. This is mixed with a curing agent immediately before coating, and is applied by ordinary coating means such as spray coating, roller coating, or brush coating, and a cured coating film is formed by natural drying or forced drying.
[0014]
【The invention's effect】
The epoxy resin of the present invention is soluble in an aliphatic solvent having a high flash point, and the curable composition using the resin can improve the working environment at the time of coating, and is coated on the old coating film. Sometimes lifting such as dissolving or swelling the old paint film can be prevented.
[0015]
[Examples and Comparative Examples]
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited to these Examples. About obtained resin, it carried out by the following test method.
(1) The epoxy equivalent (solid content value) was measured according to JIS K7236.
(2) The low-temperature solubility was determined by visual observation of the presence or absence of separation after each resin was dissolved in mineral spirits and allowed to stand at 5 ° C. for 24 hours as an epoxy resin varnish having a resin content of 70%.
○ No separation: × Separation (3) For GPC measurement, a built-in RI detector was used in an HLC-802A type high-speed GPC device manufactured by Tosoh Corporation. Tetrahydrofuran was used as the mobile phase, and measurement was performed at a flow rate of 1.0 mL / min. The GPC column used was one G4000H8, G3000H8, and G2000H8 manufactured by Tosoh Corporation. The molecular weight was determined by a polystyrene calibration curve.
Reference example 1
BisOTBP-A (tertiary butylated bisphenol A; phenolic hydroxyl group equivalent) manufactured by Honshu Chemical Industry Co., Ltd. was added to a glass flask having an internal volume of 1 equipped with a stirrer, a thermometer, a nitrogen gas introducing device, a dropping device, a cooling pipe and an oil / water separator (170 g / eq, melting point 115 ° C.) 150 parts and epichlorohydrin 308 parts were charged and dissolved by heating to 70 ° C. while flowing nitrogen gas. Thereafter, while maintaining the same temperature, 3.7 parts of 48% aqueous sodium hydroxide solution was added three times every hour, and the reaction was carried out at the same temperature for 1 hour. And thereafter stops the introduction of nitrogen gas, in the outside the system using water oil-water separation apparatus is epichlorohydrin KyonieTome Izumi 75 ° C. until in pressurized heating and the meter in the vacuum of 240mmHg system Separated and removed. Thereafter, 55.8 parts of a 48% aqueous sodium hydroxide solution was added dropwise over 3 hours while maintaining the same conditions. During this period, water in the system was separated and removed from the system by azeotropic distillation with epichlorohydrin. After completion of the sodium hydroxide addition, the reaction was continued for another 30 minutes, and then unreacted epichlorohydrin was recovered under reduced pressure by holding at a temperature of 180 ° C. for 5 minutes under a reduced pressure of 10 mmHg. Next, 390 parts of methyl isobutyl ketone was added to dissolve the produced epoxy resin, and then 20 parts of a 15% aqueous sodium hydroxide solution was added and reacted at 80 ° C. for 2 hours. Next, 260 parts of water was added to dissolve and remove the sodium chloride produced by the reaction, followed by neutralization with an aqueous phosphoric acid solution, and the resin solution was washed several times until the washing water became neutral. Furthermore, it hold | maintained for 5 minutes at the temperature of 180 degreeC under pressure reduction of 5 mmHg or less, and methyl isobutyl ketone was distilled off and the epoxy resin was obtained. The epoxy equivalent of the obtained resin was 265 g / eq, and the low-temperature solubility was ◯. The GPC chart, elution time (min), response amount (mV), elution time (min) and logarithm of molecular weight (Log M) of the epoxy resin are plotted simultaneously in FIG. At the same time, the infrared absorption spectrum is shown in FIG.
[0016]
Reference example 2
To 875 parts of (tertiary) butylated bisphenol A diglycidyl ether obtained in Reference Example 1 was charged 125 parts of BPA, the temperature was raised to 120 ° C, and 1000 ppm of triphenylphosphine was added to BPA, and the temperature was raised to 150 ° C. The reaction was carried out at the same temperature, and the reaction was terminated when the epoxy equivalent exceeded the set value. The epoxy equivalent of the obtained resin was 478 g / eq, and the low-temperature solubility was ◯.
[0017]
Reference example 3
To 750 parts of (tertiary) butylated bisphenol A diglycidyl ether obtained in Reference Example 1, YD-128 (bisphenol A type liquid epoxy resin manufactured by Tohto Kasei Co .; epoxy equivalent 187 g / eq, viscosity 12,800 mPa · s / (25 ° C.) was added to 250 parts and the temperature was raised to 80 ° C. and dissolved to confirm that the whole became uniform. The epoxy equivalent of the obtained resin was 239 g / eq, and the low-temperature solubility was ◯.
[0018]
Comparative Reference Example 1
Epoxidation was carried out under the same conditions except that (tertiary) butylated bisphenol A in Reference Example 1 was changed to bisphenol A to obtain an epoxy resin. The epoxy equivalent of the obtained resin was 187 g / eq, and the low-temperature solubility was x.
[0019]
Comparative Reference Example 2
Epoxy resin was obtained by epoxidation under the same conditions except that (tertiary) butylated bisphenol A of Reference Example 1 was changed to bisphenol C (methylated bisphenol A). The epoxy equivalent of the obtained resin was 210 g / eq, and the low-temperature solubility was x.
[0020]
Comparative Reference Example 3
600 parts of YD-128 was added to 400 parts of (tertiary) butylated bisphenol A diglycidyl ether obtained in Reference Example 1, and the mixture was heated to 80 ° C. and dissolved to obtain a mixed epoxy resin. The epoxy equivalent of the obtained resin was 212 g / eq, and the low-temperature solubility was x.
[0021]
Examples 1 to 3 and Comparative Examples 1 to 3
The epoxy resins obtained in Reference Examples 1 to 3 and Comparative Reference Examples 1 to 3 were dissolved in mineral spirits at a resin content of 70%. In 100 parts of this epoxy resin varnish, an amine curing agent (polyaminoamide ZX-1478 manufactured by Tohto Kasei Co., Ltd .; amine value 106 mgKOH / g) was blended in the amount shown in Table-1. Further, 22 parts of titanium oxide, 18 parts of precipitated barium sulfate, and 6 parts of zinc phosphate were blended to prepare a coating material.
The obtained paint was degreased with methylethylketone of mild steel plate SPCC-SB (1.6 × 70 × 150 mm) and then sandblasted and applied with a bar coater to a dry film thickness of 100 μm. Dried for days. Table 1 shows the results of evaluating the performance tests of the appearance, adhesion, and corrosion resistance of the obtained coating film.
In addition, the external appearance of the coating film was determined visually. ◯: Good Δ: Slightly good X: Poor
Also, the adhesion was evaluated by the adhesive cross-cut tape peeling test method of JIS K-5400, 100 gobangs were cut with a cutter knife, the peel test was performed with a cellophane tape, and the number of remaining coating films was measured. . Moreover, about the corrosion resistance, after performing the salt spray test for 300 hours based on JISK5400-7,8, the rusting property was visually evaluated about the external appearance of the coating film. : Significant swelling due to rust.
[0022]
[Table 1]
Figure 0003641765
[0023]
As is apparent from Table 1, the curable composition comprising the ( tertiary) butylated bisphenol A type epoxy resin and the curing agent of the present invention has excellent solubility in mineral spirits, and the resulting coating film is a conventional bisphenol type epoxy. Adhesion and corrosion resistance equivalent to resin.
[Brief description of the drawings]
FIG. 1 is a GPC chart of ( tertiary) butylated bisphenol A type epoxy resin obtained in Reference Example 1 , wherein elution time (min), response amount (mV), elution time (min) and logarithm of molecular weight ( LogM) was blotted at the same time.
FIG. 2 is an infrared absorption spectrum chart of the ( tertiary) butylated bisphenol A type epoxy resin obtained in Reference Example 1 , wherein the vertical axis represents the absorption intensity and the horizontal axis represents the absorption wavelength.

Claims (1)

下記一般式(1)で表される、エポキシ当量180〜2,000g/eqであって、引火点40℃以上の脂肪族系溶剤に可溶であることを特徴とする(ターシャリー)ブチル化ビスフェノール型エポキシ樹脂を50〜100重量%含有するエポキシ樹脂とアミン系硬化剤よりより成ることを特徴とする防食塗料用硬化性組成物
Figure 0003641765
(式中、n≧0、m≧0、R1(ターシャリー)ブチル基を示し、1≦(a+a′)≦4、R2(ターシャリー)ブチル基、又は水素原子からなり、1≦(b+b′)≦4である。Xは、−CH(CH32 −基を表す)
(Tertiary) butylation represented by the following general formula (1), having an epoxy equivalent of 180 to 2,000 g / eq , and soluble in an aliphatic solvent having a flash point of 40 ° C. or higher A curable composition for anticorrosive paints, comprising an epoxy resin containing 50 to 100% by weight of a bisphenol A type epoxy resin and an amine curing agent .
Figure 0003641765
(Wherein n ≧ 0, m ≧ 0, R 1 represents a (tertiary) butyl group , 1 ≦ (a + a ′) ≦ 4, R 2 is a (tertiary) butyl group or a hydrogen atom, ≦ (b + b ′) ≦ 4, X represents a —CH (CH 3 ) 2 — group )
JP10267896A 1996-04-24 1996-04-24 Epoxy resin and curable composition containing the epoxy resin Expired - Fee Related JP3641765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10267896A JP3641765B2 (en) 1996-04-24 1996-04-24 Epoxy resin and curable composition containing the epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10267896A JP3641765B2 (en) 1996-04-24 1996-04-24 Epoxy resin and curable composition containing the epoxy resin

Publications (2)

Publication Number Publication Date
JPH09286839A JPH09286839A (en) 1997-11-04
JP3641765B2 true JP3641765B2 (en) 2005-04-27

Family

ID=14333900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10267896A Expired - Fee Related JP3641765B2 (en) 1996-04-24 1996-04-24 Epoxy resin and curable composition containing the epoxy resin

Country Status (1)

Country Link
JP (1) JP3641765B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131506B2 (en) * 2001-06-27 2013-01-30 新日鉄住金化学株式会社 Epoxy resin
US10344160B1 (en) * 2015-08-10 2019-07-09 The United States Of America As Represented By The Secretary Of The Navy Super-hydrophobic epoxy resin compositions
CN106957409B (en) * 2017-04-07 2020-04-10 哈尔滨工业大学(威海) Water-based epoxy resin curing agent

Also Published As

Publication number Publication date
JPH09286839A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
JPH0126624B2 (en)
WO1997008219A1 (en) One-pack epoxy resin composition, one-pack corrosion-resistant paint composition, and coating method using said compositions
CN107614632B (en) Coating film having chemical resistance
EP0240565B1 (en) Epoxy resin powder coating composition
CN110914329B (en) Composition comprising a metal oxide and a metal oxide
JP5850239B2 (en) Water-based anticorrosion paint and anticorrosion coating film
JP2680355B2 (en) Modified solid epoxy resin
JP3641765B2 (en) Epoxy resin and curable composition containing the epoxy resin
EP0082572B1 (en) Polyglycidyl ethers, their preparation and their use in curable compositions
US4284746A (en) Perfluoroalkyl-substituted amines as epoxy resin curing agents
JPH11508931A (en) Epoxy resin containing part derived from bisphenol F containing high ortho-form
JP3657720B2 (en) Method for producing polymer epoxy resin
JPH03503062A (en) Epoxy resin capped with monoisocyanate
WO2005123799A1 (en) Epoxy resin, method for producing same and epoxy resin composition thereof
JP3743831B2 (en) Modified epoxy resin and curable composition thereof
JP3282097B2 (en) Powder coatings for cast iron pipes
JPH09249733A (en) Epoxy resin and curable composition containing the same
JP3619975B2 (en) Polymerized fatty acid-modified epoxy resin, process for producing the same, and curable resin composition containing the resin
JPH0539440A (en) Corrosion-resistant coating film composition
EP0261715B1 (en) Process for cationic coating compositions
JP3508033B2 (en) Epoxy resin composition
EP0043612A1 (en) Polyglycidyl ethers of diphenylol alkanes, preparation and use in curable compositions
JPS6146020B2 (en)
JP3632285B2 (en) Phenolic hydroxyl group-containing modified epoxy resin, method for producing the same, and powder coating composition thereof
JPH09110847A (en) Monoepoxy compound containing cyclic terpene skeleton and epoxy resin composition using the same as reactive diluent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees