JP3637979B2 - Clinker cooling rate judgment method and cement strength prediction method - Google Patents

Clinker cooling rate judgment method and cement strength prediction method Download PDF

Info

Publication number
JP3637979B2
JP3637979B2 JP09309695A JP9309695A JP3637979B2 JP 3637979 B2 JP3637979 B2 JP 3637979B2 JP 09309695 A JP09309695 A JP 09309695A JP 9309695 A JP9309695 A JP 9309695A JP 3637979 B2 JP3637979 B2 JP 3637979B2
Authority
JP
Japan
Prior art keywords
cement
clinker
strength
cooling rate
diffraction patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09309695A
Other languages
Japanese (ja)
Other versions
JPH08259287A (en
Inventor
牧彦 市川
雄人 小向
宗輝 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP09309695A priority Critical patent/JP3637979B2/en
Publication of JPH08259287A publication Critical patent/JPH08259287A/en
Application granted granted Critical
Publication of JP3637979B2 publication Critical patent/JP3637979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、クリンカー及びセメントを構成するクリンカーの冷却速度判定方法及びセメントの強度予測方法に関する。
【0002】
【従来の技術】
セメントの強度発現性に重要な影響を及ぼす要因として、クリンカー及びセメントを構成するクリンカーの冷却速度が知られている。そして、冷却速度はクリンカー中に含まれるビーライトの色調やラメラの状態を顕微鏡により観察し、判定されていた。この技術は、冷却速度の高低によってビーライトの色調やラメラの状態が変化することを利用したものである。
【0003】
セメントの強度予測は、顕微鏡によるビーライトの色調,大きさ及びエーライトの大きさ及び複屈折を測定することによって行なわれていた。
【0004】
プロファイルフィッティング法については、例えば文献H.Toraya:J.Appl.Cryst.Vol.23.P.485〜491(1990)がある。
【0005】
【発明が解決しようとする課題】
上記した従来技術は顕微鏡観察による方法であるがために熟練を要する上に個人差が大きく、数値化,定量化ならびに自動計測が困難である等の課題があった。
本発明は上記課題を解決するためになされたものであり、定量的にクリンカーの冷却速度を判定すること、及びセメントの強度発現性を予測できるようにしたクリンカーの冷却速度判定方法及びセメントの強度予測方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明の[請求項1]に係るクリンカーの冷却速度判定方法は、クリンカー及びセメント中に含まれるフェライト相の粉末X線回折パターンをプロファイルフィッティング法により冷却速度の異なる複数の回折パターンに分解し、前記複数の回折パターンの積分強度の比率からクリンカー及びセメントを構成するクリンカーの冷却速度を判定できるようにした。
【0007】
本発明の[請求項2]に係るクリンカーの冷却速度判定方法は、[請求項1]において、回折パターンは、クリンカー及びセメント中に含まれるフェライト相の020面を対象とすることにした。
【0008】
本発明の[請求項3]に係るセメントの強度予測方法は、クリンカー及びセメント中に含まれるフェライト相の粉末X線回折パターンをプロファイルフィッティング法により冷却速度の異なる複数の回折パターンに分解し、前記複数の回折パターンの積分強度の比率と、実測したセメントの強度との関係から求めた関係式を用いて未実測なセメントの強度を予測できるようにした。
【0009】
本発明の[請求項4]に係るセメントの強度予測方法は、クリンカー及びセメント中に含まれるフェライト相の粉末X線回折パターンをプロファイルフィッティング法により冷却速度の異なる複数の回折パターンに分解し、実測したセメントの強度と、前記複数の回折パターンの積分強度の比率、更にはセメント中のエーライト相のM3 相とM1 相の合量に対する各相の割合(Vol.%)との関係から求めた関係式を用いて未実測なセメントの強度を予測できるようにした。
【0010】
【実施例】
以下、実施例を説明する。
先ず、予め冷却速度が既知であるA(急冷),B(中間),C(徐冷)の3種類のクリンカーを準備し、サリチル酸メタノール法によって間隙質のみとし、粉末X線回折測定用試料とする。これらのクリンカー中のフェライト相020面の回折パターンを求め、そのパターンをプロファイルフィッティング法によって再現するのに必要な各種パラメータを求めておく。
【0011】
次に、図1に示されるように冷却速度が未知であるクリンカー及びセメント中のフェライト相の020面の回折パターンをプロファイルフィッティング法(パターン分解法)により、図示3本の回折パターンに分解する。これら3本の回折パターンの積分強度の比率からクリンカー及びセメントを構成するクリンカーの冷却速度を判定することが可能となる。
【0012】
冷却速度未知のセメント中に含まれるフェライト相の回折パターンを上述した方法に従って冷却速度の異なるA,B,Cの各クリンカー中に含まれるフェライト相の回折パターンに分解し、各パターンの積分強度の比率を求めた。図2にクリンカーA中に含まれるフェライト相の積分強度の全積分強度に対する比率(以下、aと称する)と、セメントの28日圧縮強度との関係を示す。
【0013】
両者には良好な相関関係が確認され、28日圧縮強度(kgf/cm2 )=6.062×a(%)+227.613という関係式を得た。相関係数は0.80である。従って冷却速度未知のセメント中に含まれるaを求め、上式に代入すれば、未実測のセメントの強度発現性を予測することが可能である。
【0014】
ポルトランドセメントクリンカー中のエーライト相は、ほとんどM3 相とM1 相の2相により構成されている。そこで、プロファイルフィッティング法によりセメント中のエーライト相中のM3 相の体積比率(以下、bと称する)を求め、上記aとbを変数とし、重回帰分析により実測されたセメントの28日圧縮強度(kgf/cm2 )との関係を求めた。その結果、28日圧縮強度(kgf/cm2 )=280+6.15a(%)+0.37b(Vol.%)(重相関係数0.82)という関係式を得た。
【0015】
図3にこの式によって推定される圧縮強度と実測された圧縮強度との関係を示す。残差の標準偏差(SD)は11.3kgf/cm2 である。従ってセメントの28日圧縮強度は、冷却速度のみからも推定可能であるが、エーライト中のM3 相の比率をプロファイルフィッティング法により求め、その測定結果も加えることにより、より精度高くセメントの圧縮強度を予測すること可能である。ここで、エーライト相中のM3 相の比率は公知の顕微鏡によるポイントカウンティング法によっても求めることができる。
【0016】
【発明の効果】
以上説明したように、本発明によりクリンカー及びセメントを構成するクリンカーの冷却速度とセメントの強度発現性を粉末X線回折を利用して個人差なく推定することが可能となった。更に数値化,定量化及び自動計測が可能となり、セメントの品質管理工程が大いに能率化される。
【図面の簡単な説明】
【図1】プロファイルフィッティング法によるセメント中のフェライト相の回折パターンを冷却速度が既知で異なるクリンカー中のフェライト相3本の回折パターンに分解した様子を示す一例図。
【図2】分解後における急冷クリンカーA中に含まれるフェライト相の積分強度の全積分強度に対する比率(a)と28日圧縮強度との関係図。
【図3】推定圧縮強度と実測圧縮強度との関係図。
[0001]
[Industrial application fields]
The present invention relates to a method for determining a cooling rate of a clinker constituting a clinker and a cement and a method for predicting the strength of the cement.
[0002]
[Prior art]
A cooling rate of the clinker and the clinker constituting the cement is known as a factor that significantly affects the strength development of the cement. The cooling rate was determined by observing the color tone of the belite contained in the clinker and the state of the lamella with a microscope. This technology uses the fact that the color tone of the belite and the state of the lamella change depending on the cooling rate.
[0003]
Cement strength predictions were made by measuring the color and size of belite with a microscope and the size and birefringence of alite.
[0004]
For the profile fitting method, see, for example, Document H. Toraya: J.M. Appl. Cryst. Vol. 23. P. 485-491 (1990).
[0005]
[Problems to be solved by the invention]
Although the above-described conventional technique is a method based on a microscope observation, there are problems such as requiring skill and great individual differences, making it difficult to quantify, quantify, and automatically measure.
The present invention has been made in order to solve the above-mentioned problems, and it is possible to quantitatively determine the cooling rate of the clinker, and to determine the cooling rate of the clinker so as to predict the strength development of the cement and the strength of the cement. It aims to provide a prediction method.
[0006]
[Means for Solving the Problems]
The method for determining a cooling rate of a clinker according to [Claim 1] of the present invention decomposes a powder X-ray diffraction pattern of a ferrite phase contained in a clinker and cement into a plurality of diffraction patterns having different cooling rates by a profile fitting method, The cooling rate of the clinker constituting the clinker and the cement can be determined from the ratio of the integrated intensities of the plurality of diffraction patterns.
[0007]
In the method for determining the cooling rate of the clinker according to [Claim 2] of the present invention, the diffraction pattern in [Claim 1] is intended for the 020 plane of the ferrite phase contained in the clinker and cement.
[0008]
In the cement strength prediction method according to [Claim 3] of the present invention, the powder X-ray diffraction pattern of the ferrite phase contained in the clinker and the cement is decomposed into a plurality of diffraction patterns having different cooling rates by a profile fitting method, An unmeasured cement strength can be predicted using a relational expression obtained from the relationship between the integrated intensity ratio of a plurality of diffraction patterns and the measured cement strength.
[0009]
The cement strength prediction method according to [Claim 4] of the present invention decomposes the powder X-ray diffraction pattern of the ferrite phase contained in the clinker and the cement into a plurality of diffraction patterns having different cooling rates by the profile fitting method, From the relationship between the intensity of the cement and the ratio of the integrated intensity of the plurality of diffraction patterns, and the ratio of each phase to the total amount of the M 3 phase and M 1 phase of the alite phase in the cement (Vol.%) The strength of unmeasured cement can be predicted using the obtained relational expression.
[0010]
【Example】
Examples will be described below.
First, three types of clinker of A (rapid cooling), B (intermediate), and C (slow cooling), whose cooling rates are known in advance, are prepared, and only the porosity is obtained by the salicylic acid methanol method. To do. The diffraction pattern of the ferrite phase 020 surface in these clinker is obtained, and various parameters necessary for reproducing the pattern by the profile fitting method are obtained.
[0011]
Next, as shown in FIG. 1, the diffraction pattern of the 020 plane of the ferrite phase in the clinker and cement whose cooling rate is unknown is decomposed into three diffraction patterns shown in the figure by a profile fitting method (pattern decomposition method). The cooling rate of the clinker constituting the clinker and the cement can be determined from the ratio of the integrated intensities of these three diffraction patterns.
[0012]
The diffraction pattern of the ferrite phase contained in the cement whose cooling rate is unknown is decomposed into the diffraction pattern of the ferrite phase contained in each clinker of A, B, and C having different cooling rates according to the method described above, and the integrated intensity of each pattern is The ratio was determined. FIG. 2 shows the relationship between the ratio of the integral strength of the ferrite phase contained in clinker A to the total integral strength (hereinafter referred to as a) and the 28-day compressive strength of cement.
[0013]
A good correlation was confirmed between the two, and a relational expression of 28-day compressive strength (kgf / cm 2 ) = 6.062 × a (%) + 227.613 was obtained. The correlation coefficient is 0.80. Therefore, if the a contained in the cement whose cooling rate is unknown is obtained and substituted into the above equation, it is possible to predict the strength development of the unmeasured cement.
[0014]
The alite phase in the Portland cement clinker is almost composed of two phases, the M 3 phase and the M 1 phase. Therefore, the volume ratio of the M 3 phase in the alite phase in the cement (hereinafter referred to as b) is obtained by the profile fitting method, and the 28-day compression of the cement measured by multiple regression analysis using the above a and b as variables. The relationship with the strength (kgf / cm 2 ) was determined. As a result, a relational expression of 28-day compressive strength (kgf / cm 2 ) = 280 + 6.15a (%) + 0.37b (Vol.%) (Multiple correlation coefficient 0.82) was obtained.
[0015]
FIG. 3 shows the relationship between the compression strength estimated by this equation and the actually measured compression strength. The standard deviation (SD) of the residual is 11.3 kgf / cm 2 . Therefore, the 28-day compressive strength of cement can be estimated from the cooling rate alone, but the proportion of M3 phase in alite is obtained by the profile fitting method, and the measurement results are added to obtain a more accurate compressive strength of cement. Can be predicted. Here, the ratio of the M 3 phase in the alite phase can also be determined by a known point counting method using a microscope.
[0016]
【The invention's effect】
As described above, according to the present invention, it became possible to estimate the cooling rate of the clinker constituting the clinker and the cement and the strength development of the cement without individual differences using powder X-ray diffraction. In addition, quantification, quantification and automatic measurement become possible, and the quality control process of cement is greatly streamlined.
[Brief description of the drawings]
FIG. 1 is an example showing a state in which a diffraction pattern of a ferrite phase in a cement is decomposed into three diffraction patterns in a clinker having a known cooling rate by a profile fitting method.
FIG. 2 is a graph showing the relationship between the ratio (a) of the integral strength of the ferrite phase contained in the quenched clinker A after decomposition to the total integral strength and the 28-day compressive strength.
FIG. 3 is a relationship diagram between estimated compression strength and measured compression strength.

Claims (4)

クリンカー及びセメント中に含まれるフェライト相の粉末X線回折パターンをプロファイルフィッティング法により冷却速度の異なる複数の回折パターンに分解し、前記複数の回折パターンの積分強度の比率からクリンカー及びセメントを構成するクリンカーの冷却速度を判定することを特徴とするクリンカーの冷却速度判定方法。The powder X-ray diffraction pattern of the ferrite phase contained in the clinker and cement is decomposed into a plurality of diffraction patterns having different cooling rates by a profile fitting method, and the clinker that constitutes the clinker and the cement from the ratio of the integrated intensity of the plurality of diffraction patterns A method for determining a cooling rate of a clinker, characterized by determining a cooling rate of the clinker. 回折パターンは、クリンカー及びセメント中に含まれるフェライト相の020面を対象とすることを特徴とする請求項1記載のクリンカーの冷却速度判定方法。2. The method for determining a cooling rate of a clinker according to claim 1, wherein the diffraction pattern targets a 020 surface of a ferrite phase contained in the clinker and cement. クリンカー及びセメント中に含まれるフェライト相の粉末X線回折パターンをプロファイルフィッティング法により冷却速度の異なる複数の回折パターンに分解し、前記複数の回折パターンの積分強度の比率と、実測したセメントの強度との関係から求めた関係式を用いて未実測なセメントの強度を予測することを特徴とするセメントの強度予測方法。The powder X-ray diffraction pattern of the ferrite phase contained in the clinker and cement is decomposed into a plurality of diffraction patterns having different cooling rates by a profile fitting method, and the ratio of the integrated intensity of the plurality of diffraction patterns and the measured cement strength A cement strength prediction method characterized by predicting an unmeasured cement strength using a relational expression obtained from the above relationship. クリンカー及びセメント中に含まれるフェライト相の粉末X線回折パターンをプロファイルフィッティング法により冷却速度の異なる複数の回折パターンに分解し、実測したセメントの強度と、前記複数の回折パターンの積分強度の比率、更にはセメント中のエーライト相のM3 相とM1 相の合量に対する各相の割合(Vol.%)との関係から求めた関係式を用いて未実測なセメントの強度を予測することを特徴とするセメントの強度予測方法。The powder X-ray diffraction pattern of the ferrite phase contained in the clinker and cement is decomposed into a plurality of diffraction patterns having different cooling rates by a profile fitting method, and the ratio of the measured cement strength and the integrated intensity of the plurality of diffraction patterns, further to predict the strength of the non-measured cement using a relational expression obtained from the relationship between the ratio of each phase (Vol.%) relative to the total amount of M 3 phase and M 1 phase of alite phase in the cement A method for predicting the strength of cement.
JP09309695A 1995-03-27 1995-03-27 Clinker cooling rate judgment method and cement strength prediction method Expired - Fee Related JP3637979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09309695A JP3637979B2 (en) 1995-03-27 1995-03-27 Clinker cooling rate judgment method and cement strength prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09309695A JP3637979B2 (en) 1995-03-27 1995-03-27 Clinker cooling rate judgment method and cement strength prediction method

Publications (2)

Publication Number Publication Date
JPH08259287A JPH08259287A (en) 1996-10-08
JP3637979B2 true JP3637979B2 (en) 2005-04-13

Family

ID=14072998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09309695A Expired - Fee Related JP3637979B2 (en) 1995-03-27 1995-03-27 Clinker cooling rate judgment method and cement strength prediction method

Country Status (1)

Country Link
JP (1) JP3637979B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2134680B1 (en) * 1994-05-26 2000-05-01 Vargas Munoz Miguel PREDICTION OF THE RESISTANCES OF THE CLINKER OR CEMENT, USING CRYSTALLOGRAPHIC FACTORS OF ITS CONSTITUENT MINERALS, DETERMINED BY DIFRACTION OF RX.
AU751674B2 (en) * 1999-06-21 2002-08-22 Fct-Actech Pty Ltd Method and apparatus for X-ray diffraction analyses
AUPQ109499A0 (en) * 1999-06-21 1999-07-15 Adelaide Brighton Management Limited Sample presentation for x-ray diffraction
ES2167273B2 (en) * 2000-10-19 2003-04-01 Univ Alicante METHOD FOR QUANTIFICATION OF CEMENT IN MORTARS AND CONCRETE BASED ON X-RAY DIFFACTION.
JP5924436B1 (en) * 2015-03-18 2016-05-25 住友大阪セメント株式会社 Cement clinker composition, method for producing the same, and moderately heated Portland cement composition
JP7184604B2 (en) * 2018-11-15 2022-12-06 太平洋セメント株式会社 Method for estimating hydration reactivity of clinker

Also Published As

Publication number Publication date
JPH08259287A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
Bullard et al. Time dependent driving forces and the kinetics of tricalcium silicate hydration
Barcelo et al. Autogenous shrinkage of concrete: a balance between autogenous swelling and self-desiccation
Pang et al. A comparison study of Portland cement hydration kinetics as measured by chemical shrinkage and isothermal calorimetry
Voigt et al. Comparison of ultrasonic wave transmission and reflection measurements with P-and S-waves on early age mortar and concrete
Lee Prediction of concrete strength using artificial neural networks
Bhanja et al. Investigations on the compressive strength of silica fume concrete using statistical methods
Termkhajornkit et al. Modeling the coupled effects of temperature and fineness of Portland cement on the hydration kinetics in cement paste
Snellings et al. Rapid, robust, and relevant (R3) reactivity test for supplementary cementitious materials
Frølich et al. Using isothermal calorimetry to predict one day mortar strengths
Dabiĉ et al. A new approach in mathematical modelling of cement hydration development
Natkunarajah et al. Analysis of the trend of pH changes of concrete pore solution during the hydration by various analytical methods
US6816791B2 (en) Assay methods for hydratable cementitious compositions
Wang et al. 1H NMR relaxometry as an indicator of setting and water depletion during cement hydration
JP3637979B2 (en) Clinker cooling rate judgment method and cement strength prediction method
US5475220A (en) Method to determine the phase composition of cement
Vetter et al. The use of Raman spectroscopy to monitor phase changes in concrete following high temperature exposure
Tong Modeling of autogenous volume deformation process of RCC mixed with MgO based on concrete expansion experiment
Yan et al. The semiquantitative determination and morphology of ettringite in pastes containing expansive agent cured in elevated temperature
Xie et al. Temperature field evolution of mass concrete: From hydration dynamics, finite element models to real concrete structure
CN106885752A (en) The assay method of periclase weight/mass percentage composition in cement
Mechling et al. Relation between cement composition and compressive strength of pure pastes
CN105606515A (en) Building method and predicted application of cement-based material pore size distribution model
Peterson et al. Hydration of cement: The application of quasielastic and inelastic neutron scattering
Wei Interpretation of hydration process of cement-based materials using resistivity measurement
Pichler et al. Deconvolution of main hydration kinetic peaks in properly sulfated Portland cements with boundary nucleation and growth models and relation to early-age concrete strength development

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees