JP3637719B2 - Laser melt processing equipment - Google Patents

Laser melt processing equipment Download PDF

Info

Publication number
JP3637719B2
JP3637719B2 JP3936697A JP3936697A JP3637719B2 JP 3637719 B2 JP3637719 B2 JP 3637719B2 JP 3936697 A JP3936697 A JP 3936697A JP 3936697 A JP3936697 A JP 3936697A JP 3637719 B2 JP3637719 B2 JP 3637719B2
Authority
JP
Japan
Prior art keywords
heating medium
yag laser
work material
processed
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3936697A
Other languages
Japanese (ja)
Other versions
JPH10235489A (en
Inventor
重宏 吉安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3936697A priority Critical patent/JP3637719B2/en
Publication of JPH10235489A publication Critical patent/JPH10235489A/en
Application granted granted Critical
Publication of JP3637719B2 publication Critical patent/JP3637719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81415General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled
    • B29C66/81417General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled being V-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7128Bags, sacks, sachets

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、透過性の高い熱可塑性樹脂を溶融により、YAGレーザで切断したり、刻印を行ったり、或いは接合したりするレーザ溶融加工装置に関するものである。
【0002】
【従来の技術】
従来、透過性の高い材料をYAGレーザで切断する場合には、被加工材料の裏側に設置する材料として、その表面が平面状を有したテーブル材料を使用していた。
その例として、特開平3−71991号公報に記載された従来例について図を用いて説明する。
図5は従来の透過性の高い被加工材料の溶融加工装置を示した説明図である。
図5において、被加工材料1は、透明なアクリル樹脂等の透過性材料であり、加工テーブル2の上面に載置されている。そして、この透過性材料からなる被加工材料1の表面には、YAGレーザ光4を効率よく吸収するレーザビーム吸収剤3が塗布されている。このレーザビーム吸収剤3は、透過材料1の表面全体または加工経路に沿って塗布されている。
更に、被加工材料1の裏側、即ち、加工テーブル2の表面側には、YAGレーザ光4を高い反射率で反射する反射材料5が設けられている。
【0003】
そこで、YAGレーザ光4は集光レンズ6によって加工点に収束されると同時に、加工点のレーザビーム吸収剤3にアシストガス7を吹き付ける。これにより、YAGレーザ光4はレーザビーム吸収剤3によって吸収され、また、レーザビーム吸収剤3を通過して被加工材料1の内部に透過されたものは、反射材料5の表面で反射し、再び被加工材料1の内部を通り、レーザビーム吸収剤3で再度吸収される。したがって、YAGレーザ光4の熱エネルギーは、透過性材料からなる被加工材料1の表面側のレーザビーム吸収剤3とその裏側の反射材料5の相乗作用によって、効率よく被加工材料1に吸収される。
このようにして、YAGレーザ光4によって透過性材料からなる被加工材料1に対し、加工経路に沿って相対移動させ、切断等の加工を連続的に行っている。
【0004】
【発明が解決しようとする課題】
しかし、上述の従来技術では、透過性の被加工材料1の表面に塗布したレーザビーム吸収剤3のみが、YAGレーザ光4の照射によって燃焼・気化するため、被加工材料1が透過性の材料の場合には、表面層しか溶融させることができないこととなり、透過性材料からなる被加工材料1を完全に切断分離させることが困難であった。
更に、切断分離する加工が終了した段階で、透過性材料からなる被加工材料1の表面に塗布したレーザビーム吸収剤3を除去しなければならないという後処理が必要不可欠であった。
【0005】
一方、特開平4−305392号公報には、透過性材料からなる被加工材料1の裏側に、YAGレーザ光4を吸収する物質を配置し、YAGレーザ光4を照射させることにより、このYAGレーザ光4を吸収する物質の一部を気化し、透過性材料からなる被加工材料1の裏側に析出させ、この析出された物質が再度YAGレーザ光4を吸収した結果生ずる熱エネルギーにより、透過性材料の除去加工装置に関する技術が示されている。
この透過性材料の除去装置によれば、被加工材料1の透過性材料とその裏側に位置するYAGレーザ光4を吸収する物質が密着している場合は、この物質の一部が気化した際にその熱エネルギーにより透過性材料からなる被加工材料1の裏面に熱的損傷(熱による材料のただれ)が生ずることになるため、実際には、透過性材料と物質との間に若干の隙間を設けなくてはならなくなり、被加工材料1の裏側に析出される物質の析出効率が低下し、かつ、隙間により拡がりが発生することになる。
【0006】
そこで、本発明は、被加工材料が透過性の材料でも溶融加工が可能であり、また、溶融加工が終了した段階で被加工材料の表面の後処理を不要とし、かつ、高効率で被加工材料の溶融加工を可能としたレーザ溶融加工装置の提供を課題とするものである。
【0007】
【課題を解決するための手段】
請求項1にかかるレーザ溶融加工装置は、YAGレーザ固有の光の波長に対して透過性の高い熱可塑性樹脂からなる被加工材料を、前記YAGレーザで溶融加工するレーザ溶融加工装置において、溶融加工する形状と同一形状を有する金属材料からなる加熱媒体の端部を前記被加工材料の裏面に密着させ、前記被加工材料の前記加熱媒体の反対側の面から前記YAGレーザを照射して、前記加熱媒体と前記YAGレーザとを相対移動させるものである。
【0008】
請求項2にかかるレーザ溶融加工装置は、YAGレーザ固有の光の波長に対して透過性の高い熱可塑性樹脂からなる被加工材料を、前記YAGレーザで溶融加工するレーザ溶融加工装置において、溶融加工する形状と同一形状を有する金属材料からなる加熱媒体の端部を前記被加工材料の裏面に密着させ、前記被加工材料の前記加熱媒体の反対側の面から、前記被加工材料上の切断形状を網羅する面積以上の照射ビーム径となるよう前記YAGレーザビームを照射するものである。
【0009】
請求項3にかかるレーザ溶融加工装置は、YAGレーザ固有の光の波長に対して透過性の高い熱可塑性樹脂からなる被加工材料を、前記YAGレーザで溶融加工するレーザ溶融加工装置において、溶融加工する形状と同一形状を有する金属材料からなる加熱媒体の端部を前記被加工材料の裏面に密着させ、前記被加工材料の前記加熱媒体の反対側の面から、前記被加工材料上の切断形状の特定方向の長さを網羅する長さ以上の照射ビーム長とし、前記YAGレーザビームを前記照射ビーム長の直角方向に移動させて照射するものである。
【0010】
請求項4にかかるレーザ溶融加工装置の前記加熱媒体の端部は、鋭利な突起、微小な平面部をもった突起、丸みをもった突起のうちの何れか1つの形状としたものである。
【0011】
請求項5にかかるレーザ溶融加工装置の前記加熱媒体の端部は、鋭利な突起、微小な平面部をもった突起、丸みをもった突起のうちの何れか1つの形状とし、しかも、前記加熱媒体の端部にレーザビーム吸収剤を塗布してなるものである。
【0012】
【発明の実施の形態】
実施の形態1.
図1は本発明の第一の実施の形態による透過性の高い熱可塑性樹脂のレーザ溶融加工装置の構成を示した説明図であり、(a)は要部斜視図、(b)は切断状態を示す要部断面図である。なお、図中、従来例と同一符号及び記号は従来例の構成部分と同一または相当する構成部分を示すものである。
図1において、被加工材料1は、透過性の高い熱可塑性樹脂であり、例えば、透明なアクリル樹脂の板、アクリル樹脂の薄手のシート等からなる。
加工テーブル2の上には、所望の被加工材料1の切断形状と同一形状を有する鋭利な突起8aを上部に設けた金属材料からなる加熱媒体8が、透過性の高い熱可塑性樹脂である被加工材料1の裏面に密着してセットされている。更に、被加工材料1は、金属材料からなる加熱媒体8以外にも、所定の位置関係に配設し、被加工材料1の位置を保持する複数の保持ピン9によって、その配置面が維持されている。また、YAGレーザ光4は集光レンズ6によって、被加工材料1の表面から加熱媒体8の上端に収束されるように設定されている。
【0013】
このような配置関係において、YAGレーザ光4は集光レンズ6で集光され、被加工材料1の表面に照射される。ここで被加工材料1はYAGレーザの波長域に対して透過性の高い材料からなるので、被加工材料1の表面に照射されたYAGレーザ光4は、被加工材料1の内部を透過・伝播し、被加工材料1の裏面と密着してセットされている金属材料からなる加熱媒体8の先端に照射される。
このため、YAGレーザ光4は被加工材料1でエネルギーをほとんど失わず、専ら金属材料からなる加熱媒体8でそのエネルギーのほとんどが消費される。即ち、この加熱媒体8の温度がYAGレーザ光4の照射により上昇する結果、金属材料からなる加熱媒体8の先端が、透過性の高い熱可塑性材料である被加工材料1の融点を上回ることになる。
【0014】
金属材料からなる加熱媒体8の先端部は鋭利な突起8aとなっているため、YAGレーザ光4が照射された被加工材料1の部分では、高温となった加熱媒体8の先端部の突起8aにより、被加工材料1の溶融が開始される。被加工材料1は加熱媒体8及び保持ピン9で保持されているが、被加工材料1の自重作用により、被加工材料1の板厚方向への溶融が促進され、結果として、被加工材料1の切断加工が可能となる。また、金属材料からなる加熱媒体8は所望する切断形状と同一形状を有する鋭利な突起部分を設けているから、被加工材料1の表面において、加熱媒体8の突起部分に沿ってYAGレーザ光4を移動(または加熱媒体8を含んだ被加工材料1を移動)させることにより、所望とする透過性の高い熱可塑性樹脂からなる被加工材料1を任意の形状の連続的な切断が可能となる。
【0015】
実施の形態2.
前述の第一の実施の形態では、加熱媒体8の先端部分が鋭利な突起形状とする場合について説明したが、本発明を実施する場合には、加熱媒体8の先端部に、微小な平面部或いは丸みをもった突起8bとすることもできる。
図2は本発明の第二の実施の形態による透過性の高い熱可塑性樹脂のレーザ切断装置の構成を示した説明図である。なお、図中、従来例または前記実施の形態と同一符号及び記号は、従来例または前記実施の形態の構成部分と同一または相当する構成部分を示すものである。
図2に示すように、高温となった加熱媒体8の先端部によって、被加工材料1を熱的に溶融する溶融加工装置においては、被加工材料1の融点が高い場合、被加工材料1の厚みが厚い場合には、加熱媒体8の先端部の熱容量が大きいことが切断に有効となる。これには、熱的な接点となる被加工材料1と加熱媒体8の先端部の接触面積を大きくすることによって対応できる。
したがって、図2に示すように、加熱媒体8の表面に微小な平面部或いは丸みを持たせることにより、上端部の熱容量を大きくした突起8bを設けている。
【0016】
このような配置関係において、YAGレーザ光4は第一の実施の形態と同様、集光レンズ6で集光され、被加工材料1の表面に照射される。被加工材料1の表面に照射されたYAGレーザ光4は、被加工材料1の内部を透過・伝播し、被加工材料1の裏面と密着してセットされている金属材料からなる加熱媒体8の先端部に照射される。このとき、YAGレーザ光4は被加工材料1でエネルギーをほとんど失わず、加熱媒体8でそのエネルギーのほとんどが消費され、加熱媒体8の温度が上昇し、加熱媒体8の先端が被加工材料1の融点を上回ることになる。
金属材料からなる加熱媒体8の先端は突起8bとなっているため、YAGレーザ光4が照射された被加工材料1の部分では、高温となった加熱媒体8の先端部の突起8bにより、被加工材料1の溶融が開始され、被加工材料1の自重作用により、被加工材料1の板厚方向への溶融が促進され、被加工材料1の切断加工が可能となる。このとき、加熱媒体8は所望する切断形状と同一形状を有する微小な平面部を持つものの、全体としてみると突起8bを設けていることになるから、被加工材料1の表面上において、加熱媒体8の突起部に沿ってYAGレーザ光4を移動させるか、または、加熱媒体8を含んだ被加工材料1を移動させることにより、即ち、相対移動させることにより、所望とする透過性の高い熱可塑性樹脂の被加工材料1の任意の形状の連続的な切断を、より効率よく実施することができる。
【0017】
実施の形態3.
前述の第一の実施の形態及び第二の実施の形態では、被加工材料1上の加工点に集光させたYAGレーザ光4と加熱媒体8とを相対移動させることにより、所望の被加工材料1の任意形状の連続的な切断を実施する事例について説明した。
しかし、本発明を実施する場合には、被加工材料1上の加工点に集光させたYAGレーザ光4と加熱媒体8とを相対移動させないで、一軸方向のみに移動(スキャン)したり、或いは移動を行わせないで加熱媒体8の加熱を行うことができる。
例えば、被加工材料1上の所望の切断形状を網羅する面積以上の照射ビーム径となるようにYAGレーザ光を拡大させて、被加工材料1上に照射させることにより、前述の各実施の形態のようにYAGレーザ光4等を移動させることなく、透過性の高い熱可塑性樹脂である被加工材料1の所望の切断加工が実施できる。
【0018】
図3は本発明の第三の実施の形態による透過性の高い熱可塑性樹脂のレーザ切断装置の構成を示した説明図で、(a)は要部斜視図、(b)はその原理図である。なお、図中、従来例または前記実施の形態と同一符号及び記号は、従来例または前記実施の形態の構成部分と同一または相当する構成部分を示すものである。
ここで、所望する切断形状の大きさ、つまり、図3に示した切断長=Laの金属材料を使用した加熱媒体8で直線に切断する簡単な事例では、この切断長≦照射ビーム径(拡がり直径)の大きさとなる。このような切断形状に対して、被加工材料1上の切断長Laを網羅する面積以上の照射ビーム径Lbを得るには、集光レンズ6の焦点距離と集光レンズ6への入射ビーム径との関係から、集光点10と被加工材料1との間隔xを次式により求め、この間隔xとなるよう集光レンズ6の高さを設定して、YAGレーザ光4を照射してやればよい。
【0019】
例えば、
・集光レンズ6の焦点距離:f=7.5インチ=7.5×25.4mm
・集光レンズ6への入射ビーム径:w=20mm
・切断長:La=40mm
の場合、
x=f×(La/w)=7.5×25.4×(40/20)=381mm
となる。この切断長Laよりも照射ビーム径Lbが大きくなる値とすればよい。当然ながら、La>Lbであっても、その差が小さい値であれば、加熱媒体8の熱伝導によって、溶融加工させることができる。
ここで、加熱媒体8の加工テーブル2側は、集光点10からの距離が、集光点10と被加工材料1との間隔xよりも大きくなり、加熱媒体8の加工テーブル2側においては、エネルギーの消費量が激減する。また、このとき、複数の保持ピン9はエネルギーの消費が最小になるように、透過性の高い熱可塑性樹脂、例えば、透明なアクリル樹脂、エポキシ樹脂等で形成し、加熱されないように設定する必要がある。
特に、本実施の形態のように、被加工材料1上の切断長Laが加熱媒体8で直線である場合には、集光レンズ6によるYAGレーザ光4のビームを橢円状の拡がりを持つものとし、切断長Laを橢円状ビームの長軸側とすることによってエネルギーの効率を良くすることができる。
【0020】
この実施の形態では、加熱媒体8で切断する範囲を照射ビームの二次元的な拡がりが照射ビーム径L以内となるように設定し、YAGレーザ光4等を相対移動させることなく、透過性の高い熱可塑性樹脂である被加工材料1の所望の切断加工を行うものである。
しかし、加熱媒体8で切断する範囲の最大長を照射ビームの一次元的な拡がりのみの距離L以内となるように設定し、それを照射ビームの一次元的な拡がりの方向に対して直角方向にスキャンすれば、YAGレーザ光4等を一軸方向のみに相対移動させることにより、透過性の高い熱可塑性樹脂である被加工材料1の所望の切断加工ができる。
【0021】
実施の形態4.
上述した第一の実施の形態乃至第三の実施の形態で使用した金属材料からなる加熱媒体8の先端部分は、尖鋭度を持つ突起8a,8bとしたものである。しかし、加熱媒体8の先端部分のエネルギー吸収効率を上げるために、そこに吸収剤3を塗布することもできる。
図4は本発明の第四の実施の形態による透過性の高い熱可塑性樹脂のレーザ切断装置の
構成を示した説明図である。なお、図中、従来例または前記実施の形態と同一符号及び記号は、従来例または前記実施の形態の構成部分と同一または相当する構成部分を示すものであるから、ここでは重複する説明を省略し、相違点のみ説明する。
即ち、本実施の形態では、上述した第一の実施の形態乃至第三の実施の形態で使用した金属材料からなる加熱媒体8の先端部の突起8bに、吸収剤3を塗布した構成としている。YAGレーザ光4によって透過性の高い熱可塑性樹脂である被加工材料1の所望の切断加工する動作は、前述の各実施の形態と同様であるため、吸収剤3を使用した特徴についてのみ説明する。
【0022】
吸収剤3を塗布しない場合の加熱媒体8の先端部分の突起8bは、加熱媒体8において多くのYAGレーザ光4のエネルギーが吸収されるが、そこで若干の反射が生ずるのが現状である。
これに対して本実施の形態のように、高温となった加熱媒体8の先端部によって、透過性の高い熱可塑性樹脂の被加工材料1を熱的に溶融する溶融加工装置においては、被加工材料1の融点が高い場合、加工時間をさらに短縮する場合には、被加工材料1において生ずる反射を極力防止することにより、YAGレーザ光4による加熱媒体8の先端部での吸収率を向上させることができる。
勿論、本発明を実施する場合には、加熱媒体8の先端部分の突起8bを、更に、尖鋭度を増した第一の実施の形態の加熱媒体8の先端部分の突起8aにレーザビーム吸収剤3を塗布してもよい。
【0023】
なお、上記各実施の形態の加熱媒体8は、先端部分の突起8bまたは尖鋭度を増した先端部分の突起8aとしているが、本発明を実施する場合には、加熱媒体8の上端から下端まで均一の厚みの板材とすることもできる。この種の実施の形態においては、加熱媒体8の熱容量が少ないことから、薄手の透過性の高い熱可塑性樹脂の切断、或いは刻印に好適である。また、磨耗によって先端の幅が変化することがない。
また、上記各実施の形態の加熱媒体8は、先端部分の突起8bまたは尖鋭度を増した先端部分の突起8aが平坦面または曲面としているが、本発明を実施する場合には、切断、刻設、接合の用途に合致した上面とすることができる。例えば、接合の場合には、ローレット掛けした面とすると、接合及び余剰樹脂の位置が一義的に決定され、安定した接着状態が得られる。
【0024】
上述の各実施の形態においては、YAGレーザで溶融加工するレーザ溶融加工する事例として、被加工材料1の切断を前提に説明したが、被加工材料1としては透過性の高い熱可塑性樹脂であれば、その厚さに大きく左右される要因を有していないから、透過性の高い熱可塑性樹脂板、透過性の高い熱可塑性樹脂の薄手のシート等の切断は、勿論、透過性の高い熱可塑性樹脂板に刻印を付す場合にも使用でき、また、透過性の高い熱可塑性樹脂の薄手のシートを重ね合せて袋にする場合、透過性の高い熱可塑性樹脂の薄手のシートを複数枚重ね合せてクリアホルダーとする場合等の接合にも使用できる。この種の切断以外の使用に対しては、溶着を確実にするために、溶融接合した部位を押圧板等で押圧し、接合と同時に行う温度エネルギーの放熱効果により、接合固化し、接合の信頼性を高くすることができる。当然ながら、溶融切断の場合においても、溶融した部位に押圧板等で押圧し、切断を行うことができ、特に、熱可塑性樹脂の薄手のシートよりも、厚手のシートや、板材に効果的となる。
【0025】
このように、上記の実施の形態は、YAGレーザ固有の光の波長に対して透過性の高い熱可塑性樹脂からなる被加工材料1を、YAGレーザで溶融加工するレーザ溶融加工装置において、溶融加工する形状と同一形状を有する金属材料からなる加熱媒体8の端部を被加工材料1の裏面に密着させ、被加工材料1の加熱媒体8の反対側の面からYAGレーザを照射して、加熱媒体8と前記YAGレーザとを相対移動させるものであり、これをレーザ溶融加工方法の実施の形態とすることもできる。
したがって、被加工材料1はYAGレーザの波長域に対して透過性の高い材料からなるので、被加工材料1の表面に照射されたYAGレーザ光4は、被加工材料1の内部を透過・伝播し、被加工材料1の裏面と密着してセットされている加熱媒体8の先端に照射される。YAGレーザ光4は加熱媒体8でそのエネルギーのほとんどが消費され、加熱媒体8の温度がYAGレーザ光4の照射により上昇し、加熱媒体8の先端が被加工材料1の融点を上回り、例えば、被加工材料1の自重作用等により、被加工材料1の板厚方向への溶融が促進され、結果として、被加工材料1の切断、刻印、接合等の溶融加工が可能となる。
特に、被加工材料1の表面側で加熱媒体8とYAGレーザ光4を相対移動させることにより、エネルギーが所定の最小領域に照射されるから、透過性の高い熱可塑性樹脂からなる被加工材料1を高効率で溶融加工することができ、被加工材料1が透過性の材料の場合でも、完全に切断分離等の溶融加工をすることが可能となり、また、溶融加工が終了した段階で従来のように被加工材料1の表面に塗布した吸収剤3の除去が不要となり、被加工材料1の表面の後処理を不要とし、かつ、高効率で被加工材料1の溶融加工が可能となる。
【0026】
また、上記の実施の形態は、YAGレーザ固有の光の波長に対して透過性の高い熱可塑性樹脂からなる被加工材料1を、前記YAGレーザで溶融加工するレーザ溶融加工装置において、溶融加工する形状と同一形状を有する金属材料からなる加熱媒体8の端部を被加工材料1の裏面に密着させ、被加工材料1の加熱媒体8の反対側の面から、被加工材料1上の切断形状を網羅する面積以上の照射ビーム径Lbとなるよう前記YAGレーザビームを照射するものであり、これをレーザ溶融加工方法の実施の形態とすることもできる。
したがって、被加工材料1はYAGレーザの波長域に対して透過性の高い材料からなるので、被加工材料1の表面に照射されたYAGレーザ光4は、被加工材料1の内部を透過・伝播し、被加工材料1の裏面と密着してセットされている加熱媒体8の先端に照射される。YAGレーザ光4は加熱媒体8でそのエネルギーのほとんどが消費され、加熱媒体8の温度がYAGレーザ光4の照射により上昇し、加熱媒体8の先端が被加工材料1の融点を上回り、例えば、被加工材料1の自重作用等により、被加工材料1の板厚方向への溶融が促進され、結果として、被加工材料1の切断、刻印、接合等の溶融加工が可能となる。
特に、被加工材料1の加熱媒体8の反対側の面から、被加工材料1上の切断長Laを含む切断形状を網羅する面積以上の照射ビーム径Lbとなるよう前記YAGレーザビームを同時照射するものであるから、NC制御等によって被加工材料1の表面側で加熱媒体8とYAGレーザ光4を相対移動させることなく、透過性の高い熱可塑性樹脂からなる被加工材料1を効率良く溶融加工することができ、被加工材料1が透過性の材料の場合でも、完全に切断分離等の溶融加工をすることが可能となり、廉価な装置となる。また、溶融加工が終了した段階で従来のように被加工材料1の表面に塗布した吸収剤3の除去が不要となり、被加工材料1の表面の後処理を不要とし、かつ、高効率で被加工材料1の溶融加工が可能となる。
【0027】
そして、上記実施の形態は、YAGレーザ固有の光の波長に対して透過性の高い熱可塑性樹脂からなる被加工材料1を、前記YAGレーザで溶融加工するレーザ溶融加工装置において、溶融加工する形状と同一形状を有する金属材料からなる加熱媒体8の端部を被加工材料1の裏面に密着させ、被加工材料1の加熱媒体8の反対側の面から、被加工材料1上の切断形状の特定方向の切断長Laを網羅する長さ以上の照射ビーム長とし、前記YAGレーザビームを前記照射ビーム長の直角方向に移動させて照射するものであり、これをレーザ溶融加工方法の実施の形態とすることもできる。
したがって、被加工材料1はYAGレーザの波長域に対して透過性の高い材料からなるので、被加工材料1の表面に照射されたYAGレーザ光4は、被加工材料1の内部を透過・伝播し、被加工材料1の裏面と密着してセットされている加熱媒体8の先端に照射され、YAGレーザ光4は加熱媒体8でそのエネルギーのほとんどが消費され、加熱媒体8の温度が上昇し、加熱媒体8の先端が被加工材料1の融点を上回り、例えば、被加工材料1の自重作用等により、被加工材料1の板厚方向への溶融が促進され、結果として、被加工材料1の切断、刻印、接合等の溶融加工が可能となる。
特に、被加工材料1の加熱媒体8の反対側の面から、被加工材料1上の切断長Laを含む切断形状を網羅する長さ以上の照射ビーム長となるよう前記YAGレーザビームを、前記照射ビーム長の直角方向のみに移動させながら照射するものであるから、NC制御等によって被加工材料1の表面側で加熱媒体8とYAGレーザ光4を複雑に相対移動させることなく、単純に直線相対運動させればよいから、透過性の高い熱可塑性樹脂からなる被加工材料1を効率良く溶融加工することができ、被加工材料1が透過性の材料の場合でも、完全に切断分離等の溶融加工をすることが可能となり、廉価な装置となる。また、溶融加工が終了した段階で従来のように被加工材料1の表面に塗布したレーザビーム吸収剤3の除去が不要となり、被加工材料1の表面の後処理を不要とし、かつ、高効率で被加工材料1の溶融加工が可能となる。
【0028】
更に、上記実施の形態の加熱媒体8の端部を、鋭利な突起8a、微小な平面部または丸みをもった突起8bのうちの何れか1つの形状としたものでは、加熱媒体8の端部以外の熱容量によって、連続して安定した溶融加工を行うことができる。また、切断等を行うときには、被加工材料1の材料ロスを少なくすることができる。接合を行う場合には、任意の接合しろが得られる。
【0029】
更にまた、上記実施の形態の加熱媒体8の端部を、鋭利な突起8a、微小な平面部または丸みをもった突起8bのうちの何れか1つの形状とし、しかも、加熱媒体8の端部にレーザビーム吸収剤3を塗布したものでは、加熱媒体8の端部以外の熱容量によって、連続して安定した溶融加工を行うことができ、また、切断等を行うときには、被加工材料1の材料ロスを少なくすることができる。接合を行う場合には、任意の接合しろが得られる。そして、加熱媒体8の端部のレーザビーム吸収剤3によって、被加工材料1で生ずる反射を極力防止することにより、YAGレーザ光4による加熱媒体8の先端部での吸収率を向上させることができる。故に、被加工材料1の融点が高い場合、加工時間をさらに短縮する場合には、YAGレーザ光4の吸収率を向上させ、効率のよい溶融加工を可能とする。
【0030】
上記各実施の形態では、YAGレーザ光4は集光レンズ6で集光され、被加工材料1の表面に照射される事例で説明したが、本発明を実施する場合には、加熱媒体8の端部にYAGレーザ光4を集光してもよいし、若干加熱媒体8の下部の位置に収光するように設定してもよい。
【0031】
【発明の効果】
以上のように、請求項1は、YAGレーザ固有の光の波長に対して透過性の高い熱可塑性樹脂からなる被加工材料を、前記YAGレーザで溶融加工するレーザ溶融加工装置において、溶融加工する形状と同一形状を有する加熱媒体の端部を前記被加工材料の裏面に密着させ、前記被加工材料の前記加熱媒体の反対側の面から前記YAGレーザを照射して、前記加熱媒体と前記YAGレーザとを相対移動させるものである。
したがって、被加工材料の表面に照射されたYAGレーザ光は、被加工材料の内部を透過・伝播し、加熱媒体の先端に照射され、YAGレーザ光は加熱媒体の端部でそのエネルギーのほとんどが消費され、加熱媒体の端部の温度が上昇し、加熱媒体の先端が被加工材料の融点を上回り、被加工材料の切断、刻印、接合等の溶融加工が可能となる。このとき、被加工材料の表面側で加熱媒体とYAGレーザ光を相対移動させることにより、YAGレーザ光のエネルギーが最小領域に照射されることになるから、YAGレーザ光を透過する透過性の高い熱可塑性樹脂からなる被加工材料を高効率で溶融加工することができ、被加工材料が透過性の材料の場合でも、完全に切断分離等の溶融加工をすることが可能となり、溶融加工が終了した段階で従来のように被加工材料の表面に塗布したレーザビーム吸収剤の除去が不要となり、被加工材料の表面の後処理を不要とし、かつ、高効率で被加工材料の溶融加工が可能となる。
【0032】
また、請求項2は、YAGレーザ固有の光の波長に対して透過性の高い熱可塑性樹脂からなる被加工材料を、前記YAGレーザで溶融加工するレーザ溶融加工装置において、溶融加工する形状と同一形状を有する加熱媒体の端部を前記被加工材料の裏面に密着させ、前記被加工材料の前記加熱媒体の反対側の面から、前記被加工材料上の切断形状を網羅する面積以上の照射ビーム径となるよう前記YAGレーザビームを照射するものである。
したがって、被加工材料の表面に照射されたYAGレーザ光は、被加工材料の内部を透過・伝播し、加熱媒体の先端に照射される。YAGレーザ光は加熱媒体でそのエネルギーのほとんどが消費され、加熱媒体の端部の温度が上昇し、加熱媒体の先端が被加工材料の融点を上回り、被加工材料の切断、刻印、接合等の溶融加工が可能となる。また、被加工材料の加熱媒体の反対側の面から、被加工材料上の切断長を含む切断形状を網羅する面積以上の照射ビーム径となるよう前記YAGレーザビームによって全体を同時照射するものであるから、NC制御等によって被加工材料の表面側で加熱媒体とYAGレーザ光を相対移動させることなく、透過性の高い熱可塑性樹脂からなる被加工材料を効率良く溶融加工することができ、被加工材料が透過性の材料の場合でも、完全に切断分離等の溶融加工をすることが可能となり、廉価な装置となる。そして、溶融加工が終了した段階で従来のように被加工材料の表面に塗布したレーザビーム吸収剤の除去が不要となり、被加工材料の表面の後処理を不要とし、かつ、高効率で被加工材料の溶融加工が可能となる。
【0033】
そして、請求項3は、YAGレーザ固有の光の波長に対して透過性の高い熱可塑性樹脂からなる被加工材料を、前記YAGレーザで溶融加工するレーザ溶融加工装置において、溶融加工する形状と同一形状を有する加熱媒体の端部を前記被加工材料の裏面に密着させ、前記被加工材料の前記加熱媒体の反対側の面から、前記被加工材料上の切断形状の特定方向の長さを網羅する長さ以上の照射ビーム長とし、前記YAGレーザビームを前記照射ビーム長の直角方向に移動させて照射するものである。
したがって、被加工材料の表面に照射されたYAGレーザ光は、被加工材料の内部を透過・伝播し、加熱媒体の先端に照射され、加熱媒体の端部の温度が上昇し、加熱媒体の先端が被加工材料の融点を上回り、被加工材料の切断、刻印、接合等の溶融加工が可能となる。また、被加工材料の加熱媒体の反対側の面から、被加工材料上の切断長を含む切断形状を網羅する長さ以上の照射ビーム長となるよう前記YAGレーザビームを、前記照射ビーム長の直角方向のみに移動させながら照射するものであるから、NC制御等によって被加工材料の表面側で加熱媒体とYAGレーザ光を複雑に相対移動させることなく、単純に直線相対運動させればよいから、透過性の高い熱可塑性樹脂からなる被加工材料を効率良く溶融加工することができ、廉価な装置となる。そして、溶融加工が終了した段階で従来のように被加工材料の表面に塗布したレーザビーム吸収剤の除去が不要となり、被加工材料の表面の後処理を不要とし、かつ、高効率で被加工材料の溶融加工が可能となる。
【0034】
請求項4は、前記加熱媒体の端部を、鋭利な突起、微小な平面部をもった突起、丸みをもった突起のうちの何れか1つの形状としたものであるから、前記請求項1乃至請求項3の何れか1つに記載の効果に加えて、加熱媒体の端部以外の熱容量によって、連続して安定した溶融加工を行うことができ、また、切断等を行うときには、被加工材料の材料ロスを少なくすることができる。そして、接合を行う場合には、任意の接合しろが得られる。
【0035】
請求項5は、前記加熱媒体の端部を、鋭利な突起、微小な平面部をもった突起、丸みをもった突起のうちの何れか1つの形状とし、しかも、前記加熱媒体の端部にレーザビーム吸収剤を塗布してなるものであるから、前記請求項1乃至請求項3の何れか1つに記載の効果に加えて、加熱媒体の端部以外の熱容量によって、連続して安定した溶融加工を行うことができ、また、切断等を行うときには、被加工材料の材料ロスを少なくすることができる。そして、接合を行う場合には、任意の接合しろが得られる。更に、加熱媒体の端部のレーザビーム吸収剤によって、被加工材料で生ずる反射を極力防止でき、YAGレーザ光による加熱媒体の先端部での吸収率を向上させることができる。故に、被加工材料の融点が高い場合、加工時間を短縮する場合には、YAGレーザ光の吸収率を向上させ、効率のよい溶融加工を可能とする。
【図面の簡単な説明】
【図1】 図1は本発明の第一の実施の形態による透過性の高い熱可塑性樹脂のレーザ溶融加工装置の構成を示した説明図であり、(a)は要部斜視図、(b)は切断状態を示す要部断面図である。
【図2】 図2は本発明の第二の実施の形態による透過性の高い熱可塑性樹脂のレーザ切断装置の構成を示した説明図である。
【図3】 図3は本発明の第三の実施の形態による透過性の高い熱可塑性樹脂のレーザ切断装置の構成を示した説明図で、(a)は要部斜視図、(b)はその原理図である。
【図4】 図4は本発明の第四の実施の形態による透過性の高い熱可塑性樹脂のレーザ切断装置の構成を示した説明図である。
【図5】 図5は従来の透過性の高い被加工材料の溶融加工装置を示した説明図である。
【符号の説明】
1 被加工材料、2 加工テーブル、3 レーザビーム吸収剤、8 加熱媒体、8a 鋭利な突起、8b 微小な平面部または丸みをもった突起、9 保持ピン、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser melt processing apparatus that cuts, engraves, or joins a highly permeable thermoplastic resin with a YAG laser by melting.
[0002]
[Prior art]
Conventionally, when a highly transmissive material is cut with a YAG laser, a table material whose surface has a planar shape has been used as a material to be placed on the back side of the material to be processed.
As an example, a conventional example described in JP-A-3-71991 will be described with reference to the drawings.
FIG. 5 is an explanatory view showing a conventional melt processing apparatus for work material with high permeability.
In FIG. 5, the work material 1 is a transparent material such as a transparent acrylic resin, and is placed on the upper surface of the work table 2. A laser beam absorbent 3 that efficiently absorbs the YAG laser light 4 is applied to the surface of the work material 1 made of the transparent material. The laser beam absorbent 3 is applied along the entire surface of the transmission material 1 or along the processing path.
Further, a reflective material 5 that reflects the YAG laser light 4 with high reflectivity is provided on the back side of the material 1 to be processed, that is, on the surface side of the processing table 2.
[0003]
Therefore, the YAG laser beam 4 is converged to the processing point by the condenser lens 6 and at the same time, the assist gas 7 is blown to the laser beam absorbent 3 at the processing point. Thereby, the YAG laser beam 4 is absorbed by the laser beam absorbent 3, and the light transmitted through the laser beam absorbent 3 and into the workpiece 1 is reflected on the surface of the reflective material 5, It again passes through the work material 1 and is absorbed again by the laser beam absorbent 3. Therefore, the thermal energy of the YAG laser beam 4 is efficiently absorbed by the work material 1 by the synergistic action of the laser beam absorbent 3 on the surface side of the work material 1 made of a transparent material and the reflective material 5 on the back side. The
In this way, the workpiece 1 made of a transparent material is moved relative to the workpiece 1 by the YAG laser light 4 along the machining path, and machining such as cutting is continuously performed.
[0004]
[Problems to be solved by the invention]
However, in the above-described prior art, only the laser beam absorbent 3 applied to the surface of the permeable work material 1 is combusted and vaporized by the irradiation of the YAG laser light 4, so that the work material 1 is a permeable material. In this case, only the surface layer can be melted, and it is difficult to completely cut and separate the work material 1 made of a permeable material.
Furthermore, after the process of cutting and separating, the post-treatment that the laser beam absorbent 3 applied to the surface of the work material 1 made of a transparent material has to be removed is indispensable.
[0005]
On the other hand, in Japanese Patent Laid-Open No. 4-305392, a substance that absorbs the YAG laser beam 4 is disposed on the back side of the work material 1 made of a transmissive material, and this YAG laser beam 4 is irradiated with the YAG laser beam 4. A part of the substance that absorbs the light 4 is vaporized and deposited on the back side of the work material 1 made of a transmissive material, and the deposited substance absorbs the YAG laser light 4 again, thereby transmitting the heat. A technique related to a material removal processing apparatus is shown.
According to this permeable material removing apparatus, when the transmissive material of the workpiece 1 and the substance that absorbs the YAG laser light 4 located on the back side thereof are in close contact with each other, when a part of this substance is vaporized In fact, thermal damage (sag of material due to heat) occurs on the back surface of the work material 1 made of a permeable material due to the thermal energy, so in practice, there is a slight gap between the permeable material and the substance. Therefore, the deposition efficiency of the substance deposited on the back side of the work material 1 is reduced, and the gap is expanded due to the gap.
[0006]
Therefore, the present invention can be melt-processed even if the material to be processed is permeable, and does not require post-treatment of the surface of the material to be processed at the stage when the melt processing is completed, and can be processed with high efficiency. It is an object of the present invention to provide a laser melt processing apparatus that enables material melt processing.
[0007]
[Means for Solving the Problems]
The laser melt processing apparatus according to claim 1 is a laser melt processing apparatus that melts and processes a material made of a thermoplastic resin that is highly transmissive with respect to the wavelength of light unique to a YAG laser, using the YAG laser. The end of a heating medium made of a metal material having the same shape as the shape to be adhered is brought into close contact with the back surface of the material to be processed, and the YAG laser is irradiated from the surface opposite to the heating medium of the material to be processed, The heating medium and the YAG laser are moved relative to each other.
[0008]
The laser melt processing apparatus according to claim 2 is a laser melt processing apparatus that melts and processes a work material made of a thermoplastic resin having a high transmittance with respect to the wavelength of light unique to a YAG laser, using the YAG laser. An end of a heating medium made of a metal material having the same shape as the shape to be adhered is brought into close contact with the back surface of the work material, and a cut shape on the work material is formed from the surface of the work material opposite to the heating medium. The YAG laser beam is irradiated so that the irradiation beam diameter is equal to or larger than the area covering the above.
[0009]
A laser melt processing apparatus according to claim 3 is a laser melt processing apparatus that melts and processes a material made of a thermoplastic resin having a high transmittance with respect to the wavelength of light unique to a YAG laser, using the YAG laser. An end of a heating medium made of a metal material having the same shape as the shape to be adhered is brought into close contact with the back surface of the work material, and a cut shape on the work material is formed from the surface of the work material opposite to the heating medium. Specific direction Cover length The irradiation beam length is longer than the irradiation beam length, and the YAG laser beam is irradiated while being moved in a direction perpendicular to the irradiation beam length.
[0010]
The end portion of the heating medium of the laser melt processing apparatus according to claim 4 has any one of a sharp protrusion, a protrusion having a minute flat surface portion, and a protrusion having a round shape.
[0011]
An end portion of the heating medium of the laser melt processing apparatus according to claim 5 has a shape of any one of a sharp protrusion, a protrusion having a minute flat portion, and a protrusion having a round shape, and the heating A laser beam absorber is applied to the end of the medium.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1A and 1B are explanatory views showing a configuration of a laser melt processing apparatus for a highly permeable thermoplastic resin according to a first embodiment of the present invention, wherein FIG. 1A is a perspective view of a main part, and FIG. It is principal part sectional drawing which shows these. In the figure, the same reference numerals and symbols as in the conventional example indicate the same or corresponding components as those in the conventional example.
In FIG. 1, a material 1 to be processed is a highly permeable thermoplastic resin, and is made of, for example, a transparent acrylic resin plate, a thin acrylic resin sheet, or the like.
On the processing table 2, a heating medium 8 made of a metal material having a sharp projection 8 a having the same shape as the cut shape of the desired work material 1 is provided on the work table 2, which is a highly permeable thermoplastic resin. It is set in close contact with the back surface of the processing material 1. In addition to the heating medium 8 made of a metal material, the work material 1 is arranged in a predetermined positional relationship, and the placement surface is maintained by a plurality of holding pins 9 that hold the position of the work material 1. ing. Further, the YAG laser light 4 is set so as to be converged from the surface of the workpiece 1 to the upper end of the heating medium 8 by the condenser lens 6.
[0013]
In such an arrangement relationship, the YAG laser light 4 is condensed by the condenser lens 6 and irradiated onto the surface of the material 1 to be processed. Here, since the material 1 to be processed is made of a material that is highly transmissive with respect to the wavelength region of the YAG laser, the YAG laser light 4 irradiated on the surface of the material 1 to be processed transmits and propagates inside the material 1 to be processed. Then, the tip of the heating medium 8 made of a metal material set in close contact with the back surface of the workpiece 1 is irradiated.
For this reason, the YAG laser beam 4 hardly loses energy in the material 1 to be processed, and most of the energy is consumed in the heating medium 8 made exclusively of a metal material. That is, as a result of the temperature of the heating medium 8 being increased by irradiation with the YAG laser light 4, the tip of the heating medium 8 made of a metal material exceeds the melting point of the workpiece 1 that is a highly permeable thermoplastic material. Become.
[0014]
Since the tip of the heating medium 8 made of a metal material has a sharp projection 8a, the projection 8a at the tip of the heating medium 8 that has become hot is formed in the portion of the workpiece 1 irradiated with the YAG laser light 4. Thus, melting of the work material 1 is started. Although the work material 1 is held by the heating medium 8 and the holding pins 9, melting of the work material 1 in the plate thickness direction is promoted by the self-weight action of the work material 1, and as a result, the work material 1 Can be cut. Further, since the heating medium 8 made of a metal material is provided with a sharp protruding portion having the same shape as the desired cutting shape, the YAG laser beam 4 along the protruding portion of the heating medium 8 on the surface of the work material 1. Is moved (or the work material 1 including the heating medium 8 is moved), and the work material 1 made of a desired highly permeable thermoplastic resin can be continuously cut into any shape. .
[0015]
Embodiment 2. FIG.
In the first embodiment described above, the case where the tip portion of the heating medium 8 has a sharp protrusion shape has been described. However, when the present invention is carried out, a minute flat portion is formed on the tip portion of the heating medium 8. Alternatively, it may be a rounded protrusion 8b.
FIG. 2 is an explanatory view showing a configuration of a laser cutting apparatus for thermoplastic resin with high permeability according to the second embodiment of the present invention. In the drawing, the same reference numerals and symbols as those of the conventional example or the above-described embodiment indicate the same or corresponding components as those of the conventional example or the above-described embodiment.
As shown in FIG. 2, in the melt processing apparatus in which the workpiece 1 is thermally melted by the tip of the heating medium 8 that has become high temperature, when the melting point of the workpiece 1 is high, When the thickness is large, a large heat capacity at the tip of the heating medium 8 is effective for cutting. This can be dealt with by increasing the contact area between the workpiece 1 serving as a thermal contact and the tip of the heating medium 8.
Therefore, as shown in FIG. 2, the surface of the heating medium 8 is provided with a protrusion 8b having a large heat capacity at the upper end by providing a minute flat surface or roundness.
[0016]
In such an arrangement relationship, the YAG laser beam 4 is condensed by the condenser lens 6 and irradiated onto the surface of the work material 1 as in the first embodiment. The YAG laser beam 4 irradiated on the surface of the work material 1 is transmitted and propagated through the work material 1, and the heating medium 8 made of a metal material set in close contact with the back surface of the work material 1. The tip is irradiated. At this time, the YAG laser beam 4 hardly loses energy in the work material 1, most of the energy is consumed in the heating medium 8, the temperature of the heating medium 8 rises, and the tip of the heating medium 8 is at the work material 1. It will exceed the melting point of.
Since the tip of the heating medium 8 made of a metal material is a projection 8b, the portion of the material 1 to be processed irradiated with the YAG laser beam 4 is covered by the projection 8b at the tip of the heating medium 8 that has become hot. Melting of the work material 1 is started, and due to the self-weight action of the work material 1, the work material 1 is melted in the plate thickness direction, and the work material 1 can be cut. At this time, although the heating medium 8 has a minute flat portion having the same shape as the desired cut shape, since the projection 8b is provided as a whole, the heating medium 8 is formed on the surface of the material 1 to be processed. The YAG laser beam 4 is moved along the protrusions 8 or the workpiece material 1 including the heating medium 8 is moved, that is, the relative movement is performed, so that the desired heat having high transparency can be obtained. The continuous cutting of the arbitrary shape of the workpiece 1 of the plastic resin can be performed more efficiently.
[0017]
Embodiment 3 FIG.
In the first embodiment and the second embodiment described above, the YAG laser beam 4 focused on the processing point on the material 1 to be processed and the heating medium 8 are moved relative to each other to thereby obtain a desired processing object. The case where continuous cutting of the arbitrary shape of the material 1 was implemented was demonstrated.
However, when carrying out the present invention, the YAG laser beam 4 focused on the processing point on the workpiece 1 and the heating medium 8 are moved (scanned) only in one axial direction without relative movement, Alternatively, the heating medium 8 can be heated without moving.
For example, the YAG laser beam is expanded so as to have an irradiation beam diameter larger than an area covering a desired cut shape on the work material 1 and irradiated onto the work material 1, so that each of the above-described embodiments is performed. Thus, the desired cutting process of the work material 1 that is a highly transparent thermoplastic resin can be performed without moving the YAG laser beam 4 and the like.
[0018]
FIGS. 3A and 3B are explanatory views showing the configuration of a laser cutting device for a highly permeable thermoplastic resin according to a third embodiment of the present invention, wherein FIG. 3A is a perspective view of the main part, and FIG. is there. In the drawing, the same reference numerals and symbols as those of the conventional example or the above-described embodiment indicate the same or corresponding components as those of the conventional example or the above-described embodiment.
Here, in the simple case of cutting in a straight line with the heating medium 8 using the metal material of the desired cutting shape, that is, the cutting length = La shown in FIG. 3, this cutting length ≦ irradiation beam diameter (expansion) Diameter). For such a cut shape, in order to obtain an irradiation beam diameter Lb that is equal to or larger than the area covering the cutting length La on the work material 1, the focal length of the condenser lens 6 and the incident beam diameter to the condenser lens 6 are obtained. If the distance x between the condensing point 10 and the material 1 to be processed is obtained by the following equation, the height of the condenser lens 6 is set so as to be the distance x, and the YAG laser beam 4 is irradiated. Good.
[0019]
For example,
The focal length of the condenser lens 6: f = 7.5 inches = 7.5 × 25.4 mm
-Incident beam diameter to the condenser lens 6: w = 20 mm
・ Cut length: La = 40mm
in the case of,
x = f × (La / w) = 7.5 × 25.4 × (40/20) = 381 mm
It becomes. The irradiation beam diameter Lb may be a value that is larger than the cutting length La. Of course, even if La> Lb, if the difference is a small value, it can be melt processed by heat conduction of the heating medium 8.
Here, on the processing table 2 side of the heating medium 8, the distance from the condensing point 10 is larger than the distance x between the condensing point 10 and the material 1 to be processed, and on the processing table 2 side of the heating medium 8. , Energy consumption drastically decreases. At this time, the plurality of holding pins 9 must be formed of a highly permeable thermoplastic resin, for example, a transparent acrylic resin, an epoxy resin, or the like so as to minimize energy consumption and set so as not to be heated. There is.
In particular, when the cutting length La on the work material 1 is a straight line in the heating medium 8 as in the present embodiment, the beam of the YAG laser light 4 from the condensing lens 6 has an ellipse-like spread. The energy efficiency can be improved by setting the cutting length La to the long axis side of the ellipsoidal beam.
[0020]
In this embodiment, the range to be cut by the heating medium 8 is set so that the two-dimensional expansion of the irradiation beam is within the irradiation beam diameter L, and the YAG laser beam 4 and the like can be transmitted without relative movement. A desired cutting process is performed on the work material 1 which is a high thermoplastic resin.
However, the maximum length of the range to be cut by the heating medium 8 is set to be within the distance L of only the one-dimensional expansion of the irradiation beam, and this is perpendicular to the direction of the one-dimensional expansion of the irradiation beam. If the scanning is performed, the YAG laser beam 4 or the like is relatively moved only in one axial direction, whereby the desired material 1 to be processed, which is a highly transparent thermoplastic resin, can be cut.
[0021]
Embodiment 4 FIG.
The tip portion of the heating medium 8 made of the metal material used in the first to third embodiments described above is formed as protrusions 8a and 8b having sharpness. However, in order to increase the energy absorption efficiency of the tip portion of the heating medium 8, the absorbent 3 can be applied thereto.
FIG. 4 shows a laser cutting apparatus for thermoplastic resin with high transparency according to the fourth embodiment of the present invention.
It is explanatory drawing which showed the structure. In the figure, the same reference numerals and symbols as those of the conventional example or the above-described embodiment indicate the same or corresponding components as those of the conventional example or the above-described embodiment. Only the differences will be described.
That is, in this embodiment, First mentioned above The absorbent 3 is applied to the protrusion 8b at the tip of the heating medium 8 made of the metal material used in the third to third embodiments. Since the desired cutting process of the material 1 to be processed, which is a highly transparent thermoplastic resin, with the YAG laser beam 4 is the same as in each of the above-described embodiments, only the characteristics using the absorbent 3 will be described. .
[0022]
The projection 8b at the tip of the heating medium 8 when the absorbent 3 is not applied absorbs a lot of energy of the YAG laser beam 4 in the heating medium 8, but there is a slight reflection at that time.
On the other hand, as in the present embodiment, in a melt processing apparatus that thermally melts a highly permeable thermoplastic resin material 1 by the tip of the heating medium 8 that has become high temperature, When the melting point of the material 1 is high and the processing time is further shortened, the absorption rate at the tip of the heating medium 8 by the YAG laser beam 4 is improved by preventing reflection that occurs in the material 1 to be processed as much as possible. be able to.
Of course, when practicing the present invention, the laser beam absorber is applied to the protrusion 8b at the tip of the heating medium 8 and further to the protrusion 8a at the tip of the heating medium 8 of the first embodiment with increased sharpness. 3 may be applied.
[0023]
In addition, although the heating medium 8 of each said embodiment is used as the processus | protrusion 8b of the front-end | tip part, or the processus | protrusion 8a of the front-end | tip part which increased sharpness, when implementing this invention, from the upper end of the heating medium 8 to a lower end A plate material having a uniform thickness can also be used. In this kind of embodiment, since the heat capacity of the heating medium 8 is small, it is suitable for cutting or engraving a thin and highly transparent thermoplastic resin. Further, the width of the tip does not change due to wear.
Further, in the heating medium 8 of each of the above embodiments, the protrusion 8b at the tip portion or the protrusion 8a at the tip portion with increased sharpness is a flat surface or a curved surface. The upper surface can be adapted to the purpose of installation and bonding. For example, in the case of joining, if the surface is knurled, the positions of joining and surplus resin are uniquely determined, and a stable adhesion state is obtained.
[0024]
In each of the above-described embodiments, as an example of laser melt processing by melt processing with a YAG laser, it has been described on the premise that the material to be processed 1 is cut. However, the material to be processed 1 may be a highly permeable thermoplastic resin. For example, since there is no factor greatly influenced by the thickness, cutting of a highly permeable thermoplastic resin plate, a thin sheet of highly permeable thermoplastic resin, etc. is, of course, highly permeable heat. It can also be used when stamping a plastic resin plate. When a thin sheet of highly permeable thermoplastic resin is layered to form a bag, multiple thin sheets of highly permeable thermoplastic resin are stacked. It can also be used for joining when a clear holder is used. For use other than this type of cutting, in order to ensure welding, the melted and bonded parts are pressed with a pressing plate, etc., and solidified by the heat radiation effect of temperature energy performed simultaneously with the bonding, and the reliability of the bonding Sexuality can be increased. Of course, even in the case of melt cutting, it can be cut by pressing the melted portion with a pressing plate or the like, and particularly effective for thicker sheets and plate materials than thin sheets of thermoplastic resin. Become.
[0025]
As described above, in the laser melting processing apparatus that melts and processes the material 1 made of a thermoplastic resin that has high transparency with respect to the wavelength of light unique to the YAG laser, The end portion of the heating medium 8 made of a metal material having the same shape as the shape to be adhered is brought into close contact with the back surface of the work material 1, and the YAG laser is irradiated from the surface opposite to the heat medium 8 of the work material 1 to heat the work material 1 The medium 8 and the YAG laser are moved relative to each other, and this can be used as an embodiment of the laser melt processing method.
Therefore, since the material 1 to be processed is made of a material that is highly transmissive with respect to the wavelength region of the YAG laser, the YAG laser light 4 irradiated on the surface of the material 1 to be processed is transmitted and propagated inside the material 1 to be processed. Then, the tip of the heating medium 8 set in close contact with the back surface of the workpiece 1 is irradiated. Most of the energy of the YAG laser beam 4 is consumed by the heating medium 8, the temperature of the heating medium 8 rises by irradiation with the YAG laser beam 4, and the tip of the heating medium 8 exceeds the melting point of the material 1 to be processed. Due to the self-weighting action or the like of the work material 1, the work material 1 is melted in the thickness direction, and as a result, the work material 1 can be melted such as cutting, engraving, and joining.
In particular, since the heating medium 8 and the YAG laser beam 4 are moved relative to each other on the surface side of the work material 1, energy is applied to a predetermined minimum region, so the work material 1 made of a highly permeable thermoplastic resin. Can be melt-processed with high efficiency, and even when the work material 1 is a permeable material, it is possible to completely perform melt-processing such as cutting and separation. Thus, it is not necessary to remove the absorbent 3 applied to the surface of the work material 1, post-treatment of the surface of the work material 1 is unnecessary, and the work material 1 can be melted with high efficiency.
[0026]
In the above-described embodiment, the work material 1 made of a thermoplastic resin having a high transparency with respect to the wavelength of light unique to the YAG laser is melt-processed in the laser melt-processing apparatus that melt-processes the YAG laser. The end of the heating medium 8 made of a metal material having the same shape as the shape is brought into close contact with the back surface of the work material 1, and the cut shape on the work material 1 from the surface of the work material 1 opposite to the heating medium 8. The YAG laser beam is irradiated so that the irradiation beam diameter Lb is equal to or larger than the area covering the above, and this may be an embodiment of the laser melting processing method.
Therefore, since the material 1 to be processed is made of a material that is highly transmissive with respect to the wavelength region of the YAG laser, the YAG laser light 4 irradiated on the surface of the material 1 to be processed is transmitted and propagated inside the material 1 to be processed. Then, the tip of the heating medium 8 set in close contact with the back surface of the workpiece 1 is irradiated. Most of the energy of the YAG laser beam 4 is consumed by the heating medium 8, the temperature of the heating medium 8 rises by irradiation with the YAG laser beam 4, and the tip of the heating medium 8 exceeds the melting point of the material 1 to be processed. Due to the self-weighting action or the like of the work material 1, the work material 1 is melted in the thickness direction, and as a result, the work material 1 can be melted such as cutting, engraving, and joining.
In particular, the YAG laser beam is simultaneously irradiated from the surface of the workpiece 1 opposite to the heating medium 8 so that the irradiation beam diameter Lb is equal to or larger than the area covering the cutting shape including the cutting length La on the workpiece 1. Therefore, the work material 1 made of a highly permeable thermoplastic resin can be efficiently melted without causing the heating medium 8 and the YAG laser beam 4 to move relative to each other on the surface side of the work material 1 by NC control or the like. Even if the material 1 to be processed is a permeable material, it is possible to completely perform melt processing such as cutting and separation, and an inexpensive apparatus. Further, when the melt processing is completed, it is not necessary to remove the absorbent 3 applied to the surface of the work material 1 as in the prior art, the post-treatment of the surface of the work material 1 is not required, and the work is performed with high efficiency. The work material 1 can be melt processed.
[0027]
In the above embodiment, the shape to be melt-processed in the laser melt processing apparatus that melt-processes the work material 1 made of a thermoplastic resin having high transparency with respect to the wavelength of the light unique to the YAG laser with the YAG laser. The end portion of the heating medium 8 made of a metal material having the same shape as that of the workpiece 1 is brought into close contact with the back surface of the workpiece material 1, and the cut shape on the workpiece material 1 is cut from the surface of the workpiece material 1 opposite to the heating medium 8. An irradiation beam length longer than the length covering the cutting length La in a specific direction is used, and the YAG laser beam is irradiated while being moved in a direction perpendicular to the irradiation beam length. It can also be.
Therefore, since the material 1 to be processed is made of a material that is highly transmissive with respect to the wavelength region of the YAG laser, the YAG laser light 4 irradiated on the surface of the material 1 to be processed is transmitted and propagated inside the material 1 to be processed. Then, the tip of the heating medium 8 set in close contact with the back surface of the work material 1 is irradiated, and most of the energy of the YAG laser light 4 is consumed by the heating medium 8, and the temperature of the heating medium 8 rises. The tip of the heating medium 8 exceeds the melting point of the material 1 to be processed. For example, the work material 1 is melted in the thickness direction by its own weight action, and as a result, the material 1 to be processed 1 It is possible to perform melt processing such as cutting, engraving and joining.
In particular, the YAG laser beam is used so that the irradiation beam length is equal to or longer than the length covering the cutting shape including the cutting length La on the processing material 1 from the surface opposite to the heating medium 8 of the processing material 1. Since irradiation is performed while moving only in the direction perpendicular to the irradiation beam length, the heating medium 8 and the YAG laser light 4 are simply moved in a straight line without complicated relative movement on the surface side of the workpiece 1 by NC control or the like. Since it only has to be moved relative to each other, the work material 1 made of a highly permeable thermoplastic resin can be efficiently melt-processed. Even when the work material 1 is a permeable material, it can be completely cut and separated. It becomes possible to carry out melt processing, resulting in an inexpensive apparatus. Further, it is not necessary to remove the laser beam absorbent 3 applied to the surface of the work material 1 as in the prior art after the melt processing is completed, and no post-treatment of the surface of the work material 1 is required, and high efficiency. Thus, the material to be processed 1 can be melt processed.
[0028]
Further, in the case where the end of the heating medium 8 according to the above embodiment is any one of a sharp protrusion 8a, a minute flat surface, or a rounded protrusion 8b, the end of the heating medium 8 is used. With the heat capacity other than the above, continuous and stable melt processing can be performed. Further, when cutting or the like, the material loss of the work material 1 can be reduced. When joining, arbitrary joining margins are obtained.
[0029]
Furthermore, the end of the heating medium 8 of the above embodiment is formed into one of a sharp protrusion 8a, a minute flat surface, or a rounded protrusion 8b, and the end of the heating medium 8 is also formed. In the case where the laser beam absorbent 3 is applied on the surface, the heat capacity other than the end of the heating medium 8 can be continuously melted stably. Loss can be reduced. When joining, arbitrary joining margins are obtained. And the absorption rate in the front-end | tip part of the heating medium 8 by the YAG laser beam 4 can be improved by preventing the reflection which arises in the to-be-processed material 1 as much as possible by the laser beam absorber 3 of the edge part of the heating medium 8. FIG. it can. Therefore, when the melting point of the material 1 to be processed is high, when the processing time is further shortened, the absorption rate of the YAG laser beam 4 is improved and efficient melting processing is enabled.
[0030]
In each of the embodiments described above, the YAG laser light 4 was collected by the condenser lens 6 and was applied to the surface of the material 1 to be processed. However, when the present invention is implemented, the heating medium 8 The YAG laser beam 4 may be condensed at the end, or may be set so as to be slightly collected at a position below the heating medium 8.
[0031]
【The invention's effect】
As described above, according to the first aspect of the present invention, a material to be processed made of a thermoplastic resin having a high transmittance with respect to the wavelength of light unique to the YAG laser is melt-processed in the laser melt processing apparatus that melt-processes with the YAG laser. An end portion of the heating medium having the same shape as that of the heating medium is brought into close contact with the back surface of the workpiece material, and the YAG laser is irradiated from the opposite surface of the workpiece material to the heating medium, so that the heating medium and the YAG The laser is moved relative to each other.
Therefore, the YAG laser light applied to the surface of the work material is transmitted and propagated through the work material, and is applied to the front end of the heating medium. The YAG laser light has most of its energy at the end of the heating medium. As a result, the temperature of the end of the heating medium rises, the tip of the heating medium exceeds the melting point of the work material, and melt processing such as cutting, engraving, and joining of the work material becomes possible. At this time, since the energy of the YAG laser beam is irradiated to the minimum region by relatively moving the heating medium and the YAG laser beam on the surface side of the material to be processed, the transmittance of the YAG laser beam is high. Work material made of thermoplastic resin can be melt processed with high efficiency, and even when the work material is a permeable material, it can be completely melted such as by cutting and separating, and the melt processing is completed. At this stage, there is no need to remove the laser beam absorber applied to the surface of the work material as in the past, no post-treatment of the surface of the work material is required, and the work material can be melted with high efficiency. It becomes.
[0032]
The second aspect of the present invention is the same as the shape to be melt-processed in a laser melt processing apparatus that melts and processes a material made of a thermoplastic resin that is highly transmissive with respect to the wavelength of light unique to the YAG laser, using the YAG laser. An end portion of a heating medium having a shape is brought into close contact with the back surface of the work material, and an irradiation beam having an area larger than an area covering the cut shape on the work material from the surface of the work material opposite to the heating medium. The YAG laser beam is irradiated so as to have a diameter.
Therefore, the YAG laser light applied to the surface of the work material is transmitted and propagated through the work material and is applied to the tip of the heating medium. YAG laser light is consumed by the heating medium, most of its energy is consumed, the temperature of the end of the heating medium rises, the tip of the heating medium exceeds the melting point of the work material, cutting, engraving, joining, etc. of the work material Melt processing is possible. Further, the entire surface is simultaneously irradiated with the YAG laser beam so that the irradiation beam diameter is equal to or larger than the area covering the cutting shape including the cutting length on the processing material from the surface opposite to the heating medium of the processing material. Therefore, it is possible to efficiently melt and process a work material made of a highly transparent thermoplastic resin without relatively moving the heating medium and the YAG laser beam on the surface side of the work material by NC control or the like. Even when the processing material is a permeable material, it is possible to completely perform melt processing such as cutting and separation, and an inexpensive apparatus. When the melt processing is completed, it is unnecessary to remove the laser beam absorbent applied to the surface of the material to be processed as in the past, and no post-treatment of the surface of the material to be processed is required, and the material is processed with high efficiency. The material can be melt processed.
[0033]
The third aspect of the present invention is the same as the shape to be melt-processed in a laser melt processing apparatus that melts and processes a material made of a thermoplastic resin that is highly transmissive with respect to the wavelength of light unique to the YAG laser. The end of the heating medium having a shape is brought into close contact with the back surface of the workpiece material, and the cutting material on the workpiece material has a specific direction from the surface opposite to the heating medium of the workpiece material. Cover length The irradiation beam length is longer than the irradiation beam length, and the YAG laser beam is irradiated while being moved in a direction perpendicular to the irradiation beam length.
Therefore, the YAG laser light applied to the surface of the work material is transmitted and propagated through the work material, is applied to the tip of the heating medium, the temperature of the end of the heating medium rises, and the tip of the heating medium However, the melting point of the workpiece material is exceeded, and the workpiece material can be melted, such as cut, engraved, and joined. Further, the YAG laser beam is set to the irradiation beam length from the surface opposite to the heating medium of the processing material so that the irradiation beam length is equal to or longer than the length covering the cutting shape including the cutting length on the processing material. Since irradiation is performed while moving only in the right-angle direction, it is only necessary to perform linear relative motion without complicated relative movement of the heating medium and YAG laser light on the surface side of the material to be processed by NC control or the like. The work material made of a highly permeable thermoplastic resin can be efficiently melt-processed, resulting in an inexpensive apparatus. When the melt processing is completed, it is unnecessary to remove the laser beam absorbent applied to the surface of the material to be processed as in the past, and no post-treatment of the surface of the material to be processed is required, and the material is processed with high efficiency. The material can be melt processed.
[0034]
According to a fourth aspect of the present invention, the end of the heating medium is formed in any one of a sharp protrusion, a protrusion having a minute flat surface, and a protrusion having a roundness. In addition to the effect according to any one of claims 3 to 3, continuous and stable melt processing can be performed by a heat capacity other than the end of the heating medium, and when cutting or the like is performed, Material loss of the material can be reduced. And when joining, arbitrary joining margins are obtained.
[0035]
According to a fifth aspect of the present invention, the end of the heating medium has a shape of any one of a sharp protrusion, a protrusion having a minute flat surface, and a protrusion having a roundness. Since it is formed by applying a laser beam absorber, in addition to the effect according to any one of claims 1 to 3, the heat capacity other than the end of the heating medium is continuously stabilized. Melt processing can be performed, and material loss of the material to be processed can be reduced when cutting or the like is performed. And when joining, arbitrary joining margins are obtained. Further, the laser beam absorbent at the end of the heating medium can prevent reflection caused by the material to be processed as much as possible, and can improve the absorption rate at the leading end of the heating medium by the YAG laser light. Therefore, when the melting point of the material to be processed is high and the processing time is shortened, the absorptivity of the YAG laser light is improved and efficient melting processing is enabled.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a configuration of a laser melt processing apparatus for a highly permeable thermoplastic resin according to a first embodiment of the present invention. FIG. ) Is a cross-sectional view of the main part showing a cut state.
FIG. 2 is an explanatory view showing a configuration of a laser cutting apparatus for a thermoplastic resin with high permeability according to a second embodiment of the present invention.
FIGS. 3A and 3B are explanatory views showing a configuration of a highly transparent thermoplastic resin laser cutting device according to a third embodiment of the present invention, in which FIG. It is the principle diagram.
FIG. 4 is an explanatory view showing a configuration of a laser cutting apparatus for a thermoplastic resin with high permeability according to a fourth embodiment of the present invention.
FIG. 5 is an explanatory view showing a conventional melt processing apparatus for work material with high permeability.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Work material, 2 Processing table, 3 Laser beam absorber, 8 Heating medium, 8a Sharp protrusion, 8b Micro flat part or rounded protrusion, 9 Holding pin,

Claims (5)

YAGレーザ固有の光の波長に対して透過性の高い熱可塑性樹脂からなる被加工材料を、前記YAGレーザで溶融加工するレーザ溶融加工装置において、
溶融加工する形状と同一形状を有する金属材料からなる加熱媒体の端部を前記被加工材料の裏面に密着させ、前記被加工材料の前記加熱媒体の反対側の面から前記YAGレーザを照射して、前記加熱媒体と前記YAGレーザとを相対移動させることを特徴とするレーザ溶融加工装置。
In a laser melt processing apparatus that melts a work material made of a thermoplastic resin that is highly transmissive with respect to the wavelength of light unique to a YAG laser, using the YAG laser,
An end portion of a heating medium made of a metal material having the same shape as the shape to be melt-processed is brought into close contact with the back surface of the workpiece material, and the YAG laser is irradiated from the opposite surface of the workpiece material to the heating medium. A laser melting apparatus for moving the heating medium and the YAG laser relative to each other.
YAGレーザ固有の光の波長に対して透過性の高い熱可塑性樹脂からなる被加工材料を、前記YAGレーザで溶融加工するレーザ溶融加工装置において、
溶融加工する形状と同一形状を有する金属材料からなる加熱媒体の端部を前記被加工材料の裏面に密着させ、前記被加工材料の前記加熱媒体の反対側の面から、前記被加工材料上の切断形状を網羅する面積以上の照射ビーム径となるよう前記YAGレーザビームを照射することを特徴とするレーザ溶融加工装置。
In a laser melt processing apparatus that melts a work material made of a thermoplastic resin that is highly transmissive with respect to the wavelength of light unique to a YAG laser, using the YAG laser,
An end of a heating medium made of a metal material having the same shape as the shape to be melt-processed is brought into close contact with the back surface of the work material, and the surface of the work material on the opposite side of the heating medium is placed on the work material. A laser melt processing apparatus that irradiates the YAG laser beam so as to have an irradiation beam diameter larger than an area covering a cut shape.
YAGレーザ固有の光の波長に対して透過性の高い熱可塑性樹脂からなる被加工材料を、前記YAGレーザで溶融加工するレーザ溶融加工装置において、
溶融加工する形状と同一形状を有する金属材料からなる加熱媒体の端部を前記被加工材料の裏面に密着させ、前記被加工材料の前記加熱媒体の反対側の面から、前記被加工材料上の切断形状の特定方向の長さを網羅する長さ以上の照射ビーム長とし、前記YAGレーザビームを前記照射ビーム長の直角方向に移動させて照射することを特徴とするレーザ溶融加工装置。
In a laser melt processing apparatus that melts a work material made of a thermoplastic resin that is highly transmissive with respect to the wavelength of light unique to a YAG laser, using the YAG laser,
An end of a heating medium made of a metal material having the same shape as the shape to be melt-processed is brought into close contact with the back surface of the work material, and the surface of the work material on the opposite side of the heating medium is placed on the work material. A laser melting processing apparatus characterized in that the irradiation beam length is equal to or longer than a length covering a specific direction of a cut shape, and the YAG laser beam is irradiated while being moved in a direction perpendicular to the irradiation beam length.
前記加熱媒体の端部は、鋭利な突起、微小な平面部をもった突起、丸みをもった突起のうちの何れか1つの形状としたことを特徴とする請求項1乃至請求項3の何れか1つに記載のレーザ溶融加工装置。The end of the heating medium has any one of a sharp protrusion, a protrusion having a minute flat surface, and a protrusion having a round shape. The laser melt processing apparatus according to claim 1. 前記加熱媒体の端部は、鋭利な突起、微小な平面部をもった突起、丸みをもった突起のうちの何れか1つの形状とし、しかも、前記加熱媒体の端部にレーザビーム吸収剤を塗布してなることを特徴とする請求項1乃至請求項3の何れか1つに記載のレーザ溶融加工装置。The end of the heating medium has a shape of any one of a sharp protrusion, a protrusion having a minute flat surface, and a protrusion having a roundness, and a laser beam absorber is applied to the end of the heating medium. The laser melt processing apparatus according to any one of claims 1 to 3, wherein the laser melt processing apparatus is applied.
JP3936697A 1997-02-24 1997-02-24 Laser melt processing equipment Expired - Fee Related JP3637719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3936697A JP3637719B2 (en) 1997-02-24 1997-02-24 Laser melt processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3936697A JP3637719B2 (en) 1997-02-24 1997-02-24 Laser melt processing equipment

Publications (2)

Publication Number Publication Date
JPH10235489A JPH10235489A (en) 1998-09-08
JP3637719B2 true JP3637719B2 (en) 2005-04-13

Family

ID=12551069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3936697A Expired - Fee Related JP3637719B2 (en) 1997-02-24 1997-02-24 Laser melt processing equipment

Country Status (1)

Country Link
JP (1) JP3637719B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031587A (en) * 2009-08-06 2011-02-17 Nippon Avionics Co Ltd Method for laser welding between resin members
JP2011240586A (en) * 2010-05-18 2011-12-01 Hamamatsu Photonics Kk Resin welding method
JP2011240585A (en) * 2010-05-18 2011-12-01 Hamamatsu Photonics Kk Resin welding method
CN108707427A (en) * 2018-08-10 2018-10-26 深圳市联华材料技术有限公司 A kind of material adhesive bonding method and device based on heat transfer medium

Also Published As

Publication number Publication date
JPH10235489A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
TWI270431B (en) Laser processing method
WO2004080643A1 (en) Laser beam machining method
JP2003338467A (en) Method for cutting semiconductor substrate
JP4409840B2 (en) Processing object cutting method
WO2002074480A1 (en) Laser ablation technique
JP4167094B2 (en) Laser processing method
JP3637719B2 (en) Laser melt processing equipment
WO2007005447A2 (en) Method for scan welding or marking through a waveguide and waveguide therefor
US20010037580A1 (en) Position measuring system including partial scale elements
KR20110083507A (en) Method for manufacturing sheet joined body, sheet joined body, roll body, optical film and polarized film
JP6726223B2 (en) Laser welding method and laser welding apparatus for welding workpieces
JP4839663B2 (en) Laser processing method and laser processing apparatus
JP2003001458A (en) Laser beam machining method
US6369351B1 (en) Method for processing and for joining, especially, for soldering a component or a component arrangement using electromagnetic radiation
WO2004080642A1 (en) Laser beam machining method
JPH10244386A (en) Device and method of laser beam machining for transparent hard brittle material
US20050000618A1 (en) Method for joining plastic structural component parts by means of laser radiation
JP4627893B2 (en) Laser processing method and apparatus
JP2003039184A (en) Laser beam machining method
JP2724192B2 (en) Laser processing method of film coating material
JP2003033887A (en) Laser beam machining method
JPS63212084A (en) Laser beam machine
JP2004195829A (en) Laser welding method and member to be welded
JPS61279385A (en) Laser welding method for thin sheet
JPH04200990A (en) Beam path shifting type laser beam cutting machine

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees