JPH10244386A - Device and method of laser beam machining for transparent hard brittle material - Google Patents

Device and method of laser beam machining for transparent hard brittle material

Info

Publication number
JPH10244386A
JPH10244386A JP9047677A JP4767797A JPH10244386A JP H10244386 A JPH10244386 A JP H10244386A JP 9047677 A JP9047677 A JP 9047677A JP 4767797 A JP4767797 A JP 4767797A JP H10244386 A JPH10244386 A JP H10244386A
Authority
JP
Japan
Prior art keywords
brittle material
transparent hard
laser
laser beam
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9047677A
Other languages
Japanese (ja)
Inventor
Naoki Mitsuyanagi
直毅 三柳
Yoshiaki Shimomura
義昭 下村
Shinya Okumura
信也 奥村
Shigeyuki Sakurai
茂行 桜井
Takeshi Nishigaki
剛 西垣
Yasushi Minomoto
泰 美野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP9047677A priority Critical patent/JPH10244386A/en
Publication of JPH10244386A publication Critical patent/JPH10244386A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • C03B33/093Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam using two or more focussed radiation beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and method of laser beam machining for a transparent hard brittle material, using thermal stress produced by laser beam irradiation, the device and method that are capable of suppressing waviness in a cut section in case of using a highly absorptive laser beam and that are capable of improving workability in the case of using a highly transmissive laser beam. SOLUTION: A semi-transparent mirror 6 and a reflection mirror 7 are installed in a manner of holding a transparent hard brittle material in between 4 which is an object to be machined. The semi-transparent mirror 6 is one that totally reflects a laser beam 2 from the side of the transparent hard brittle material 4 and that transmits the laser beam from the opposite side, while the reflection mirror 7 is one that totally reflects the laser beam 2. Machining is performed by transmitting the laser beam 2 through the transparent hard brittle material 4 while the laser beam is repeatedly reflected between the semi-transparent mirror 6 and the reflection mirror 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばLCD基板
等を構成するガラス板のような透明かつ硬くて脆い材料
を、レーザ光照射で生じる熱応力でクラックを進展させ
ることにより加工する透明硬脆材料のレーザ加工装置お
よびレーザ加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent hard and brittle material for processing a transparent, hard and brittle material such as a glass plate constituting an LCD substrate or the like by developing cracks by thermal stress generated by laser light irradiation. The present invention relates to a laser processing apparatus and a laser processing method for a material.

【0002】[0002]

【従来の技術】例えばLCD基板等に使用されるガラス
板のような透明な硬脆材料を分割する場合、ダイヤモン
ド等の硬い工具を用いて材料表面に線状に溝を形成し、
その後機械的な応力を加えてその線状の溝に沿って分断
・分割する方式が一般的であった。この方式では、溝の
形成時に切り屑が、また割断時にも同様に切り屑や微細
な破片などが発生し、これらの小片が最終製品の歩留ま
りを下げる一因となっている。また、直線状ではなく曲
線状に分割する時には、分割面以外にもクラックが発生
し、最終製品の信頼性を低下させる要因となっていた。
2. Description of the Related Art For example, when dividing a transparent hard and brittle material such as a glass plate used for an LCD substrate or the like, a linear groove is formed on the material surface using a hard tool such as diamond.
Thereafter, a method of applying mechanical stress and dividing / dividing along the linear groove was generally used. In this method, chips are generated at the time of forming the groove, and chips and fine fragments are also generated at the time of cleaving, and these small pieces contribute to a decrease in the yield of the final product. In addition, when the light beam is divided into curved lines instead of straight lines, cracks are generated on the surfaces other than the divided surfaces, which is a factor that lowers the reliability of the final product.

【0003】このような問題点を回避する方式として、
特公平3−13040号公報や特開平3―489号公報
などには、レーザ光等を熱源とし、それによって発生す
る熱応力でクラックを進展させてガラス板等を割断する
方式が開示されている。
As a method for avoiding such a problem,
Japanese Patent Publication No. 3-13040 and Japanese Patent Application Laid-Open No. 3-489 disclose a method in which a laser beam or the like is used as a heat source, and cracks are developed by thermal stress generated by the heat source to cut a glass plate or the like. .

【0004】このようなレーザ光を熱源として硬脆材料
の割断を行う場合におけるレーザ加工装置の構成例を図
4に示す。このレーザ加工装置では、レーザ発振器11
から発せられたレーザ光12は、ベンディングミラー1
3aで反射し、集光レンズ13で集光され、被加工物で
ある透明硬脆材料14に照射される。また、透明硬脆材
料14とレーザ光12の照射点の相対的位置はXYテー
ブル15によって移動される。この時、レーザ光12は
透明硬脆材料14が溶融するまでには至らない程度の低
いパワー密度を有するものとする。
FIG. 4 shows an example of the configuration of a laser processing apparatus in the case of cutting a hard and brittle material using such a laser beam as a heat source. In this laser processing apparatus, the laser oscillator 11
Is emitted from the bending mirror 1
The light is reflected by 3a, condensed by a condensing lens 13, and irradiated on a transparent hard brittle material 14 which is a workpiece. The relative position between the transparent hard brittle material 14 and the irradiation point of the laser beam 12 is moved by the XY table 15. At this time, the laser beam 12 has a low power density that does not reach the point where the transparent hard brittle material 14 is melted.

【0005】上記のようにして透明硬脆材料14表面を
相対的に移動するレーザ光12の照射によって、透明硬
脆材料14の表面の温度分布は図5(a)のようにな
り、この温度分布によって図5(b)に示すような熱応
力分布が生じる。即ち、レーザ光12照射位置(加熱
源)近傍では円周方向には圧縮応力が作用するが、ある
距離以上離れると引張応力が作用することになる。但
し、図5(a)に示すX軸およびY軸は透明硬脆材料1
4表面上の相直交する軸である。また、レーザ光12に
よる加熱源近傍にクラックが存在する場合、そのクラッ
クの加熱源に近い先端部分では図5(c)に示すような
応力拡大係数KICが作用する。この応力拡大係数KIC
破壊靭性値KCを超えるとクラックが進展することにな
る。そして、レーザ光12による加熱源を任意の軌跡に
沿ってXYテーブル15で走査させると、その軌跡に追
従するようにクラックが進展し、透明硬脆材料14を割
断・分割することができる。
By the irradiation of the laser beam 12 which relatively moves on the surface of the transparent hard brittle material 14 as described above, the temperature distribution on the surface of the transparent hard brittle material 14 becomes as shown in FIG. The distribution produces a thermal stress distribution as shown in FIG. In other words, a compressive stress acts in the circumferential direction near the irradiation position (heating source) of the laser beam 12, but a tensile stress acts when the distance exceeds a certain distance. However, the X axis and the Y axis shown in FIG.
4 are orthogonal axes on the surface. When a crack exists near the heating source by the laser beam 12, a stress intensity factor K IC as shown in FIG. 5C acts on the tip of the crack near the heating source. If the stress intensity factor K IC exceeds the fracture toughness value K C , cracks will develop. Then, when the XY table 15 scans the heating source by the laser beam 12 along an arbitrary trajectory, cracks develop so as to follow the trajectory, and the transparent hard brittle material 14 can be cut and divided.

【0006】以上のような割断方法では、通常のレーザ
切断のように被加工物を溶融・蒸発に至るまで加熱しな
いので、加工に伴う溶融物や蒸発物が発生せず、また前
述のような機械的な応力を加える方法と比べても切り屑
等が発生せずクリーンな加工ができる。さらに、レーザ
光等による加熱源の軌跡によれば、曲線の加工も容易に
実現できる。
In the above-described cutting method, the workpiece is not heated until it melts and evaporates as in ordinary laser cutting, so that no melt or evaporate is generated during the processing, and Compared to the method of applying mechanical stress, clean processing can be performed without generating chips or the like. Further, according to the locus of the heating source by the laser light or the like, the processing of the curve can be easily realized.

【0007】[0007]

【発明が解決しようとする課題】硬脆材料を割断する場
合に用いられる加熱源用のレーザ光としては、一般に、
ガラスに対し吸収率の高い波長をもつCO2レーザ、或
いは吸収率は高くはないがレーザ発振器がコンパクトで
メンテナンスの容易なNd:YAGレーザが用いられ
る。
As a laser beam for a heating source used for cutting hard and brittle materials, generally,
A CO 2 laser having a wavelength having a high absorptivity with respect to glass or an Nd: YAG laser having a low absorptance but a compact laser oscillator and easy maintenance is used.

【0008】上記のうち、CO2レーザの場合は、ほぼ
100%の吸収率が得られ、表面加熱となる。このよう
な表面加熱の時には、ガラス表面上では図5(a)のよ
うな温度分布となるが、深さ方向(厚み方向)に対して
もやはり同様の温度分布となり、表面から遠ざかるに従
って指数関数的に温度が下がることになる。従って、表
面においては破壊靭性値KCを超えるような応力拡大係
数KICが作用している場合でも、透明硬脆材料14の深
さ方向内部では破壊靭性値KCに至らず、表面近傍のみ
を中心にクラックが進展し、深さ方向のクラックの進展
は不安定になる。すなわち、割断面が透明硬脆材料14
の表面に直角でなくなったり、或いは蛇行したりするこ
ととなり、高精度な加工が行えなくなるという不具合が
発生する。
Of the above, in the case of a CO 2 laser, an absorptivity of almost 100% is obtained and the surface is heated. At the time of such surface heating, the temperature distribution on the glass surface is as shown in FIG. 5A, but the temperature distribution is also the same in the depth direction (thickness direction), and the exponential function increases as the distance from the surface increases. The temperature will drop dramatically. Therefore, even when the stress intensity factor K IC exceeding the fracture toughness value K C is acting in the surface, in the depth direction inside the transparent brittle material 14 without reaching the fracture toughness value K C, the vicinity of the surface only , And the crack in the depth direction becomes unstable. That is, the fractured surface is a transparent hard brittle material 14
The surface is not perpendicular to the surface, or the meandering is performed, which causes a problem that high-precision processing cannot be performed.

【0009】一方、Nd:YAGレーザの場合、透明硬
脆材料14に対してはレーザ光13の透過率が高くなる
が、わずかなレーザ光エネルギーの吸収によっても加熱
は可能であり、割断は実現できる。しかし、CO2レー
ザに比べるとその効率(熱効率)が悪く、加工速度が遅
くなったり、或いはコスト高となる可能性がある。
On the other hand, in the case of the Nd: YAG laser, the transmittance of the laser beam 13 to the transparent hard and brittle material 14 is increased, but heating can be performed by absorption of a small amount of laser beam energy, and the cutting is realized. it can. However, the efficiency (thermal efficiency) is lower than that of the CO 2 laser, and there is a possibility that the processing speed is reduced or the cost is increased.

【0010】このように、被加工物である硬脆材料に対
して吸収率の高いレーザ光(例えばCO2レーザに代表
されるレーザ光)を用いた場合には割断面にうねりが生
じるなどの不具合が懸念され、被加工物である硬脆材料
に対して透過率の高いレーザ光(例えばNd:YAGレ
ーザで代表されるレーザ光)を用いた場合には加工効率
が悪いことが懸念される。
As described above, when a laser beam having a high absorption rate (for example, a laser beam typified by a CO 2 laser) is used for a hard and brittle material to be processed, undulation may occur in a fractured surface. There is a concern that there is a problem, and when a laser beam having a high transmittance (for example, a laser beam typified by a Nd: YAG laser) is used for a hard and brittle material to be processed, processing efficiency may be poor. .

【0011】本発明の目的は、レーザ光照射で生じる熱
応力を利用して透明の硬脆材料を加工するに際して、吸
収率の高いレーザ光を用いた場合に割断面のうねりを抑
えることが可能であり、透過率の高いレーザ光を用いた
場合に加工効率を向上することが可能な透明硬脆材料の
レーザ加工装置およびレーザ加工方法を提供することで
ある。
An object of the present invention is to suppress the undulation of a fractured surface when using a laser beam having a high absorptivity when processing a transparent hard and brittle material using thermal stress generated by laser beam irradiation. Another object of the present invention is to provide a laser processing apparatus and a laser processing method for a transparent hard and brittle material that can improve the processing efficiency when using a laser beam having a high transmittance.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、以下に示すような構成が提供され
る。
In order to achieve the above object, according to the present invention, the following configuration is provided.

【0013】(1)レーザ光を発振するレーザ発振器
と、そのレーザ光を被加工物の加工位置まで誘導する加
工光学系と、被加工物を移動させその加工位置を決定す
る搬送手段とを備え、透明の硬脆材料を前記レーザ光照
射により加工するレーザ加工装置において、前記透明硬
脆材料のレーザ光入射側に、その透明硬脆材料側からは
レーザ光を全反射させかつその透明硬脆材料の反対側か
らはレーザ光を透過させる半透過ミラーを設置すると共
に、前記透明硬脆材料の前記半透過ミラー側とは反対側
に、レーザ光を全反射させる反射ミラーを設置したこと
を特徴とする透明硬脆材料のレーザ加工装置。
(1) A laser oscillator for oscillating a laser beam, a processing optical system for guiding the laser beam to a processing position of the workpiece, and a transport means for moving the workpiece and determining the processing position. A laser processing apparatus for processing a transparent hard and brittle material by irradiating the laser beam, wherein the transparent hard and brittle material is totally reflected by the laser light incident side of the transparent hard and brittle material side, and the transparent and hard brittle material is reflected by the transparent hard and brittle material. A semi-transmissive mirror that transmits laser light is installed from the opposite side of the material, and a reflection mirror that totally reflects laser light is installed on the side of the transparent hard brittle material opposite to the semi-transmissive mirror side. Laser processing equipment for transparent hard and brittle materials.

【0014】(2)上記(1)において、上記半透過ミ
ラー及び反射ミラーの透明硬脆材料側の面を、相向かい
合う凹面形状とする透明硬脆材料のレーザ加工装置。
(2) A laser processing apparatus for a transparent hard brittle material according to the above (1), wherein the transparent hard brittle material-side surfaces of the semi-transmissive mirror and the reflecting mirror have concave shapes facing each other.

【0015】(3)上記(2)において、上記半透過ミ
ラー及び反射ミラーにおける凹面のそれぞれの焦点位置
が、同位置となるよう配置する透明硬脆材料のレーザ加
工装置。
(3) In the above (2), a laser processing apparatus for a transparent hard brittle material, wherein the respective focal positions of the concave surfaces of the semi-transmissive mirror and the reflective mirror are arranged at the same position.

【0016】(4)レーザ発振器から出力されたレーザ
光を被加工物である透明の硬脆材料に照射し、その透明
硬脆材料を加工する透明硬脆材料のレーザ加工方法にお
いて、前記透明硬脆材料のレーザ光入射側に、その透明
硬脆材料側からはレーザ光を全反射させかつその透明硬
脆材料の反対側からはレーザ光を透過させる半透過ミラ
ーを設置し、前記透明硬脆材料の前記半透過ミラー側と
は反対側に、レーザ光を全反射させる反射ミラーを設置
し、さらに前記レーザ光を、透明硬脆材料をはさむ半透
過ミラーと反射ミラーとの間で繰り返し反射させながら
透明硬脆材料を加工することを特徴とする透明硬脆材料
のレーザ加工方法。
(4) In the laser processing method for a transparent hard and brittle material, which irradiates a transparent hard and brittle material as a workpiece with a laser beam output from a laser oscillator and processes the transparent hard and brittle material, A semi-transmissive mirror that totally reflects laser light from the transparent hard brittle material side and transmits laser light from the opposite side of the transparent hard brittle material is installed on the laser light incident side of the brittle material. On the opposite side of the material from the semi-transmissive mirror side, a reflection mirror that totally reflects the laser light is installed, and further, the laser light is repeatedly reflected between the transflective mirror and the reflection mirror sandwiching the transparent hard brittle material. A laser processing method for a transparent hard and brittle material, wherein the transparent hard and brittle material is processed.

【0017】上記のような本発明の構成の(1)や
(4)によれば、半透過ミラーを透明硬脆材料の反対側
から透過したレーザ光は透明硬脆材料に照射され、その
透明硬脆材料を通過したレーザ光は半透過ミラー側とは
反対側に設置された反射ミラーで全反射し、透明硬脆材
料に上記とは逆方向に入射する。さらにそのレーザ光は
透明硬脆材料を通過後、半透過ミラーの透明硬脆材料側
の面で全反射し、再び透明硬脆材料に照射される。つま
り、透明硬脆材料をはさむように配置された半透過ミラ
ーと反射ミラーとの間で往復を繰り返す。このようにレ
ーザ光は、半透過ミラーと反射ミラーとの間で繰り返し
反射しながら透明硬脆材料を通過し、レーザ光のエネル
ギーは透明硬脆材料を通過するたびに吸収されるため、
熱分布が深さ方向で対称となり、しかも両面から繰り返
しレーザ光が入射することで一方向からの入射に比べて
均等な熱分布に近づく。従って、割断面のうねりを抑え
ることが可能となり、レーザ光による熱が無駄なく吸収
されて効率の良い割断加工が実現でき、加工効率を向上
することも可能となる。
According to the constitutions (1) and (4) of the present invention as described above, the laser light transmitted through the semi-transmissive mirror from the opposite side of the transparent hard and brittle material is applied to the transparent hard and brittle material, and the transparent hard and brittle material is irradiated with the laser light. The laser light that has passed through the hard and brittle material is totally reflected by the reflecting mirror provided on the side opposite to the semi-transmissive mirror side, and is incident on the transparent hard and brittle material in the opposite direction. Further, after passing through the transparent hard and brittle material, the laser light is totally reflected on the surface of the semi-transmissive mirror on the transparent hard and brittle material side, and is irradiated again on the transparent hard and brittle material. That is, reciprocation is repeated between the transflective mirror and the reflective mirror arranged so as to sandwich the transparent hard and brittle material. As described above, the laser beam passes through the transparent hard and brittle material while being repeatedly reflected between the semi-transmissive mirror and the reflecting mirror, and the energy of the laser beam is absorbed each time the laser beam passes through the transparent hard and brittle material.
The heat distribution becomes symmetrical in the depth direction, and the laser light repeatedly enters from both sides, thereby approaching a uniform heat distribution as compared with the case where the laser light enters from one direction. Therefore, it is possible to suppress the undulation of the split section, and the heat by the laser beam is absorbed without waste, so that efficient cutting can be realized, and the processing efficiency can be improved.

【0018】また、本発明の構成の(2)によれば、半
透過ミラー及び反射ミラーの透明硬脆材料側の面が、相
向かい合う凹面形状であるため、往復を繰り返すレーザ
光は透明硬脆材料の位置においてある程度集光される。
さらに本発明の構成の(3)のように、半透過ミラー及
び反射ミラーにおける凹面のそれぞれの焦点位置が同位
置となるよう配置すれば、透明硬脆材料の位置で双方か
ら反射したレーザ光に焦点を結ばせることができ、一層
レーザ光によるエネルギーの集束の作用が強まる。これ
により、加熱源であるレーザ光走査に追従するクラック
の進展方向の精度を向上することができる。さらに、上
記(2)や(3)の構成によれば、レーザ発振器におけ
るレーザ光のエネルギーを小さくすることが可能とな
り、エネルギー効率の向上が図れ、しかもレーザ光の光
路上の光学部品に損傷を与えることも回避できる。
Further, according to the configuration (2) of the present invention, since the surfaces of the translucent mirror and the reflecting mirror on the transparent hard and brittle material side have concave shapes facing each other, the laser beam which repeats reciprocation is transparent hard and brittle. Light is collected to some extent at the position of the material.
Further, as in (3) of the configuration of the present invention, if the respective focal positions of the concave surfaces of the semi-transmissive mirror and the reflective mirror are arranged at the same position, the laser light reflected from both at the position of the transparent hard and brittle material is reduced. The laser beam can be focused, and the effect of focusing the energy by the laser beam is further enhanced. Accordingly, the accuracy of the crack in the direction in which the crack follows the scanning of the laser beam as the heating source can be improved. Furthermore, according to the above configurations (2) and (3), the energy of the laser beam in the laser oscillator can be reduced, the energy efficiency can be improved, and optical components on the optical path of the laser beam can be damaged. Giving can also be avoided.

【0019】[0019]

【発明の実施の形態】本発明の第1の実施形態につい
て、図1および図2を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS.

【0020】図1に示す透明硬脆材料のレーザ加工装置
は、レーザ発振器1、ベンディングミラー3a、XYテ
ーブル5、半透過ミラー6、反射ミラー7を備えてお
り、XYテーブル5上に被加工物である透明硬脆材料
(ガラス板など)4が載置される。レーザ発振器1とし
ては、透明硬脆材料4に対して透過率の高い波長を持つ
Nd:YAGレーザ、或いは透明硬脆材料4に対し高い
吸収率を有するCO2レーザが適用され、このレーザ発
振器1から発せられるレーザ光2のパワー密度は透明硬
脆材料4が溶融するまでには至らない程度である。また
半透過ミラー6は、透明硬脆材料4側からはレーザ光2
を全反射させかつ透明硬脆材料4の反対側からはレーザ
光2を透過させる特殊なミラーであり、反射ミラー7は
レーザ光2を全反射させるミラーである。
The laser processing apparatus for a transparent hard and brittle material shown in FIG. 1 includes a laser oscillator 1, a bending mirror 3a, an XY table 5, a semi-transmissive mirror 6, and a reflection mirror 7, and the workpiece is placed on the XY table 5. A transparent hard brittle material (eg, a glass plate) 4 is placed. As the laser oscillator 1, an Nd: YAG laser having a wavelength having a high transmittance for the transparent hard and brittle material 4 or a CO 2 laser having a high absorption for the transparent hard and brittle material 4 is applied. The power density of the laser light 2 emitted from the transparent hard and brittle material 4 is not enough to melt. The semi-transmissive mirror 6 receives the laser beam 2 from the transparent hard brittle material 4 side.
Is a special mirror that totally reflects the laser light 2 and transmits the laser light 2 from the opposite side of the transparent hard and brittle material 4, and the reflection mirror 7 is a mirror that totally reflects the laser light 2.

【0021】このレーザ加工装置では、レーザ発振器1
から発せられたレーザ光2が、ベンディングミラー3a
で反射し、半透過ミラー6を透過した後、被加工物であ
る透明硬脆材料4に照射される。透明硬脆材料4を通過
したレーザ光2は反射ミラー7によって全反射し、再度
透明硬脆材料4に照射される。これ以後、半透過ミラー
6と反射ミラー7の間でレーザ光2は反射を繰り返し、
この反射による半透過ミラー6と反射ミラー7の間での
往復動をレーザ光が繰り返すうちに、透明硬脆材料4に
吸収されるレーザ光2からのエネルギーが増大してい
く。また上記動作と共に、透明硬脆材料4とレーザ光2
の照射点の相対的位置はXYテーブル5によって移動さ
れる。
In this laser processing apparatus, the laser oscillator 1
Is emitted from the laser beam 2 to a bending mirror 3a.
Then, the light is transmitted through the semi-transmissive mirror 6, and then is irradiated on the transparent hard brittle material 4 which is the workpiece. The laser beam 2 that has passed through the transparent hard and brittle material 4 is totally reflected by the reflection mirror 7 and is again applied to the transparent hard and brittle material 4. Thereafter, the laser light 2 is repeatedly reflected between the semi-transmissive mirror 6 and the reflective mirror 7,
As the laser beam repeats the reciprocating motion between the semi-transmissive mirror 6 and the reflecting mirror 7 due to this reflection, the energy from the laser beam 2 absorbed by the transparent hard brittle material 4 increases. Further, together with the above operation, the transparent hard brittle material 4 and the laser beam 2
Are moved by the XY table 5.

【0022】このような動作による透明硬脆材料4の深
さ方向の温度分布に関して図2に示す例により説明す
る。図2において、(A)は透明硬脆材料4に対し吸収
率の高いCO2レーザ光が1回だけ通過した場合であ
り、(B)は透明硬脆材料4に対し透過率の高いNd:
YAGレーザ光が1回だけ通過した場合の温度分布の一
例である。図2に示すように、吸収率の高いCO2レー
ザを利用して1回だけレーザ光が通過した場合(A)の
温度分布は、表面加熱のために深さ方向に指数関数的に
減少する分布となる。一方、透過率の高いNd:YAG
レーザ光が1回だけ通過した場合(B)、熱源となるレ
ーザ光2が通過するために深さ方向の温度変化は(A)
ほど急峻ではないが、割断に必要なある一定の温度に到
達させるためには、より高いエネルギーのレーザ光を必
要とする。
The temperature distribution in the depth direction of the transparent hard brittle material 4 by such an operation will be described with reference to an example shown in FIG. In FIG. 2, (A) shows the case where the CO 2 laser beam having a high absorption rate for the transparent hard and brittle material 4 passes only once, and (B) shows Nd having a high transmittance for the transparent hard and brittle material 4:
It is an example of the temperature distribution when a YAG laser beam passes only once. As shown in FIG. 2, when the laser beam passes only once using a CO 2 laser having a high absorptance (A), the temperature distribution decreases exponentially in the depth direction due to surface heating. Distribution. On the other hand, Nd: YAG with high transmittance
When the laser beam passes only once (B), the temperature change in the depth direction is (A) because the laser beam 2 serving as a heat source passes.
Although not as steep, a higher energy laser beam is required to reach a certain temperature required for the cleavage.

【0023】しかし、図1に示す本実施形態のレーザ加
工装置を用いた場合には、レーザ光2が半透過ミラー6
と反射ミラー7との間で繰り返し反射しながら透明硬脆
材料4を通過し、レーザ光2のエネルギーが透明硬脆材
料4を通過するたびに吸収されるため、熱分布が深さ方
向で対称となり、しかも透明硬脆材料4の深さ方向でほ
ぼ均等な熱分布に近づく(図2の(C)の分布参照)。
このように深さ方向に対する温度分布が均等に近くなる
ため、図5(b)で説明した熱応力分布及び図5(c)
で説明した応力拡大係数KICの分布はどの深さに対して
もほぼ同様の傾向、及び絶対値を示し、深さ方向に対す
るクラックの発生位置がほぼ同位置となり、透明硬脆材
料4表面に対しほぼ直角でかつ位置精度の高い割断が実
現できる。また、レーザ光2による熱が無駄なく吸収さ
れて効率の良い割断加工が実現でき、加工効率を向上す
ることもできる。
However, when the laser processing apparatus of the present embodiment shown in FIG.
The laser beam 2 passes through the transparent hard and brittle material 4 while being repeatedly reflected between the mirror and the reflection mirror 7, and the energy of the laser beam 2 is absorbed each time the transparent hard and brittle material 4 passes. Therefore, the heat distribution is symmetric in the depth direction. In addition, the heat distribution approaches a substantially uniform heat distribution in the depth direction of the transparent hard brittle material 4 (see the distribution of FIG. 2C).
As described above, since the temperature distribution in the depth direction becomes nearly uniform, the thermal stress distribution described with reference to FIG.
The distribution of the stress intensity factor K IC described in the above shows almost the same tendency and absolute value at any depth, and the position of occurrence of cracks in the depth direction is almost the same, and the surface of the transparent hard brittle material 4 On the other hand, it is possible to realize cutting with a substantially right angle and high positional accuracy. Further, the heat by the laser beam 2 is absorbed without waste, and efficient cutting can be realized, and the processing efficiency can be improved.

【0024】以上のような本実施形態によれば、レーザ
光2を半透過ミラー6と反射ミラー7との間で繰り返し
反射させながら透明硬脆材料4を通過させて加工を行う
ので、吸収率の高いCO2レーザ等のようなレーザ光を
用いた場合にも割断面のうねりを抑えることができ、透
過率の高いNd:YAGレーザのようなレーザ光を用い
た場合にも加工効率を向上することができる。
According to the present embodiment as described above, the laser beam 2 is processed while passing through the transparent hard brittle material 4 while being repeatedly reflected between the semi-transmissive mirror 6 and the reflecting mirror 7, so that the absorptance is improved. The undulation of the fractured surface can be suppressed even when a laser beam such as a CO 2 laser with high transmittance is used, and the processing efficiency is improved even when a laser beam such as a Nd: YAG laser with high transmittance is used. can do.

【0025】次に、本発明の第2の実施形態について、
図3を参照しながら説明する。
Next, a second embodiment of the present invention will be described.
This will be described with reference to FIG.

【0026】本実施形態においては、ベンディングミラ
ー3aと半透過ミラー6aとの間に集光レンズ3を設け
ると共に、半透過ミラー6a及び反射ミラー7aのそれ
ぞれの透明硬脆材料4側の面を相向かい合う凹面形状と
なるようにし、かつそれら凹面の焦点位置が透明硬脆材
料4内の同位置となるように配置する。また、反射ミラ
ー7aはXYテーブル5とは移動系が別であり、レーザ
発振器1を含む系に固定されているものとする。これ以
外の構成は第1の実施例と同様であり、図3において、
図1と同等の部材には同じ符号を付してある。
In the present embodiment, the condenser lens 3 is provided between the bending mirror 3a and the semi-transmissive mirror 6a, and the surfaces of the semi-transmissive mirror 6a and the reflective mirror 7a on the side of the transparent hard and brittle material 4 are aligned. The concave surfaces facing each other are arranged so that the focal positions of the concave surfaces are the same in the transparent hard and brittle material 4. The reflecting mirror 7a is different from the XY table 5 in moving system, and is fixed to a system including the laser oscillator 1. The other configuration is the same as that of the first embodiment.
Members that are the same as in FIG. 1 are given the same reference numerals.

【0027】このような構成の本実施形態では、透明硬
脆材料4の位置でレーザ光2が集光され焦点を結ぶよう
になり、レーザ光2によるエネルギーが集束することで
図5(a)で説明した透明硬脆材料14表面の温度分布
は急峻になり、割断方向の精度が向上する。そして加熱
源であるレーザ光2の走査に追従するクラックの進展方
向の精度を向上することができる。さらにこの場合はレ
ーザ光2を集束させるためにレーザ発振器1におけるエ
ネルギーが小さくてもよく、エネルギー効率の向上が図
れると共に、レーザ光2の光路上の光学部品(ベンディ
ングミラー3aや集光レンズ3など)に損傷を与えるこ
とも回避できる。
In this embodiment having such a configuration, the laser beam 2 is focused and focused at the position of the transparent hard and brittle material 4, and the energy by the laser beam 2 is converged, so that FIG. The temperature distribution on the surface of the transparent hard and brittle material 14 described in (1) becomes sharp, and the accuracy in the cutting direction is improved. The accuracy of the crack in the direction in which the crack follows the scanning of the laser beam 2 as the heating source can be improved. Further, in this case, the energy in the laser oscillator 1 may be small in order to focus the laser light 2, so that the energy efficiency can be improved and the optical components (the bending mirror 3 a, the condensing lens 3, etc.) on the optical path of the laser light 2 can be achieved. ) Can be avoided.

【0028】なお、XYテーブル5上に別のXYテーブ
ルを載置し、その上に反射ミラー7aを載置し、その別
のXYテーブルをXYテーブル5の逆方向に移動するよ
うにして反射ミラー7がレーザ発振器1を含む系に対し
て移動しないようにしてもよい。
It should be noted that another XY table is placed on the XY table 5, a reflection mirror 7a is placed thereon, and the other XY table is moved in the opposite direction to the XY table 5 so that the reflection mirror is moved. 7 may not move with respect to the system including the laser oscillator 1.

【0029】以上のような本実施形態によれば、半透過
ミラー6a及び反射ミラー7aの透明硬脆材料4側の面
を相向かい合う凹面形状となるようにし、かつそれら凹
面の焦点位置が透明硬脆材料4内の同位置となるように
配置するので、レーザ光2によるエネルギーが集束して
割断方向の精度が向上し、レーザ発振器1におけるエネ
ルギーを小さくすることが可能となってエネルギー効率
の向上が図れ、かつレーザ光2の光路上の光学部品に損
傷を与えることを回避できる。
According to the present embodiment as described above, the surfaces of the semi-transmissive mirror 6a and the reflective mirror 7a on the side of the transparent hard brittle material 4 are made to have concave shapes facing each other, and the focal positions of these concave surfaces are transparent hard. Since the laser beams 2 are arranged at the same position in the brittle material 4, the energy of the laser beam 2 is focused, the accuracy in the cutting direction is improved, and the energy in the laser oscillator 1 can be reduced, thereby improving the energy efficiency. And damage to optical components on the optical path of the laser beam 2 can be avoided.

【0030】[0030]

【発明の効果】本発明によれば、透明硬脆材料をはさむ
ように配置された半透過ミラーと反射ミラーとの間でレ
ーザ光の往復を繰り返させて、被加工物である透明硬脆
材料を加工するので、割断面のうねりを抑えて割断面の
深さ方向の位置精度を向上することができ、かつ加工効
率を向上することができる。従って、吸収率の高いレー
ザ光を用いた場合、透過率の高いレーザ光を用いた場合
のいずれにおいても不具合を招くことがなくなる。
According to the present invention, a reciprocating laser beam is repeated between a semi-transmissive mirror and a reflecting mirror arranged so as to sandwich a transparent hard and brittle material, thereby forming a transparent hard and brittle material as a workpiece. Therefore, the undulation of the split section can be suppressed, the positional accuracy of the split section in the depth direction can be improved, and the processing efficiency can be improved. Therefore, no problem occurs when using a laser beam having a high absorptance in both cases where a laser beam having a high transmittance is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態による透明硬脆材料の
レーザ加工装置の構成を示す概略図である。
FIG. 1 is a schematic diagram illustrating a configuration of a laser processing apparatus for a transparent hard and brittle material according to a first embodiment of the present invention.

【図2】レーザ光照射時における透明硬脆材料の深さ方
向の温度分布の例を示す図である。
FIG. 2 is a diagram illustrating an example of a temperature distribution in the depth direction of a transparent hard brittle material during laser light irradiation.

【図3】本発明の第2の実施形態による透明硬脆材料の
レーザ加工装置の構成を示す概略図である。
FIG. 3 is a schematic diagram illustrating a configuration of a laser processing apparatus for a transparent hard and brittle material according to a second embodiment of the present invention.

【図4】透明硬脆材料を加工するための従来のレーザ加
工装置の構成を示す概略図である。
FIG. 4 is a schematic view showing a configuration of a conventional laser processing apparatus for processing a transparent hard and brittle material.

【図5】(a)はレーザ光の照射による透明硬脆材料表
面の温度分布を示す図、(b)は熱応力分布を示す図、
(c)は応力拡大係数分布を示す図である。
5A is a diagram illustrating a temperature distribution on the surface of a transparent hard and brittle material by laser light irradiation, FIG. 5B is a diagram illustrating a thermal stress distribution,
(C) is a diagram showing a stress intensity factor distribution.

【符号の説明】[Explanation of symbols]

1 レーザ発振器 2 レーザ光 3 集光レンズ 3a ベンディングミラー 4 透明硬脆材料(被加工物) 5 XYテーブル 6,6a 半透過ミラー 7,7a 反射ミラー DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 Laser light 3 Condensing lens 3a Bending mirror 4 Transparent hard brittle material (workpiece) 5 XY table 6,6a Semi-transmissive mirror 7,7a Reflection mirror

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜井 茂行 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (72)発明者 西垣 剛 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (72)発明者 美野本 泰 茨城県土浦市神立町650番地 日立建機エ ンジニアリング株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Shigeyuki Sakurai 650, Kandate-cho, Tsuchiura-shi, Ibaraki Hitachi Construction Machinery Co., Ltd. (72) Inventor Yasushi Minomoto Yasushi Minatomoto 650, Kandamachi, Tsuchiura-shi, Ibaraki Hitachi Construction Machinery Engineering Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】レーザ光を発振するレーザ発振器と、前記
レーザ光を被加工物の加工位置まで誘導する加工光学系
と、前記被加工物を移動させその加工位置を決定する搬
送手段とを備え、透明の硬脆材料を前記レーザ光照射に
より加工するレーザ加工装置において、 前記透明硬脆材料の前記レーザ光入射側に、その透明硬
脆材料側からは前記レーザ光を全反射させかつその透明
硬脆材料の反対側からは前記レーザ光を透過させる半透
過ミラーを設置すると共に、前記透明硬脆材料の前記半
透過ミラー側とは反対側に、前記レーザ光を全反射させ
る反射ミラーを設置したことを特徴とする透明硬脆材料
のレーザ加工装置。
1. A laser oscillator for oscillating laser light, a processing optical system for guiding the laser light to a processing position of a workpiece, and a conveying means for moving the workpiece and determining the processing position. A laser processing apparatus for processing a transparent hard and brittle material by irradiating the laser light, wherein the laser beam is totally reflected from the transparent hard and brittle material side to the laser light incident side of the transparent hard and brittle material and the transparent hard and brittle material is transparent. A semi-transmissive mirror that transmits the laser light is installed from the opposite side of the hard and brittle material, and a reflection mirror that totally reflects the laser light is installed on the side of the transparent hard and brittle material opposite to the semi-transmissive mirror side. A laser processing apparatus for a transparent hard and brittle material.
【請求項2】請求項1記載の透明硬脆材料のレーザ加工
装置において、前記半透過ミラー及び前記反射ミラーの
前記透明硬脆材料側の面を、相向かい合う凹面形状とし
たことを特徴とする透明硬脆材料のレーザ加工装置。
2. The laser processing apparatus for a transparent hard brittle material according to claim 1, wherein the surfaces of the semi-transmissive mirror and the reflecting mirror on the transparent hard brittle material side have concave shapes facing each other. Laser processing equipment for transparent hard and brittle materials.
【請求項3】請求項2記載の透明硬脆材料のレーザ加工
装置において、前記半透過ミラー及び前記反射ミラーに
おける凹面のそれぞれの焦点位置が、同位置となるよう
配置したことを特徴とするレーザ加工装置。
3. A laser processing apparatus for a transparent hard brittle material according to claim 2, wherein the respective focal positions of the concave surfaces of the semi-transmissive mirror and the reflective mirror are arranged at the same position. Processing equipment.
【請求項4】レーザ発振器から出力されたレーザ光を被
加工物である透明の硬脆材料に照射し、その透明硬脆材
料を加工する透明硬脆材料のレーザ加工方法において、 前記透明硬脆材料の前記レーザ光入射側に、その透明硬
脆材料側からは前記レーザ光を全反射させかつその透明
硬脆材料の反対側からは前記レーザ光を透過させる半透
過ミラーを設置し、前記透明硬脆材料の前記半透過ミラ
ー側とは反対側に、前記レーザ光を全反射させる反射ミ
ラーを設置し、前記レーザ光を、前記透明硬脆材料をは
さむ前記半透過ミラーと前記反射ミラーとの間で繰り返
し反射させながら前記透明硬脆材料を加工することを特
徴とする透明硬脆材料のレーザ加工方法。
4. A transparent hard brittle material laser processing method of irradiating a transparent hard brittle material, which is a workpiece, with a laser beam output from a laser oscillator, and processing the transparent hard brittle material. A semi-transmissive mirror that totally reflects the laser light from the transparent hard and brittle material side and transmits the laser light from the opposite side of the transparent hard and brittle material is installed on the laser light incident side of the material. On the side opposite to the semi-transmissive mirror side of the hard and brittle material, a reflection mirror that totally reflects the laser light is installed, and the laser light is transmitted between the semi-transparent mirror and the reflection mirror sandwiching the transparent hard and brittle material. Processing the transparent hard and brittle material while repeatedly reflecting between the two.
JP9047677A 1997-03-03 1997-03-03 Device and method of laser beam machining for transparent hard brittle material Pending JPH10244386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9047677A JPH10244386A (en) 1997-03-03 1997-03-03 Device and method of laser beam machining for transparent hard brittle material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9047677A JPH10244386A (en) 1997-03-03 1997-03-03 Device and method of laser beam machining for transparent hard brittle material

Publications (1)

Publication Number Publication Date
JPH10244386A true JPH10244386A (en) 1998-09-14

Family

ID=12781919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9047677A Pending JPH10244386A (en) 1997-03-03 1997-03-03 Device and method of laser beam machining for transparent hard brittle material

Country Status (1)

Country Link
JP (1) JPH10244386A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563082B2 (en) 2000-09-20 2003-05-13 Seiko Epson Corporation Laser cutting method, laser cutting apparatus, and method and apparatus for manufacturing liquid crystal device
WO2004020141A1 (en) * 2002-08-28 2004-03-11 Jenoptik Automatisierungstechnik Gmbh Beam formation unit comprising two axicon lenses, and device comprising one such beam formation unit for introducing radiation energy into a workpiece consisting of a weakly-absorbent material
WO2005115678A1 (en) * 2004-05-14 2005-12-08 Lzh Laserzentrum Hannover E.V. Method and device for cutting through semiconductor materials
JP2006176403A (en) * 2000-12-15 2006-07-06 Lzh Laserzentrum Hannover Ev Method of starting cut zone
WO2008147510A1 (en) * 2007-05-22 2008-12-04 Corning Incorporated Apparatus for separation of glasses and methods therefor
JP2009522129A (en) * 2005-12-29 2009-06-11 エイチ2ビー・フォトニクス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Device for cutting components made of brittle materials
WO2011117314A3 (en) * 2010-03-24 2011-11-24 Limo Patentverwaltung Gmbh & Co. Kg Device for applying laser radiation and device for reproducing a linear light distribution
DE102010012459A1 (en) * 2010-03-24 2012-03-01 Limo Patentverwaltung Gmbh & Co. Kg Device for applying laser radiation to a partially reflective/transparent region of a workpiece disposed in a working area, comprises a laser light source to generate the laser radiation and optical unit for influencing the laser radiation
CN102653032A (en) * 2012-04-20 2012-09-05 华中科技大学 Laser multipoint focusing processing system
CN108188570A (en) * 2018-01-24 2018-06-22 华南理工大学 A kind of double focus laser system of processing and its processing method
CN113427124A (en) * 2020-03-05 2021-09-24 海纳光电股份有限公司 High-temperature environment processing device and method for hard and brittle plates

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563082B2 (en) 2000-09-20 2003-05-13 Seiko Epson Corporation Laser cutting method, laser cutting apparatus, and method and apparatus for manufacturing liquid crystal device
JP2006176403A (en) * 2000-12-15 2006-07-06 Lzh Laserzentrum Hannover Ev Method of starting cut zone
WO2004020141A1 (en) * 2002-08-28 2004-03-11 Jenoptik Automatisierungstechnik Gmbh Beam formation unit comprising two axicon lenses, and device comprising one such beam formation unit for introducing radiation energy into a workpiece consisting of a weakly-absorbent material
US7102118B2 (en) 2002-08-28 2006-09-05 Jenoptik Automatisierungstechnik Gmbh Beam formation unit comprising two axicon lenses, and device comprising one such beam formation unit for introducing radiation energy into a workpiece consisting of a weakly-absorbent material
CN1330453C (en) * 2002-08-28 2007-08-08 詹诺普蒂克自动化技术有限公司 Beam formation unit comprising two axicon lenses, and device comprising one such beam formation unit for introducing radiation energy into a workpiece consisting of a weakly-absorbent material
WO2005115678A1 (en) * 2004-05-14 2005-12-08 Lzh Laserzentrum Hannover E.V. Method and device for cutting through semiconductor materials
JP2009522129A (en) * 2005-12-29 2009-06-11 エイチ2ビー・フォトニクス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Device for cutting components made of brittle materials
WO2008147510A1 (en) * 2007-05-22 2008-12-04 Corning Incorporated Apparatus for separation of glasses and methods therefor
WO2011117314A3 (en) * 2010-03-24 2011-11-24 Limo Patentverwaltung Gmbh & Co. Kg Device for applying laser radiation and device for reproducing a linear light distribution
DE102010012459A1 (en) * 2010-03-24 2012-03-01 Limo Patentverwaltung Gmbh & Co. Kg Device for applying laser radiation to a partially reflective/transparent region of a workpiece disposed in a working area, comprises a laser light source to generate the laser radiation and optical unit for influencing the laser radiation
CN102844143A (en) * 2010-03-24 2012-12-26 Limo专利管理有限及两合公司 Device for applying laser radiation and device for reproducing a linear light distribution
US9446478B2 (en) 2010-03-24 2016-09-20 Limo Patentverwaltung Gmbh & Co. Kg Device for applying laser radiation and device for reproducing a linear light distribution
CN102653032A (en) * 2012-04-20 2012-09-05 华中科技大学 Laser multipoint focusing processing system
CN108188570A (en) * 2018-01-24 2018-06-22 华南理工大学 A kind of double focus laser system of processing and its processing method
CN113427124A (en) * 2020-03-05 2021-09-24 海纳光电股份有限公司 High-temperature environment processing device and method for hard and brittle plates

Similar Documents

Publication Publication Date Title
US7423237B2 (en) Method of cutting laminated glass with laser beams
TWI395721B (en) Glass sheet cutting by laser-guided gyrotron beam
TWI469841B (en) Method and apparatus for machining workpieces using tilted laser scanning
US20090159580A1 (en) Brittle nonmetallic workpiece and method and device for making same
JP2009066851A (en) Method of chamfering brittle substrate
JP2009084089A (en) Method and apparatus for cutting glass
JP2000156358A (en) Method and device for processing transparent medium using laser
JP2004182530A (en) Cutting method and cutting device
JPH03258476A (en) Laser cutting method and device
US20100065536A1 (en) Micro Laser Assisted Machining
JPH10244386A (en) Device and method of laser beam machining for transparent hard brittle material
KR101798174B1 (en) Laser beam working machine
WO2012063348A1 (en) Laser processing method and device
KR20150077276A (en) Apparatus for chamfering glass substrate and laser processing apparatus
JPH10291084A (en) Laser machining method for brittle material and its device
JP2007260749A (en) Laser beam machining method and apparatus, and machined product of brittle material
JP2010138046A (en) Method and device for working material to be cut
JP2004155159A (en) Cutting-off equipment and cutting-off method
JP2002241141A (en) Working method for glass by means of laser and device therefor
JP2004223796A (en) Split processing method for fragile material
EP0428610B1 (en) Cutting using high energy radiation
JP2005142303A (en) Method of dividing silicon wafer, and apparatus thereof
KR20080093321A (en) Laser beam machining system and method for cutting of substrate using the same
KR100862522B1 (en) Laser beam machining system and method for cutting of substrate using the same
JP2009262408A (en) Method for scribing brittle material substrate and device therefor