JP3637046B2 - Conductive wire - Google Patents

Conductive wire Download PDF

Info

Publication number
JP3637046B2
JP3637046B2 JP2002344972A JP2002344972A JP3637046B2 JP 3637046 B2 JP3637046 B2 JP 3637046B2 JP 2002344972 A JP2002344972 A JP 2002344972A JP 2002344972 A JP2002344972 A JP 2002344972A JP 3637046 B2 JP3637046 B2 JP 3637046B2
Authority
JP
Japan
Prior art keywords
conductor
winding
insulator
wire
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002344972A
Other languages
Japanese (ja)
Other versions
JP2004179025A (en
Inventor
良明 ▲たか▼橋
Original Assignee
良明 ▲たか▼橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 良明 ▲たか▼橋 filed Critical 良明 ▲たか▼橋
Priority to JP2002344972A priority Critical patent/JP3637046B2/en
Publication of JP2004179025A publication Critical patent/JP2004179025A/en
Application granted granted Critical
Publication of JP3637046B2 publication Critical patent/JP3637046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、通電できる電流の大きさを2倍に近い値にすることができる導電線材に関する。
【0002】
【従来の技術】
従来、積層構造の導電線材として、電磁波遮蔽ケーブルが特開平11−7843号公報で公知となっている。
前記公知技術は、図5に示すように、信号伝送可能な導電体層1’の外周に順次めっき被膜の析出可能な触媒を含有させた触媒含有絶縁体層2’とめっき処理を施し無電解メッキ層3’を形成して電磁波遮蔽体層とし、その外周に絶縁体層からなる外皮層4’を形成させてなる電磁波遮蔽ケーブルである。
しかし、上記公知技術は、伝達信号に電磁波の干渉を遮蔽及び低減させる効果を付与させたケーブルに関するものである。
【0003】
【発明が解決しようとする課題】
本発明は、通電できる電流の大きさを2倍に近い値にすることができる導電線材及び全体効率を向上させる巻線を提供することを目的とする。
【0004】
【課題を解決するための手段】
そのため、本発明の導電線材は、最外側に外側絶縁体1を配置し、該外側絶縁体1の内側に導体2を配置し、更に該導体2の内側に内側絶縁体3を配置し、最も内側に高透磁率材4又は絶縁体を配置して4層構造若しくは最も内側に空間を配置して空芯3層構造にしてなるものである。
また、前記導電線材を螺旋状に巻回して巻線を形成したものである。
【0005】
【実施例】
以下、本発明の導電線材について、図面に基づいて説明する。
図1に示すように、断面的に、最も外側に均一の厚さの絶縁体から成る材1(以下、これを「外側絶縁体1」という。)の層、該外側絶縁体1の層の内側に均一の厚さの導体材質から成る材2(以下、これを「導体2」という。)の層、更に内側に均一の厚さの絶縁体から成る材3(以下、これを「内側絶縁体3」という。)の層、並びに最も内側(中心)に1層以上の層から成る主として高透磁率の材質からなる材4(以下、これを「高透磁率材4」という。)から構成される合計4層の材が断面直交(軸)方向に連続して連なる線状の材5(以下、「線材5」という。)を形成する。
前述の「均一」の意味は同一の材の層若しくは同一の材の集まりの中において均一であることをいい、同一の寸法及び同一の材質であることを意味し、概ね同一である場合を含むものとする。
前記線材5の断面形状は、円形、楕円形、矩形、星形、六角形、三角形、五角形その他形状を問わない。
前記外側絶縁体1の層の厚さ、導体2の層の厚さ、内側絶縁体3の層の厚さ並びに高透磁率材4の主として高透磁率の材質から成る材の太さは、構成する材質の性質及び断面形状等に基づき、巻線として使用する場合の期待される特性値(電流の強さ、一次側電圧、二次側電圧、容積等)を若しくは特性値に近い値を満足し十分であるように定めるものとする。
前記外側絶縁体1の材質と内側絶縁体3の材質とは必ずしも同一ではない。
【0006】
前記高透磁率材4の「一層以上の層から成る」という意味は高透磁率の材質から成る単一種の材から成ることもあれば、「主として高透磁率の材質から成る材」の中に、2種以上の高透磁率の材質から成る材から構成される場合もあり、また、コイル状にしたとき破断のおそれの少ないようにする高透磁率の材質以外の材質の材を部分として用いる場合もあることをいう。
前記外側絶縁体1及び前記内側絶縁体3の層については、前記高透磁率材4の高透磁率の材と導体2の材の間において短絡が生じないものとすること、また巻線としたとき隣接及び上段層下段層間において接することのある導体2の材の相互間において短絡が生じないようにするものとし、更に巻線としたときの発熱により短絡が生じることのないように絶縁体の材質、形状及び厚さを定めるものとする。
絶縁体の材質については、一般に用いられるところによるものとし、雲母、ゴム(天然)、プラスチック(アクリル、エポキシ、ポリ塩化ビニル、ポリテトラフルオロエチレン、ナイロン、ポリエチレン)、エナメル等のうち使用環境に応じ定められるものとする。
前記導体2については、一般に用いられるところによるものとし、銀、銅、アルミニウム等のうち使用環境に応じ定められるものとする。
前記高透磁率材4については一般に用いられるところによるものとし、純鉄、ケイ素鋼、方向性ケイ素鋼、Alperm、Sendust、78Permalloy、Supermalloy、Mu-metal、Permendur、45-25Perminver、Ferroxcube3、非晶質合金等のうち使用環境に応じ定められるものとする。
【0007】
次に、本発明の導電線材において、4層構造の線材5の製造方法を以下に説明する。
まず、コイル状にしたとき破断のおそれの少ない高透磁率材4について、線状に成形する場合を以下に説明する。
(実施例1)
コイル状にしたとき破断のおそれの少ない高透磁率の材質の材については、一般に行われているところにより、線状に成形する。
(実施例2)
高透磁率の材質の微粉末を接着材に概ね均等に練り込み、これを線状に成形する。
(実施例3)
コイル状にしたとき破断のおそれの少ない高透磁率の材質で作成した線状の材を中心の材とし、高透磁率の材質の微粉末を接着材にて中心の材に接着し、中心の材を含め1層以上の高透磁率の材質の材から成る線状の材を作成する。
なお、接着材は、それが乾燥したとき固形化するものとし、コイル状にしたときに破断のおそれの少ないものを選択するものとする。
(実施例4)
コイル状にしたとき破断のおそれの少ない高透磁率の材質で作成した線状の材を中心の材とし、その表面上に高透磁率の材質の材を蒸着し又は電気鍍金し若しくはどぶ漬鍍金し、中心の材を含め1層以上の高透磁率の材質の材から成る線状の材を作成する。
上記には、コイル状にしたとき破断のおそれの少ない材質(高透磁率の材質をも含む。)の上に高透磁率の材を接着し、蒸着し、電気鍍金し若しくはどぶ漬鍍金し、高透磁率の材質の材から成る板状の材を作成し、更にこの板状の材を線状に分断し線状の材を作成する場合を当然に含むものとする。
【0008】
(実施例5)
コイル状にしたとき破断のおそれの少ない材質の筒状の細管に高透磁率の材質の材を細管の内径を閉じるまで電気鍍金し若しくはどぶ漬鍍金し細管の内側に高透磁率の特性を有する線状の材を作成する。
上記には、コイル状にしたとき破断のおそれの少ない材質の板状の材の上に高透磁率の材質の材を電気鍍金し若しくはどぶ漬鍍金し、高透磁率の材質の材から成る板状の材を作成し、更にこの板状の材を帯状に分断し帯状の材を作成した上、帯状の材を帯の長さ方向の軸を中心に丸めることにより筒状の高透磁率の材質から成る材を作成する場合を当然に含むものとする。
(実施例6)
コイル状にしたとき破断のおそれの少ない材質の線状の材を中心の材とし、この中心の材に高透磁率の材質の材から成る箔を接着材で1層以上貼付することにより1層以上の高透磁率の材質の材から成る線状の材を作成する。
必要に応じ、前記記実施例1から実施例5までの線状の材を1本以上を、並びに特性によっては複数の材質の線状の材を縒り合わせて1個の集合した線状の材を作成する。
高透磁率の材質の線状の材の形成過程において材に等方性をもたせるか、異方性をもたせるかは、コイル状にしたときの用途に応じて定めるものとする。
【0009】
次に、断面的に中心の材となる1層以上の層から成る高透磁率材4の外側に絶縁体から成る材を均一の厚さで被覆した上、導体2の均一な層を得るものとする場合を以下に説明する。
(実施例7)
絶縁体から成る材を均一の厚さで高透磁率材4の外側に被覆するには、高透磁率材4に絶縁材から成る塗料を塗り、若しくは溶融した絶縁材の中に被覆されることとなる中心の材となる1層以上の層から成る高透磁率材4を入れ、該高透磁率材4の外周表面上に絶縁材を付着させることにより内側絶縁体3の層で被覆する。
(実施例8)
前記被覆した内側絶縁体3の外側に導体2から成る筒状の材で覆い、軸線方向に平行に、均一な断面を有するように延伸し、これにより延伸する前の太さより小さい太さの線状の材を得る。
(実施例9)
前記被覆した内側絶縁体3の外側に導体2から成る帯状の材で螺旋状に巻き、導体2の均一な層を得る。
なお、螺旋状に巻き付けるとき、既に巻き付けられた導体2から成る帯状の材に、これと連続して連なる隣接の巻き付ける導体2から成る帯状の材を密着接触させるときは、外側を筒状の導体2で覆われた線状の材としたときに期待できる特性値を有する線材となる。
また、螺旋状に巻き付けるとき、既に巻き付けられた導体2から成る帯状の材にこれと連続して連なる隣接の巻き付ける導体2から成る帯状の材を一定の間隔を置いて巻き付けたときは、外側を筒状の導体2で覆う場合における必要に応じ導体2に窓を開けたときに期待できる特性値を得る。
(実施例10)
前記被覆した内側絶縁体3の外側に導体2の微粉末を均等に練り込んだ塗料を塗り、乾燥させ、表面をサンドペーパーで磨き導体2の材を一部露出させ、その上に導体2の材を蒸着し又は電気鍍金し若しくはどぶ漬鍍金し、外側に筒状の導体2の層を形成する線状の材を得る。
(実施例11)
前記被覆した内側絶縁体3の外側に導体2から成る微細線を軸線方向に平行に織り込んで筒状網目状の導体2の層を形成する線状の材を得る。
(実施例12)
前記被覆した内側絶縁体3の外側に接着剤を塗り、この接着剤の上に導体2から成る箔を軸線方向と平行に1層以上均一に貼付することにより、筒状の導体2の層を形成する線状の材を得る。
(実施例13)
前記被覆した内側絶縁体3の断面外周の長さよりも長い長さを幅とし、軸線方向と平行な方向に必要十分な長さを有する導体2から成る帯状の材を、軸線方向と平行な方向に高透磁率の線状の材の外側に内側絶縁体3から成る材を被覆した線材に付着させ、更に被覆した線材の断面の外周に添わせて付着させることにより、筒状の導体2の層を形成する線状の材を得る。
付着させる方法は、接着剤を用いて若しくは導体2の帯を必要な温度に熱し、絶縁体から成る材に溶着する等一般に行われている方法によるものとする。
【0010】
次に、本発明の導電線材において、空芯3層構造の線材5の製造方法を以下に説明する。
製造コストが増加する等の理由により中心に高透磁率材4を配置しないときは、代替として空間(空洞)を配置するものとする。
断面的には最外側に均一の厚さの外側絶縁体1から成る材を配置し、該外側絶縁体1の内側に均一の厚さの導体2から成る材を配置し、更に該導体2の内側に均一の厚さの内側絶縁体3から成る材を配置し、最も内側に空間(空洞)を配置する合計4層、材質的特性からは空間(空洞)を絶縁体とみなせるので、実質的には外側に絶縁体からなる材、その内側に導体2から成る材(ただし筒状)そして中心(筒の中)に絶縁体を配置する3層から成る線材5を作成する。
【0011】
中空(筒状)の導体を材質とする線材は、一般的に行われている製造方法により得られる。
中空(筒状)の導体2を材質とする線材5は、中空の導体2の内壁面及び外壁面にそれぞれ均一な厚さの内側絶縁体3及び外側絶縁体1を付着させたものをいう。
中空の導体2を材質とする線材5に通電しようとするときには、通電の出入口となる部分として、線材5の両端の内壁面の部分と外壁面の必要とする部分の絶縁体を剥離し、通電の出入口となる部分を確保するものとし、外部電源を当然に絶縁体を剥離した内壁面の導体2の部分と外壁面の導体2の部分に同位相となるようにそれぞれ繋いで通電するものとする。
付着させる絶縁体は、中空の導体2を材質とする線材5を巻線として巻いたとき、導体2から剥離せずまた巻線の発する熱により短絡が発生することがないようにし、また、隣接する巻線同士で又は1段層以上に巻いたとき上段層若しくは下段層の接触する巻線同士で短絡の生じないような材質にするものとする。
中空の導体2を材質とする線材5の代替として、中空の部分に絶縁体からなる材を埋めることができる。この場合、導体2の内壁面に付着させるべき均一の厚さの絶縁体を省略できるものとする。
【0012】
次に、本発明の導電線材を用いて巻線を形成する場合について、図面に基づいて説明する。
図2に示すように、巻線を作成するときは、中心の材となる1層以上の層から成る高透磁率の材を閉じるものとする。
すなわち、このコイル用の線材5の両端の外側絶縁体1の絶縁体から成る材の層の必要な部分を剥ぎ、かつ外側絶縁体1の層の内側の導体2から成る筒状の層の必要な部分を切り裂き、導体2の一端の内壁面及び外壁面に同位相の電流を供給し並びに他端の内壁面及び外壁面から他端における同位相の電流を取り出すものとし、巻線を作成した上、内側絶縁体3の必要な部分を剥ぎ巻線の両端の高透磁率の材同士を捩り合わせる等密着させるものとする。
【0013】
図3に示すように、一次巻線6及び二次巻線7を作成する場合において、同一の線材5を用いる場合(一次側、二次側とも線材5の太さを同一とするとき)は一次巻線6として必要とする線材5の長さ部分と二次巻線7として必要とする長さ部分との間の外側絶縁体1から成る材の層及びその内側の導体2から成る筒状の層を剥ぎ取り、中心の材となる1層以上の層から成る高透磁率の材及びその外側の内側絶縁体3から成る材の層を共有させ、前述に準じて各巻線の両端に必要とする加工を施し、一次巻線6及び二次巻線7を作成し、中心の材となる1層以上の層から成る高透磁率の材の一次巻線6の一端の部分と二次巻線7の他端の部分を密着させ、一次巻線6の導体2の一端の内壁面及び外壁面に同位相の電流を供給し並びに他端の内壁面及び外壁面から他端における同位相の電流を取り出すものとし、二次巻線7の導体2の両端の内壁面及び外壁面から一次巻線6に対応する位相の電流を取り出し若しくは供給するものとする。
一次巻線6及び二次巻線7を作成する場合において、線材5の太さを異なることとするときは、異なる太さの線材5で一次巻線6及び二次巻線7をそれぞれ作成し、前述に準じ、一次巻線6の一端の高透磁率の材を二次巻線7の他端の高透磁率の材に、一次巻線6の他端の高透磁率の材を二次巻線7の一端の高透磁率の材に、それぞれ密着させ、前述同一の線材5を用いる場合に準じて、一次巻線6及び二次巻線7にそれぞれ電流を供給し電流を取り出すものとする。
【0014】
次に、巻線12にコイル蓋11を補充し用いる場合について、図面に基づいて説明する。
2個1組の巻線を用いる場合として、図4に示すように、「特別の形状の鉄心11」(これを「コイル蓋11」という。)は、横からの形状透視概念図を簡潔に文字の形で示すと英文字の「E(大文字のイー)」と日本の片仮名文字「ヨ(よ)」とから成り、それぞれの字の横棒で作る2つの空間に空芯の巻線12をそれぞれ1個うめ込み(巻線12とコイル蓋11との間の隙間を極力小さくするように両者を設計する。)、「E」「ヨ」のそれぞれ3本の横棒を相互に突き合わせるようにコイル蓋11を密着させ、隙間なく巻線12の2個の全体をすっぽりと包み込むものとする。
換言すると、鍋蓋を伏せ、その中心の把手部分を下方に貫き伸ばしかつ縁部分を下方に伸ばし、伸ばした先を同一平面上に揃えた形状の鉄心(「コイル蓋11」)において、把手下方延伸部分と縁下方延伸部分との中間の空間に、空芯の巻線12をうめ込み(巻線12とコイル蓋11との間の隙間を極力小さくするように両者を設計する。)、2個のコイル蓋11の把手下方延伸部分の端面同士、縁下方延伸部分の端面同士をそれぞれ密着させ、隙間なくすっぽりと巻線12の2個の全体を包み込むものとする。
なお、「隙間なく」とは、隙間を極力小さくすることをいい、隙間にうめ込まれた物をほとんど摩擦なしに取り出せる状況をいう。
【0015】
現在一般に行われている鉄心の配置が巻線12を巻いた中心部(巻線12を巻いた内側)にあり、巻線12の背、わき腹の部分にはほとんど存在していない状況に比較し、コイル蓋11は巻線12の全体の表面をコイル蓋11ですっぽりと包みこむことにより、巻線12の電流から生じる磁場をより有効に取り込み磁力線の拡散方向を最小限に抑え巻線構成全体としてより有効な磁力線の力を活かすことにある。
2個のコイル蓋11を密着させる方法は、当然にコイル蓋11の密着面の形状、大きさ及び前後左右高低の位置を対称的に揃えそれぞれの対応する面をきちんと突き合せ、うめ込む等密着させるものとする。
必要に応じ、密着面の平行方向にフランジ8を設け、ボルトナット等で緊結するものとし、若しくは要所にフランジ8を設け、外側をワイヤーロープ等で緊結するものとする。
コイル蓋11の対応する面が同心円状のときは、捻じ込む方式も可能となる。
なお、密着面は必ずしも平面であることは必要なく、うめ込み、噛み合わせ等凹凸段付きの場合を含む。
コイル蓋11の材質は、一般的に行われている鉄心の材質に準ずるものとするが、期待する特性値に応じ高透磁率の材質を用いることがより有効である。
巻線12に通電したときに発生する熱を逃がすため若しくは発生する熱を抑制するため、必要に応じ、コイル蓋11の連続性を損わない範囲で、コイル蓋11の外側部分には窓を開け、若しくは放熱フィンを設けるものとする。
【0016】
一次巻線6と二次巻線7において巻き数の差によってコイル蓋11の大きさを異なることとする場合にあっても、2個のコイル蓋11の密着面は共有するものとし、形状、大きさ及び前後左右高低の位置を対称的に揃え、それぞれの対応する面をきちんと合わせ密着させるものとする。
巻線12への通電用の端子取出口9は、必要に応じてコイル蓋11に穴を開け、その出入口から通電のための線材5の端子10を取り出すものとする。
コイル蓋11は、当然に、電流からは絶縁されるものとする。
1個の巻線12を電磁石等として、若しくは1個ずつ複数個用いるときは、当然にコイル蓋11はそれぞれ1個で足り、この場合コイル蓋11の開口部分から磁力線の力を作用させることとなる。
なお、コイル蓋11に用いられる材に対して方向性を与えるか否かについては、また、コイル蓋11を一塊物とするか多塊組立物とするかについては、コイル蓋11の材質、形状、用途及び大きさにより決定するものとする。
コイル蓋11の製作については、鋳造、削り出し、板金塑性成形等の方法を単独若しくは組合わせることにより予定するコイル蓋11を得ることができる。
また、既に普通の鉄心を有する巻線に対しては、前述の「コイル蓋11」から「中心の把手下方延伸部分」を除いた形状のものすなわち椀状のコイル蓋「準コイル蓋」を以て隙間なくすっぽりと既に普通の鉄心を有する巻線の全体を包み込むものとする。
椀状のコイル蓋「準コイル蓋」の材質、その他仕様については「コイル蓋11」に準ずるものとする。
【0017】
次に、本発明の導電線材を用いて巻線として使用する場合の作用効果について、以下に説明する。
前述の外側絶縁体1、導体2、内側絶縁体3及び高透磁率材4の4層の材から構成される線材5を用い巻線として使用する場合、電流を通すのは、当然に導体2の材に対してであり、導体2の材の一端の内壁面及び外壁面に同位相の電流を供給し、他端の内壁面及び外壁面から他端における同位相の電流を取り出すものとする。
巻線の使用環境に応じ相当の発熱をみるが、期待される特性値を損ねないように冷却する必要の生じたときは、巻線の全体を冷却するものとする。
ただし、発熱を逃がし若しくは抑えるため導体2の層の材質を定め、また、断面の形状を定め、かつ通電性を損なうことのない様に、必要に応じ導体2の層に窓を開ける(外観上は線材5の外表面は凹凸のあるものとなる。)ものとする。
巻線としたときに発熱を逃がし、若しくは抑えるために必要に応じ導体2から成る前述の実施例8の筒状の材、実施例9の帯状の材、実施例12の箔並びに実施例13の帯状の材にはあらかじめ外周方向と平行に一定の間隔を置いて、軸線方向には導体2の材が連続して連なる状況を保持するように穴を開けるものとする。
実施例10の場合には、穴をあけることは難しいが、実施例11の場合には織り込む網目の大きさを調整することに応じて発熱を逃がし、若しくは抑えることができる。
巻線を冷却する方法は、空冷、絶縁する材質から成る油の中に巻線を漬け込む等一般に行われている方法によるものとする。
【0018】
一般に直線電流の回りの磁場の強さは電流の強さに比例し、電流からの距離に反比例することが実験で確認されている。
断面的に外側絶縁体1、導体2、内側絶縁体3及び高透磁率材4から構成される線材5を用いた巻線においては、導体2で発生した各磁場は「内壁面からの電流からは内側絶縁体3の絶縁体の厚さ分の距離において」及び「外壁面からの電流からは導体2の厚さ分に内側絶縁体3の絶縁体の厚さ分を加えた距離において」高透磁率材4の高透磁率の材に受け止められ磁場の強さが測られるものとし、受け止められた磁場の強さは磁路の高透磁率の材を通じて巻線のコイル蓋11に、すなわち磁場の強さの総和が巻線のコイル蓋11に集まるものとする。
これに対し、一般的に行われている単一材質及び単純形状の導体の線材を中心に絶縁体の被覆を外側に施した線材を用いた巻線においては、(線材の中に高透磁率の材が存在しないため)導体の線材の電流から発生した各磁場は普通の鉄心に集まるものとし、この場合各磁場の鉄心までの距離は、(各段層の)各導体の内側面から鉄心まで若しくは各導体の外側面から鉄心までに存する。各段層それぞれに対応する導体の厚さ(巻いた線の存在する数に導体の厚さを乗ずる)の合計と絶縁体の被覆の合計の厚さを加えたものが、各磁場の強さを受け止める距離となる。
また、空芯3層構造の線材5を巻線としたときは、(当然に高透磁率の材質から成る材を配置したときに期待できた電流から発生する磁場を受け止める距離を短縮する効果はなく、)一般に行われている単一材質及び単純形状の導体の線材を中心に絶縁体の被覆を外側に施した実質2層の線材を巻線としたときに比較して、導体2の内壁面及び外壁面の電流の増大効果たる巻線回数増加効果のみに限られる。
したがって、この巻線回数増加効果のみで期待する特性値を満足するときは、当然にこの実質3層から成る線材5を用いた巻線を使用することとなる。
【0019】
また、2倍程度の電流を流しても絶縁体の材は増加させるべき厚さを無視し得るものとし、導体2の抵抗が無視し得る程度に小さく線状の導体2が焼損することがないものとし、線状の長さ当りの導体の質量数が同一とし、電流は筒状の導体2の場合は線状の材の断面直交(軸)方向に内壁面と外壁面の両方に流れ、並びに筒状でない導体の場合は(内壁面が存在しないので)外壁面にしか流れないものとすると、理論的には筒状の線状の材の方が筒状でない線状の材に比較し、2倍に近い値までの電流を流すことができる。
このことは、あたかも巻線の巻き数を2倍に近い値までにしたのと同じ効果となる。
以上の他、二者を比較するためには他の要素も検討することも必要であるが、省略する。
以上の要因に基づく磁場の強さの差が想定どおり存在することが実験で容易に確認できたからである。
したがって、断面的に外側絶縁体1、導体2、内側絶縁体3及び高透磁率材4から構成される線材5を用いた巻線を作成し通電することにより、一般に用いられている巻線に比較し、磁場はより強いものが得られ高効率であるものが得られる。
発電機、電動機、変圧器、電磁石など巻線を使用する場でこの高効率のコイルを利用することが優利である。
【0020】
【効果】
本発明の導電線材は、このように構成されているので、筒状の導体の外壁面と内壁面と2面に電気が流れることにより同じ巻数で通電できる電流の大きさを現在一般に行われている巻線の2倍に近い値にまですることを可能とする。
また、高透磁率材を配置することにより電流から発生する磁気を受け止める場の距離を現在一般に行われている巻線より短縮することを可能とする。
巻線をすっぽりと包み込む形状のコイル蓋は、巻線の背面とわき腹部分からの磁力線をより有効に取り込むことを可能とし、巻線の能率向上を可能とする。
【図面の簡単な説明】
【図1】本発明の導電線材の断面図である。
【図2】本発明の導電線材で巻線を形成した斜視図である。
【図3】本発明の導電線材で一次巻線及び二次巻線を形成した斜視図である。
【図4】本発明に関するコイル蓋及び巻線の斜視図である。
【図5】従来の電磁波遮蔽ケーブルの断面図である。
【符号の説明】
1 外側絶縁体
2 導体
3 内側絶縁体
4 高透磁率材
5 線材
6 一次巻線
7 二次巻線
8 フランジ
9 端子取出口
10 端子
11 コイル蓋
12 巻線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive wire capable of making the magnitude of a current that can be energized to a value close to twice.
[0002]
[Prior art]
Conventionally, an electromagnetic wave shielding cable is publicly known in Japanese Patent Application Laid-Open No. 11-7843 as a conductive wire having a laminated structure.
In the known technique, as shown in FIG. 5, a catalyst-containing insulator layer 2 ′ containing a catalyst capable of depositing a plating film on the outer periphery of a conductor layer 1 ′ capable of signal transmission is plated and electroless. The electromagnetic wave shielding cable is formed by forming a plating layer 3 ′ as an electromagnetic wave shielding layer and forming an outer skin layer 4 ′ made of an insulating layer on the outer periphery thereof.
However, the above known technique relates to a cable in which an effect of shielding and reducing electromagnetic interference is added to a transmission signal.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a conductive wire that can make the magnitude of a current that can be energized nearly double, and a winding that improves overall efficiency.
[0004]
[Means for Solving the Problems]
Therefore, in the conductive wire of the present invention, the outer insulator 1 is disposed on the outermost side, the conductor 2 is disposed on the inner side of the outer insulator 1, and the inner insulator 3 is disposed on the inner side of the conductor 2, A high-permeability material 4 or an insulator is disposed on the inner side to form a four-layer structure or an innermost space to form an air-core three-layer structure.
The conductive wire is wound in a spiral shape to form a winding.
[0005]
【Example】
Hereinafter, the conductive wire of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a layer of a material 1 (hereinafter, referred to as an “outer insulator 1”) made of an insulator having a uniform thickness on the outermost side in cross section, and a layer of the outer insulator 1. A layer of material 2 (hereinafter referred to as “conductor 2”) made of a conductor material having a uniform thickness on the inner side, and a material 3 (hereinafter referred to as “inner insulation”) made of an insulator of uniform thickness on the inner side. Body 3 ”) and a material 4 (hereinafter referred to as“ high-permeability material 4 ”) made of a material having a high magnetic permeability composed of one or more layers at the innermost (center). A total of four layers of materials form a linear material 5 (hereinafter referred to as “wire material 5”) continuously connected in a cross-sectional orthogonal (axial) direction.
The above-mentioned meaning of “uniform” means that it is uniform in the same material layer or the same material group, and means that it is the same size and the same material, including the case where it is almost the same. Shall be.
The cross-sectional shape of the wire 5 may be a circle, an ellipse, a rectangle, a star, a hexagon, a triangle, a pentagon, or any other shape.
The thickness of the outer insulator 1, the thickness of the conductor 2, the thickness of the inner insulator 3, and the thickness of the high-permeability material 4 mainly composed of a high-permeability material are: Based on the properties and cross-sectional shape of the material to be used, the expected characteristic values (current strength, primary side voltage, secondary side voltage, volume, etc.) when used as a winding, or a value close to the characteristic value are satisfied However, it shall be determined to be sufficient.
The material of the outer insulator 1 and the material of the inner insulator 3 are not necessarily the same.
[0006]
The meaning of “consisting of one or more layers” of the high-permeability material 4 may be a single kind of material made of a material with high magnetic permeability, or “mainly made of a material with a high magnetic permeability”. It may be composed of two or more types of materials with high magnetic permeability, and a material other than the material with high magnetic permeability is used as a part so as to reduce the risk of breakage when coiled. It can be a case.
About the layer of the said outer side insulator 1 and the said inner side insulator 3, a short circuit shall not arise between the material of the high permeability material of the said high-permeability material 4, and the material of the conductor 2, and it was set as the coil | winding. In order to prevent a short circuit from occurring between the conductor 2 materials that may be in contact with each other between adjacent and upper and lower layers, and to prevent the occurrence of a short circuit due to heat generation when windings are used, The material, shape and thickness shall be determined.
Insulator materials are generally used, and mica, rubber (natural), plastic (acrylic, epoxy, polyvinyl chloride, polytetrafluoroethylene, nylon, polyethylene), enamel, etc. Shall be determined.
About the said conductor 2, it shall depend on what is generally used and shall be defined according to use environment among silver, copper, aluminum, etc.
The high-permeability material 4 is generally used, pure iron, silicon steel, directional silicon steel, Alperm, Sendust, 78Permalloy, Supermalloy, Mu-metal, Permendur, 45-25Perminver, Ferroxcube3, amorphous It shall be determined according to the use environment among alloys.
[0007]
Next, in the conductive wire of the present invention, a method for manufacturing the wire 5 having a four-layer structure will be described below.
First, the case where the high magnetic permeability material 4 that is less likely to break when coiled is formed into a linear shape will be described below.
(Example 1)
A material having a high magnetic permeability that is less likely to break when coiled is formed into a linear shape as is generally done.
(Example 2)
A fine powder of a material with high magnetic permeability is kneaded almost uniformly into the adhesive, and this is formed into a linear shape.
(Example 3)
A linear material made of a material with a high magnetic permeability that is less likely to break when coiled is used as the central material, and a fine powder of a high magnetic permeability material is adhered to the central material with an adhesive. A linear material made of a material having one or more layers of high magnetic permeability including the material is created.
The adhesive is solidified when it is dried, and an adhesive that is less likely to break when coiled is selected.
(Example 4)
A linear material made of a material with a high magnetic permeability, which is less likely to break when coiled, is used as the central material, and a material with a high magnetic permeability material is vapor-deposited or electroplated or soaked on the surface. Then, a linear material made of a material having a high magnetic permeability of one or more layers including the central material is created.
In the above, a high magnetic permeability material is bonded onto a material (including a high magnetic permeability material) that is less likely to break when coiled, vapor deposited, electroplated or soaked, Naturally, it includes a case where a plate-like material made of a material having a high magnetic permeability is prepared, and this plate-like material is further divided into a linear shape to produce a linear material.
[0008]
(Example 5)
When the coil is made into a coil, it has a high magnetic permeability inside the narrow tube that is made of a material with a high magnetic permeability until it closes the inner diameter of the tube. Create a linear material.
In the above, a plate made of a material having a high magnetic permeability material is electroplated or plated with a material having a high magnetic permeability on a plate material made of a material that is less likely to break when coiled. In addition, the plate-shaped material is further divided into strips to create a strip-shaped material, and then the strip-shaped material is rounded around the longitudinal axis of the strip to obtain a cylindrical high magnetic permeability. Naturally, the case of creating a material made of a material is included.
(Example 6)
One layer is formed by sticking one or more layers of foil made of a material having a high magnetic permeability to the center material with an adhesive material, with a linear material having a low risk of breaking when coiled. A linear material made of the material having the above high magnetic permeability is created.
If necessary, one or more of the linear materials of Examples 1 to 5 are combined, and depending on the characteristics, a plurality of linear materials are combined to form one aggregated linear material. Create
Whether the material is isotropic or anisotropic in the process of forming a linear material of a high magnetic permeability material is determined according to the application when it is coiled.
[0009]
Next, a high-permeability material 4 consisting of one or more layers as a central material in cross section is coated on the outside with a material made of an insulator with a uniform thickness, and a uniform layer of conductor 2 is obtained. The case will be described below.
(Example 7)
In order to coat the material made of an insulator on the outer side of the high permeability material 4 with a uniform thickness, the high permeability material 4 is coated with a paint made of an insulation material or coated in a molten insulation material. A high-permeability material 4 composed of one or more layers serving as a central material is placed, and an insulating material is adhered onto the outer peripheral surface of the high-permeability material 4 so as to be covered with a layer of the inner insulator 3.
(Example 8)
The outer side of the coated inner insulator 3 is covered with a cylindrical material made of the conductor 2, and is stretched so as to have a uniform cross section parallel to the axial direction, thereby having a thickness smaller than the thickness before stretching. A shaped material is obtained.
Example 9
A uniform layer of the conductor 2 is obtained by spirally winding the strip of the conductor 2 on the outside of the coated inner insulator 3.
When the belt-shaped material consisting of the conductor 2 that has already been wound is brought into close contact with the belt-shaped material composed of the adjacent conductor 2 that is continuously wound when the wire is wound in a spiral shape, the outer side is the cylindrical conductor. 2 is a wire having a characteristic value that can be expected when the wire is covered with 2.
In addition, when a spirally wound belt-shaped material composed of adjacent conductors 2 to be wound continuously is wound around the belt-shaped material composed of the previously wound conductor 2, the outer side is A characteristic value that can be expected when a window is opened in the conductor 2 is obtained as necessary in the case of covering with the cylindrical conductor 2.
(Example 10)
A paint in which fine powder of conductor 2 is uniformly kneaded is applied to the outside of the coated inner insulator 3 and dried, the surface is polished with sandpaper, and a part of the conductor 2 material is exposed. The linear material which forms the layer of the cylindrical conductor 2 on the outer side is obtained by vapor-depositing or electroplating or electroplating the material.
(Example 11)
A fine wire made of a conductor 2 is woven in parallel to the axial direction on the outside of the coated inner insulator 3 to obtain a linear material forming a layer of a cylindrical mesh-like conductor 2.
(Example 12)
An adhesive is applied to the outside of the coated inner insulator 3, and a layer of the cylindrical conductor 2 is formed on the adhesive by uniformly affixing one or more layers of a foil made of the conductor 2 parallel to the axial direction. A linear material to be formed is obtained.
(Example 13)
A strip-shaped material composed of a conductor 2 having a length longer than the outer peripheral length of the coated inner insulator 3 and having a necessary and sufficient length in a direction parallel to the axial direction is formed in a direction parallel to the axial direction. The cylindrical conductor 2 is made to adhere to a wire coated with a material made of the inner insulator 3 on the outside of a linear material having a high magnetic permeability, and further adhered along the outer periphery of the cross section of the coated wire. A linear material forming the layer is obtained.
The method of attaching is based on a generally used method such as using an adhesive or heating the strip of the conductor 2 to a necessary temperature and welding it to a material made of an insulator.
[0010]
Next, in the conductive wire of the present invention, a method for manufacturing the wire 5 having an air core three-layer structure will be described below.
When the high-permeability material 4 is not disposed at the center for reasons such as an increase in manufacturing cost, a space (cavity) is disposed as an alternative.
In terms of cross section, a material composed of the outer insulator 1 having a uniform thickness is disposed on the outermost side, a material composed of the conductor 2 having a uniform thickness is disposed on the inner side of the outer insulator 1, and The material consisting of the inner insulator 3 of uniform thickness is arranged on the inside, and the space (cavity) is arranged in total on the innermost 4 layers. From the material characteristics, the space (cavity) can be regarded as an insulator, so it is substantially In this case, a wire 5 consisting of a material composed of an insulator on the outside, a material composed of a conductor 2 on the inner side (however, in a cylindrical shape), and a three-layer wire having an insulator disposed in the center (in the tube) is prepared.
[0011]
A wire rod made of a hollow (cylindrical) conductor is obtained by a generally used manufacturing method.
The wire 5 made of a hollow (cylindrical) conductor 2 refers to a material in which the inner insulator 3 and the outer insulator 1 having a uniform thickness are attached to the inner wall surface and the outer wall surface of the hollow conductor 2, respectively.
When the wire 5 made of the hollow conductor 2 is to be energized, the insulators on the inner wall surface at both ends of the wire 5 and the required portions of the outer wall surface are peeled off as energization ports. A portion that becomes an entrance / exit of the external power source, and an external power source is naturally connected to the portion of the conductor 2 on the inner wall surface and the portion of the conductor 2 on the outer wall surface so as to be in phase with each other. To do.
When the wire 5 made of the hollow conductor 2 is wound as a winding, the insulator to be adhered is not peeled off from the conductor 2 and does not cause a short circuit due to the heat generated by the winding. It shall be made of a material that does not cause a short circuit between the windings to be wound or between the windings in contact with the upper layer or the lower layer when wound on one or more layers.
As an alternative to the wire 5 made of the hollow conductor 2, the hollow portion can be filled with an insulating material. In this case, an insulator having a uniform thickness to be attached to the inner wall surface of the conductor 2 can be omitted.
[0012]
Next, the case where the winding is formed using the conductive wire of the present invention will be described with reference to the drawings.
As shown in FIG. 2, when creating a winding, a high permeability material composed of one or more layers as a central material is closed.
That is, it is necessary to peel off a necessary portion of the material layer made of the insulator of the outer insulator 1 at both ends of the coil wire 5 and to form a cylindrical layer made of the conductor 2 inside the layer of the outer insulator 1. The same phase current was supplied to the inner wall surface and the outer wall surface of one end of the conductor 2 and the current of the same phase at the other end was taken out from the inner wall surface and the outer wall surface of the other end of the conductor 2 to create a winding. In addition, a necessary portion of the inner insulator 3 is peeled off, and the high magnetic permeability materials at both ends of the winding are twisted together to be in close contact.
[0013]
As shown in FIG. 3, when creating the primary winding 6 and the secondary winding 7, when using the same wire 5 (when the thickness of the wire 5 is the same on both the primary side and the secondary side) A cylindrical layer made of a material layer made of the outer insulator 1 and a conductor 2 inside the wire between the length portion of the wire 5 required as the primary winding 6 and the length portion required as the secondary winding 7. Is peeled off, and the high permeability material consisting of one or more layers as the central material and the material layer consisting of the inner insulator 3 on the outside are shared, and it is necessary at both ends of each winding according to the above. The primary winding 6 and the secondary winding 7 are made, and one end portion and the secondary winding of the primary winding 6 of the high permeability material composed of one or more layers as the central material are formed. The other end portion of the wire 7 is brought into close contact with each other, the same phase current is supplied to the inner wall surface and the outer wall surface of one end of the conductor 2 of the primary winding 6, and A current having the same phase at the other end is extracted from the surface and the outer wall surface, and a current having a phase corresponding to the primary winding 6 is extracted or supplied from the inner wall surface and the outer wall surface at both ends of the conductor 2 of the secondary winding 7. And
When creating the primary winding 6 and the secondary winding 7, if the thickness of the wire 5 is different, the primary winding 6 and the secondary winding 7 are created with the wires 5 having different thicknesses. In accordance with the above, the high permeability material at one end of the primary winding 6 is used as the high permeability material at the other end of the secondary winding 7, and the high permeability material at the other end of the primary winding 6 is used as the secondary. In accordance with the case of using the same wire 5 as described above, the current is supplied to the primary winding 6 and the secondary winding 7 respectively, and the current is taken out. To do.
[0014]
Next, the case where the coil lid 11 is supplemented to the winding 12 and used will be described with reference to the drawings.
As shown in FIG. 4, in the case of using a set of two windings, the “special-shaped iron core 11” (referred to as “coil lid 11”) has a simplified shape perspective conceptual view from the side. In the form of letters, it consists of the English letter "E" (capital letter E) and the Japanese katakana letter "Yo", and the air core winding 12 in two spaces made up of horizontal bars for each letter (Each one is designed so that the gap between the winding 12 and the coil lid 11 is minimized), and each of the three horizontal bars “E” and “Yo” are butted against each other. In this way, the coil lid 11 is closely attached, and the entire two of the windings 12 are completely wrapped without gaps.
In other words, in the iron core ("coil lid 11") having a shape in which the pan lid is turned down, the handle portion at the center extends downward and the edge portion extends downward, and the extended ends are aligned on the same plane. The air core winding 12 is inserted into a space between the extending portion and the lower edge extending portion (both are designed so as to minimize the gap between the winding 12 and the coil lid 11). It is assumed that the end surfaces of the handle lower extension portions of the individual coil lids 11 and the end surfaces of the edge lower extension portions are in close contact with each other, and the entire two windings 12 are wrapped without any gaps.
“With no gap” means to make the gap as small as possible, and refers to a situation in which an object embedded in the gap can be taken out almost without friction.
[0015]
Compared to the situation where the iron core is generally arranged at the center of the winding 12 (the inner side where the winding 12 is wound), and is hardly present on the back and side of the winding 12 The coil lid 11 wraps the entire surface of the winding 12 with the coil lid 11 so that the magnetic field generated from the current of the winding 12 can be taken in more effectively to minimize the diffusion direction of the magnetic lines of force. It is to make use of the power of more effective magnetic field lines.
The two coil lids 11 are naturally brought into close contact with each other by, for example, symmetrically aligning the shape and size of the contact surface of the coil lid 11 and the positions of the front, rear, left and right, and matching the corresponding surfaces. Shall be allowed to.
If necessary, a flange 8 is provided in the direction parallel to the contact surface and is fastened with bolts and nuts or the like, or a flange 8 is provided at an important point and the outside is fastened with a wire rope or the like.
When the corresponding surface of the coil lid 11 is concentric, a screwing method is also possible.
Note that the contact surface is not necessarily a flat surface, and includes a case where there are uneven steps such as embedding and meshing.
The material of the coil lid 11 is based on a generally used iron core material, but it is more effective to use a material having a high magnetic permeability according to the expected characteristic value.
In order to escape the heat generated when the winding 12 is energized or to suppress the generated heat, a window is provided on the outer portion of the coil lid 11 as necessary so long as the continuity of the coil lid 11 is not impaired. Open or radiating fins shall be provided.
[0016]
Even in the case where the size of the coil lid 11 is different depending on the number of turns in the primary winding 6 and the secondary winding 7, the contact surfaces of the two coil lids 11 are shared, The size and the front / rear / left / right height positions are aligned symmetrically, and the corresponding surfaces are properly aligned and brought into close contact with each other.
As for the terminal outlet 9 for energizing the winding 12, a hole is formed in the coil lid 11 as necessary, and the terminal 10 of the wire 5 for energization is taken out from the entrance.
The coil lid 11 is naturally insulated from the current.
When one winding 12 is used as an electromagnet or the like, or a plurality of coils, one coil cover 11 is naturally sufficient. Become.
In addition, about whether to give directionality with respect to the material used for the coil lid | cover 11, and whether the coil lid | cover 11 is made into one lump or a multi lump assembly, the material and shape of the coil lid 11 It shall be determined by the application and size.
As for the production of the coil lid 11, the planned coil lid 11 can be obtained by a single method or a combination of methods such as casting, machining, sheet metal plastic forming and the like.
Further, for a winding having an ordinary iron core, a gap is formed by using a shape obtained by removing the “coil lid downward extension portion” from the “coil lid 11” described above, that is, a bowl-shaped coil lid “quasi-coil lid”. It is assumed that the whole winding having a normal iron core is completely wrapped.
The material of the bowl-shaped coil lid “quasi-coil lid” and other specifications shall be in accordance with “Coil lid 11”.
[0017]
Next, the effect of using the conductive wire of the present invention as a winding will be described below.
When the wire 5 composed of the four layers of the outer insulator 1, the conductor 2, the inner insulator 3, and the high magnetic permeability material 4 is used as a winding, it is natural that the current is passed through the conductor 2. The same phase current is supplied to the inner wall surface and the outer wall surface at one end of the material of the conductor 2, and the same phase current at the other end is taken out from the inner wall surface and the outer wall surface at the other end. .
Although a considerable amount of heat is generated according to the usage environment of the winding, when it is necessary to cool so as not to impair the expected characteristic value, the entire winding is cooled.
However, the material of the layer of the conductor 2 is determined in order to escape or suppress the heat generation, the shape of the cross section is determined, and a window is opened in the layer of the conductor 2 as necessary so as not to impair the conductivity (in terms of appearance) (The outer surface of the wire 5 is uneven.).
In order to escape or suppress heat generation when the winding is used, the above-described cylindrical material of Example 8, comprising the conductor 2 as necessary, the strip-shaped material of Example 9, the foil of Example 12, and the Example 13 It is assumed that a hole is formed in the strip-shaped material in advance so as to maintain a state where the material of the conductor 2 is continuously connected in the axial direction at a predetermined interval in parallel with the outer peripheral direction.
In the case of the tenth embodiment, it is difficult to make a hole, but in the case of the eleventh embodiment, heat generation can be released or suppressed by adjusting the size of the mesh to be woven.
The method of cooling the winding is based on a commonly used method such as air cooling or dipping the winding in oil made of an insulating material.
[0018]
In general, it has been confirmed through experiments that the strength of a magnetic field around a linear current is proportional to the strength of the current and inversely proportional to the distance from the current.
In the winding using the wire 5 composed of the outer insulator 1, the conductor 2, the inner insulator 3 and the high permeability material 4 in cross section, each magnetic field generated in the conductor 2 is “from the current from the inner wall surface”. Is at a distance corresponding to the thickness of the insulator of the inner insulator 3, and “at a distance obtained by adding the thickness of the conductor of the inner insulator 3 to the thickness of the conductor 2 from the current from the outer wall surface”. The strength of the magnetic field received by the high permeability material of the magnetic permeability material 4 is measured, and the strength of the received magnetic field is applied to the coil lid 11 of the winding through the high permeability material of the magnetic path, that is, the magnetic field. It is assumed that the sum of the strengths of the two is collected in the coil lid 11 of the winding.
On the other hand, in the case of a winding using a wire material in which an insulator coating is applied to the outside centered on a single material and a simple-shaped conductor wire, which is generally performed (with high permeability in the wire material) It is assumed that each magnetic field generated from the current of the conductor wire rods is gathered in a normal iron core. In this case, the distance to the iron core of each magnetic field is the core from the inner surface of each conductor (of each step layer). Or from the outer surface of each conductor to the iron core. The strength of each magnetic field is the sum of the thickness of the conductors corresponding to each step layer (the number of wound wires multiplied by the conductor thickness) and the total thickness of the insulation coating. It will be the distance to catch.
In addition, when the wire 5 having an air core three-layer structure is used as a winding, (the effect of shortening the distance for receiving a magnetic field generated from a current that can be expected when a material made of a material having a high magnetic permeability is naturally provided) Compared to the case where a substantially two-layered wire having an insulating coating on the outside is used as a winding, with a single-material and simple-shaped conductor wire being used in general, as a winding. This is limited to the effect of increasing the number of windings, which is the effect of increasing the current on the wall surface and the outer wall surface.
Therefore, when the expected characteristic value is satisfied only by the effect of increasing the number of windings, naturally, a winding using the wire material 5 composed of substantially three layers is used.
[0019]
In addition, even if a current of about twice is passed, the thickness of the insulator should be negligible, and the conductor 2 is so small that the resistance of the conductor 2 can be ignored. In the case of the cylindrical conductor 2, the current flows to both the inner wall surface and the outer wall surface in the direction perpendicular to the cross section (axis) of the linear material, and the conductor mass number per linear length is the same. In addition, in the case of a non-cylindrical conductor (assuming that there is no inner wall surface), it is theoretically assumed that the cylindrical linear material is compared to the non-cylindrical linear material. A current up to a value close to twice can flow.
This is the same effect as if the number of turns of the winding is made to a value close to twice.
In addition to the above, in order to compare the two, it is necessary to consider other factors, but they are omitted.
This is because it was easily confirmed by experiments that there was a difference in the strength of the magnetic field based on the above factors as expected.
Accordingly, a winding using a wire 5 composed of the outer insulator 1, the conductor 2, the inner insulator 3, and the high magnetic permeability material 4 in cross section is created and energized, so that a commonly used winding is obtained. In comparison, a stronger magnetic field is obtained and a higher efficiency is obtained.
It is advantageous to use this high-efficiency coil when using windings such as generators, motors, transformers, and electromagnets.
[0020]
【effect】
Since the conductive wire material of the present invention is configured in this way, the magnitude of current that can be energized with the same number of turns as a result of electricity flowing through the outer and inner wall surfaces of the cylindrical conductor is generally performed. It is possible to achieve a value close to twice that of the existing winding.
Further, by arranging a high magnetic permeability material, it is possible to shorten the distance of the field for receiving the magnetism generated from the current as compared with the winding generally performed at present.
The coil lid having a shape that completely wraps the winding makes it possible to more effectively take in the magnetic lines of force from the back and side of the winding, and to improve the efficiency of the winding.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a conductive wire according to the present invention.
FIG. 2 is a perspective view in which a winding is formed of the conductive wire of the present invention.
FIG. 3 is a perspective view in which a primary winding and a secondary winding are formed of the conductive wire of the present invention.
FIG. 4 is a perspective view of a coil lid and a winding according to the present invention.
FIG. 5 is a cross-sectional view of a conventional electromagnetic shielding cable.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outer insulator 2 Conductor 3 Inner insulator 4 High permeability material 5 Wire material 6 Primary winding 7 Secondary winding 8 Flange 9 Terminal outlet 10 Terminal 11 Coil lid 12 Winding

Claims (2)

最外側に外側絶縁体1を配置し、該外側絶縁体1の内側に導体2を配置し、更に該導体2の内側に内側絶縁体3を配置し、最も内側に高透磁率材4又は絶縁体を配置して4層構造若しくは最も内側に空間を配置して空芯3層構造にしてなることを特徴とする導電線材。The outer insulator 1 is disposed on the outermost side, the conductor 2 is disposed on the inner side of the outer insulator 1, the inner insulator 3 is further disposed on the inner side of the conductor 2, and the high permeability material 4 or the insulation is disposed on the innermost side. A conductive wire having a four-layer structure by arranging a body or an air-core three-layer structure by arranging an innermost space. 前記導電線材を螺旋状に巻回して巻線を形成したことを特徴とする請求項1記載の導電線材。The conductive wire according to claim 1, wherein the conductive wire is spirally wound to form a winding.
JP2002344972A 2002-11-28 2002-11-28 Conductive wire Expired - Fee Related JP3637046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344972A JP3637046B2 (en) 2002-11-28 2002-11-28 Conductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344972A JP3637046B2 (en) 2002-11-28 2002-11-28 Conductive wire

Publications (2)

Publication Number Publication Date
JP2004179025A JP2004179025A (en) 2004-06-24
JP3637046B2 true JP3637046B2 (en) 2005-04-06

Family

ID=32706266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344972A Expired - Fee Related JP3637046B2 (en) 2002-11-28 2002-11-28 Conductive wire

Country Status (1)

Country Link
JP (1) JP3637046B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2874782B1 (en) * 2004-08-26 2006-12-08 Brevetix Sarl DEVICE FOR HEATING FIELDS, IN PARTICULAR SPORTS
JP2008016266A (en) * 2006-07-04 2008-01-24 Sumitomo Electric Ind Ltd Insulated wire

Also Published As

Publication number Publication date
JP2004179025A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US7572980B2 (en) Copper conductor with anodized aluminum dielectric layer
EP1545159B1 (en) Induction heating coil
RU2013142446A (en) SUPERCONDUCTING CABLES AND METHODS OF THEIR PRODUCTION
JP7373709B2 (en) High frequency coil parts, coil parts for wireless power supply, wireless power supply device, and manufacturing method of frequency coil parts
US10867741B2 (en) Pseudo edge-wound winding using single pattern turn
JP3637046B2 (en) Conductive wire
JPH10126917A (en) Terminal structure of superconducting cable conductor and jointing method therefor
CN216961530U (en) Heater and atomization device
RU2648996C2 (en) Method of forming insulated electric conductor
JP4559834B2 (en) Manufacturing method of heat conductor
JP2003151754A (en) Induction heating apparatus
JPH05175059A (en) Transformer
JP2003007150A (en) Minimizing method of alternating current loss of high- temperature superconductive wire
JP2009093978A (en) Coil conductor, induction-heating coil, and induction-heating cooking oven
CN216435492U (en) High-power high temperature resistant wind-powered electricity generation motor self-adhesion winding wire
JP2000138118A (en) Oxide superconducting coil
JPH04116904A (en) Coil
JPH06112035A (en) Thin coil and manufacture thereof
JPWO2012131934A1 (en) Insulated wires and coils
JPH08222428A (en) Persistent current switch
JPH11111067A (en) Laminated insulated flat wire for high frequency
JP2007193945A (en) Electric cable
JPS6388813A (en) Inductance element
JP2004049367A (en) Induction heating type electric rice-cooker and heating coil for induction heating type electric rice-cooker
JP2003288816A (en) Method of lowering ac loss of superconductive coil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees