JP3635183B2 - Deodorant acrylic fiber - Google Patents

Deodorant acrylic fiber Download PDF

Info

Publication number
JP3635183B2
JP3635183B2 JP05543997A JP5543997A JP3635183B2 JP 3635183 B2 JP3635183 B2 JP 3635183B2 JP 05543997 A JP05543997 A JP 05543997A JP 5543997 A JP5543997 A JP 5543997A JP 3635183 B2 JP3635183 B2 JP 3635183B2
Authority
JP
Japan
Prior art keywords
weight
acrylonitrile
sheath
acrylic fiber
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05543997A
Other languages
Japanese (ja)
Other versions
JPH10245721A (en
Inventor
康夫 柳
宏明 大西
素郎 能村
宏 細川
興造 三瀬
輝之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP05543997A priority Critical patent/JP3635183B2/en
Publication of JPH10245721A publication Critical patent/JPH10245721A/en
Application granted granted Critical
Publication of JP3635183B2 publication Critical patent/JP3635183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐光堅牢性に優れた消臭性アクリル繊維に関する。
【0002】
【従来の技術】
近年、光触媒、特に酸化チタンを光触媒として用いた各種消臭・防臭素材は、光触媒の酸化分解機能によりその効果が永続的であることから、種々の用途への開発が行われている。例えば、特公平4−46609号公報にて、光触媒の酸化チタンにPt等をドープした高活性光触媒を基布等に担持させ車室内臭気浄化装置に応用した例、また特開平5−253544号公報等にて、光触媒の酸化チタンをバインダーと共に熱処理して抗菌・汚れ防止タイルを得る方法等が開示されている。また、繊維分野においても、特開平8−284011号公報にて、酸化チタン等の光触媒と吸着剤を基材ポリマーに同時に練り込み、光照射の有無に影響され難い消臭性繊維が開示されている。
【0003】
一方、アクリル系繊維は、その基材ポリマーと通常カチオン染料と呼ばれる発色性と耐光性に優れた塩基性染料との組み合わせにより、汎用合成繊維の中では最も光に対する染色堅牢性及び強度保持率に優れ、衣料、インテリア、資材等に幅広く用途展開されている。しかしながら、従来技術においては、アクリル系繊維に光触媒が含まれる場合には、光触媒による有機物、特に染料の分解が避けられず、衣料において商品性能上最も重要な耐光堅牢度、糸質の強度低下を抑制すると共に、光触媒による消臭機能を付与した消臭アクリル系繊維については未だ提案がない。
【0004】
【発明が解決しようとする課題】
本発明の目的は、優れた耐光堅牢性を有しながら、同時に優れた消臭性能を有する消臭性アクリル繊維を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、光触媒を0.5〜10重量%含有するアクリロニトリル系重合体を鞘部とし、抗酸化剤を0.1〜10重量%含有するアクリロニトリル系重合体を芯部とする鞘芯構造を有し、鞘部の重合体の比率が1〜50重量%であることを特徴とする消臭性アクリル繊維にある。
【0006】
【発明の実施の形態】
本発明において、鞘部及び芯部の基体となるアクリロニトリル系重合体は、アクリロニトリルを50重量%以上含有するアクリロニトリル単独重合体、若しくはアクリロニトリルとこれと共重合可能な不飽和単量体とのアクリロニトリル共重合体である。アクリロニトリル系重合体中のアクリロニトリルが50重量%未満では、アクリル繊維の特徴である染色鮮明性、発色性が低下すると共に、熱特性をはじめとする他の物性も低下する。また、鞘部及び芯部において、基体となるアクリロニトリル系重合体が必ずしも同一組成である必要はなく、両者が適度の接合性を有する範囲で互いに異なる組成のアクリロニトリル系重合体であってもよい。
【0007】
アクリロニトリルと共重合可能な不飽和単量体としては、アクリル酸、メタクリル酸、またはこれらのアルキルエステル類、酢酸ビニル、アクリルアミド、塩化ビニル、塩化ビニリデン等が挙げられ、さらにまた、ビニルベンゼンスルホン酸ソーダ、メタリルスルホン酸ソーダ、アクリルアミドジメチルプロパンスルホン酸ソーダ等のイオン性不飽和単量体が挙げられる。
【0008】
本発明においては、鞘部が、光触媒を含有するアクリロニトリル系重合体にて構成され、鞘部のアクリロニトリル系重合体における光触媒の含有量は、アクリロニトリル系重合体に対し0.5〜10重量%である。光触媒の含有量が0.5重量%未満では、消臭性能が不十分であり、10重量%を超えると、耐光堅牢度或いは強度保持率の低下を招く。
【0009】
光触媒としては、活性酸素を生成し得るバンドギャップを有する半導体であれば、特に限定されないが、アクリル繊維の発色性を損なわないためには、白度の高いものであることが望ましく、酸化チタン、酸化亜鉛、酸化スズ、酸化モリブデン等の酸化物半導体が好ましく用いられ、特にアナターゼ型酸化チタンが安価で高い光触媒活性を有することから好ましく用いられる。
【0010】
また、本発明においては、芯部が、抗酸化剤を含有するアクリロニトリル系重合体にて構成され、芯部のアクリロニトリル系重合体における抗酸化剤の含有量は、アクリロニトリル系重合体に対し0.1〜10重量%である。抗酸化剤の含有量が0.1重量%未満では、耐光堅牢度が低下し、10重量%を超えると、経済的でないばかりか、繊維の強度低下を招く。
【0011】
抗酸化剤としては、ラジカル連鎖禁止機能を有するものであれば、特に限定されないが、アクリル繊維の着色を避けるためには、フェノール系抗酸化剤が好ましく用いられる。フェノール系抗酸化剤としては、2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、1,3,5−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−s−トリアジン−2,4,6−(1H,3H,5H)トリオン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングルコース−ビス[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]等が挙げられる。
【0012】
本発明の消臭性アクリル繊維は、光触媒を含有するアクリロニトリル系重合体を鞘部とし、抗酸化剤を含有するアクリロニトリル系重合体を芯部とする鞘芯構造を有しており、かつ鞘部のアクリロニトリル系重合体の比率が1〜50重量%、好ましくは2〜25重量%である。本発明の消臭性アクリル繊維における鞘芯構造は、必ずしも鞘部が繊維表面に沿って厚みが一定或いは完全に連続している必要はなく、また例えば花弁型、星型のように芯部の一部が繊維表面に露出していてもよい。また、鞘部のアクリロニトリル系重合体の比率が1重量%未満では、消臭性能が不十分であり、50重量%を超えると、耐光堅牢度及び繊維強度が著しく低下する。
【0013】
本発明の消臭性アクリル繊維は、アクリル繊維本来の優れた発色性及び耐光堅牢度が4級以上という優れた耐光堅牢性を有しながら、同時に光触媒の酸化分解機能に基づく優れた消臭性能を有する。
【0014】
本発明の消臭性アクリル繊維を製造するに際しては、特にその紡糸法に限定はなく、通常のアクリル複合繊維を製造するのと同様に、鞘芯型複合紡糸ノズルを用い、湿式紡糸法、乾湿式紡糸法或いは乾式紡糸法により製造される。本発明の消臭性アクリル繊維の製造時における鞘部、芯部のアクリロニトリル系重合体の溶剤としては、アクリロニトリル系重合体を紡糸可能な濃度に溶解し得るものであれば、特に限定されないが、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド等の有機溶剤、硝酸、ロダンソーダ、塩化亜鉛等の無機溶剤が挙げられる。複合紡糸に際しては、重合体濃度が20〜40重量%の溶液を、鞘部用、芯部用の紡糸原液としてそれぞれ用いる。
【0015】
鞘部とするアクリロニトリル系重合体への光触媒の添加及び芯部とするアクリロニトリル系重合体への抗酸化剤の添加は、添加した光触媒或いは抗酸化剤の再凝集により紡糸性の悪化や切り替えロスを避けるため、できるだけ紡糸ノズル直前の位置において、溶剤に分散させた状態或いは予め調製済みの高濃度マスターバッチの形で各紡糸原液に添加することが好ましい。また、特に光触媒の添加の際は、溶剤への分散、分散液の保存或いは分散液の添加時に遮光することが重要である。
【0016】
また、消臭性能、耐光堅牢度及び繊維強度保持率を低下させない範囲で、抗菌剤、吸着剤等の各種機能付与剤や顔料、染料等を紡糸原液へ添加し、或いは繊維製造工程中の凝固浴、洗浄浴、油浴等へ添加することもでき、また、通常のアクリル繊維を製造するに際して採用されると同様の、凝固浴、凝固方法等の紡糸工程条件、延伸、洗浄、乾燥、緩和等の製糸工程条件が適用される。
【0017】
【実施例】
以下、本発明を実施例により具体的に説明する。なお、耐光堅牢度、消臭性能の測定は、次の方法に拠った。
【0018】
〈耐光堅牢度〉
製編したアクリル繊維編地を、スコアロール400(花王社製、界面活性剤)1g/リットル、液比1:50の水溶液に浸漬し、70℃で20分の精練処理した。次いで、編地100重量部に対しアイゼン カチロン ブルーKGLH(保土ヶ谷化学工業社製、カチオン染料)0.5重量部、酢酸2重量部、酢酸ソーダ0.5重量部、液比1:50の染液に浸漬し、30分で100℃に昇温し、100℃で60分の染色をした後、水洗、風乾して評価用試料とした。評価用試料の耐光堅牢度の測定は、フェードメーター照射を行い、JIS L−842に準拠して判定した。
【0019】
〈消臭性能〉
前記評価用試料1gを容積5リットルのテドラーバッグに入れ密栓した。次いで、シリンジを用いてアンモニアを含む空気を注入しアンモニア初期濃度を100ppmとした。27Wの白色蛍光灯から15cm離してテドラーバッグを静置して評価用試料全体に光(紫外線)を照射し、1時間経過後のテドラーバッグ内のアンモニア濃度をガス検知管(ガステック社製、アンモニア用3L型)を用いて測定し、アンモニア除去率を算出した。
【0020】
(実施例1〜4、比較例1〜5)
水系懸濁重合法により、アクリロニトリル92.5重量%/酢酸ビニル7重量%/メタリルスルホン酸ソーダ0.5重量%の比のモノマーより、比粘度0.17(重合体0.1gを0.1Nのロダンソーダを含有するジメチルホルムアミド100ミリリットルに溶解し、25℃で測定)のアクリロニトリル系重合体を得た。次いでこのアクリロニトリル系重合体をジメチルアセトアミドに溶解し、重合体濃度25重量%の原液Aを調製した。また、平均粒径約0.2μm、比表面積約50m2/gのアナターゼ型酸化チタン(日本エアロジル社製、TITANIUM DIOXIDE P25)16重量部及び前記アクリロニトリル系重合体10重量部をジメチルアセトアミド74重量部に分散させたマスターバッチ原液Bを遮光下に調製した。
【0021】
紡糸ノズル直前に設置のスタティックミキサーにて、原液Aに、原液Bを、表1に示す濃度にその添加量を変更して、混合分散させて鞘部紡糸原液Cを調製した。また、原液Aに、フェノール系抗酸化剤(旭電化工業社製、アデカスタブAO−50)を、表1に示す濃度にその添加量を変更して、混合分散させて芯部紡糸原液Dを調製した。
【0022】
この2種の紡糸原液C、Dを、孔径0.2mmの円形孔を60個有する鞘芯型複合紡糸ノズルより、表1に示すように鞘芯比を変更して、吐出し、6mmの空気層を経て、ジメチルアセトアミド73重量%/水27重量%の40℃の凝固浴に導いた。次いで凝固浴外のロールにて60m/分に引き取り、温水中で洗浄した後、沸騰水中で3倍に一次延伸した。糸条を十分乾燥した後、乾熱で2倍の二次延伸と260℃の熱板にて10%の緩和を行って150デニール/60フィラメントの単繊維繊度が2.5デニール、単繊維断面がほぼ円形の鞘芯構造のフィラメント糸を得た。得られたフィラメント糸を製編及び染色して評価用サンプルとし、表1に耐光堅牢度、消臭性能の測定結果を示した。
【0023】
【表1】

Figure 0003635183
【0024】
(実施例5〜7、比較例6〜8)
水系懸濁重合法により、アクリロニトリル93.5重量%/アクリル酸メチル6重量%/メタリルスルホン酸ソーダ0.5重量%の比のモノマーより、比粘度0.16のアクリロニトリル系重合体を得た。次いでこのアクリロニトリル系重合体をジメチルホルムアミドに溶解し、重合体濃度30重量%の原液Eを調製した。また、平均粒径約0.2μm、比表面積約50m2/gのアナターゼ型酸化チタン(日本エアロジル社製、TITANIUM DIOXIDE P25)16重量部及び前記アクリロニトリル系重合体14重量部をジメチルホルムアミド70重量部に分散させたマスターバッチ原液Fを遮光下に調製した。
【0025】
紡糸ノズル直前に設置のスタティックミキサーにて、原液Eに、原液Fを、表2に示す濃度にその添加量を変更して、混合分散させて鞘部紡糸原液Gを調製した。また、原液Eに、フェノール系抗酸化剤(旭電化工業社製、アデカスタブAO−50)を、表2に示す濃度にその添加量を変更して、混合分散させて芯部紡糸原液Hを調製した。
【0026】
この2種の紡糸原液G、Hを、孔径0.2mmの円形孔を600個有する鞘芯型複合紡糸ノズルより、表2に示すように鞘芯比を変更して、230℃の不活性ガス中に吐出し、鞘芯構造の未延伸糸を得た。この未延伸糸を集束し、48万デニールの繊維束とし、熱水中で4倍に延伸し、熱水中で洗浄、油剤処理を施した後、繊維束を無緊張下で相対湿度10%、温度150℃で乾燥、緩和処理を行い、さらに機械捲縮を付与し、長さ51mmにカットした。得られた短繊維は、単繊維繊度が3デニール、単繊維断面が亜鈴形で芯部の一部が表面に露出の鞘芯構造を有していた。得られた短繊維の紡績糸を製編及び染色して評価用サンプルとし、表2に耐光堅牢度、消臭性能の測定結果を示した。
【0027】
【表2】
Figure 0003635183
【0028】
【発明の効果】
本発明の消臭性アクリル繊維は、アクリル繊維本来の優れた発色性と共に優れた耐光堅牢性を有しながら、同時に優れた永続性のある消臭性能を有し、衣料、インテリア、資材等の素材として好適なるものであり、また、羊毛等の獣毛、綿、麻等の天然繊維、ポリエステル繊維、ポリアミド繊維、アセテート繊維等の合成或いは化学繊維との混紡、混繊若しくは混抄による複合化も可能であり、広範囲な分野に用途展開を可能とする。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deodorant acrylic fiber excellent in light fastness.
[0002]
[Prior art]
In recent years, various deodorizing / deodorizing materials using photocatalysts, in particular titanium oxide as photocatalysts, have been permanently developed due to the oxidative decomposition function of the photocatalyst, and thus have been developed for various uses. For example, in Japanese Examined Patent Publication No. 4-46609, an example of applying a highly active photocatalyst doped with titanium oxide as a photocatalyst to a base cloth or the like and applying it to a vehicle interior odor purifier, or JP-A-5-253544 is disclosed. Discloses a method for obtaining an antibacterial / stain-proof tile by heat-treating titanium oxide as a photocatalyst together with a binder. Also in the fiber field, JP-A-8-284011 discloses a deodorant fiber that is kneaded simultaneously with a photocatalyst such as titanium oxide and an adsorbent into a base polymer, and is hardly affected by the presence or absence of light irradiation. Yes.
[0003]
Acrylic fibers, on the other hand, combine the base polymer with a basic dye, usually called a cationic dye, which has excellent color development and light fastness. It is widely used for clothing, interior, and materials. However, in the prior art, when an acrylic fiber contains a photocatalyst, decomposition of organic substances, particularly dyes, due to the photocatalyst is inevitable. There is still no proposal for a deodorizing acrylic fiber that has been suppressed and has been given a deodorizing function by a photocatalyst.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a deodorant acrylic fiber having excellent light fastness and simultaneously having excellent deodorization performance.
[0005]
[Means for Solving the Problems]
The present invention has a sheath core structure in which an acrylonitrile polymer containing 0.5 to 10% by weight of a photocatalyst is used as a sheath and an acrylonitrile polymer containing 0.1 to 10% by weight of an antioxidant is used as a core. The deodorant acrylic fiber is characterized in that the ratio of the polymer in the sheath is 1 to 50% by weight.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the acrylonitrile-based polymer serving as the base of the sheath and core is an acrylonitrile homopolymer containing 50% by weight or more of acrylonitrile, or an acrylonitrile copolymer of acrylonitrile and an unsaturated monomer copolymerizable therewith. It is a polymer. When acrylonitrile in the acrylonitrile-based polymer is less than 50% by weight, the dyeing vividness and color development characteristic of acrylic fibers are lowered, and other physical properties such as heat characteristics are also lowered. Moreover, the acrylonitrile polymer used as a base | substrate does not necessarily need to be the same composition in a sheath part and a core part, and the acrylonitrile polymer of a mutually different composition may be sufficient as long as both have moderate joining property.
[0007]
Examples of the unsaturated monomer copolymerizable with acrylonitrile include acrylic acid, methacrylic acid, or alkyl esters thereof, vinyl acetate, acrylamide, vinyl chloride, vinylidene chloride, and so on. And ionic unsaturated monomers such as sodium methallyl sulfonate and sodium acrylamide dimethylpropane sulfonate.
[0008]
In this invention, a sheath part is comprised with the acrylonitrile type polymer containing a photocatalyst, and the content of the photocatalyst in the acrylonitrile type polymer of a sheath part is 0.5 to 10 weight% with respect to an acrylonitrile type polymer. is there. If the content of the photocatalyst is less than 0.5% by weight, the deodorizing performance is insufficient, and if it exceeds 10% by weight, the light fastness or strength retention is reduced.
[0009]
The photocatalyst is not particularly limited as long as it is a semiconductor having a band gap capable of generating active oxygen, but in order not to impair the color developability of the acrylic fiber, it is desirable to have high whiteness, titanium oxide, Oxide semiconductors such as zinc oxide, tin oxide, and molybdenum oxide are preferably used. In particular, anatase-type titanium oxide is preferably used because it is inexpensive and has high photocatalytic activity.
[0010]
In the present invention, the core is composed of an acrylonitrile-based polymer containing an antioxidant, and the content of the antioxidant in the acrylonitrile-based polymer in the core is 0. 0 relative to the acrylonitrile-based polymer. 1 to 10% by weight. When the content of the antioxidant is less than 0.1% by weight, the light fastness is lowered, and when it exceeds 10% by weight, it is not economical and the strength of the fiber is lowered.
[0011]
The antioxidant is not particularly limited as long as it has a radical chain inhibiting function, but a phenol-based antioxidant is preferably used in order to avoid coloring of acrylic fibers. Phenol antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, 4,4'- Butylidenebis (3-methyl-6-tert-butylphenol), octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, tetrakis [methylene (3,5-di-tert-butyl-4 -Hydroxyphenyl) propionate] methane, triethyleneglucose-bis [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate] and the like. The
[0012]
The deodorant acrylic fiber of the present invention has a sheath core structure in which an acrylonitrile-based polymer containing a photocatalyst is a sheath, and an acrylonitrile-based polymer containing an antioxidant is a core, and the sheath The ratio of the acrylonitrile-based polymer is 1 to 50% by weight, preferably 2 to 25% by weight. The sheath core structure in the deodorant acrylic fiber of the present invention does not necessarily require the sheath portion to have a constant or complete thickness along the fiber surface. For example, the sheath portion has a core shape such as a petal type or a star shape. A part of the fiber surface may be exposed. Further, when the ratio of the acrylonitrile polymer in the sheath is less than 1% by weight, the deodorizing performance is insufficient, and when it exceeds 50% by weight, the light fastness and fiber strength are remarkably lowered.
[0013]
The deodorant acrylic fiber of the present invention has excellent decolorization performance based on the oxidative decomposition function of the photocatalyst at the same time, while having excellent color fastness and light fastness of the acrylic fiber inherently 4th grade or higher. Have
[0014]
When producing the deodorant acrylic fiber of the present invention, the spinning method is not particularly limited. Similarly to the production of ordinary acrylic composite fiber, a sheath-core type composite spinning nozzle is used, and a wet spinning method, a wet and dry method are used. Manufactured by a spinning method or a dry spinning method. The solvent for the acrylonitrile polymer in the sheath and core in the production of the deodorant acrylic fiber of the present invention is not particularly limited as long as it can dissolve the acrylonitrile polymer to a spinnable concentration, Examples thereof include organic solvents such as dimethylacetamide, dimethylformamide, and dimethylsulfoxide, and inorganic solvents such as nitric acid, rhodium soda, and zinc chloride. In the composite spinning, a solution having a polymer concentration of 20 to 40% by weight is used as a spinning dope for the sheath and the core, respectively.
[0015]
Addition of photocatalyst to the acrylonitrile polymer used as the sheath and addition of the antioxidant to the acrylonitrile polymer used as the core cause deterioration of spinnability and switching loss due to reaggregation of the added photocatalyst or antioxidant. In order to avoid this, it is preferable to add it to each spinning dope in a state dispersed in a solvent or in the form of a high-concentration masterbatch prepared in advance at a position immediately before the spinning nozzle. In particular, when adding a photocatalyst, it is important to shield from light during dispersion in a solvent, storage of a dispersion, or addition of a dispersion.
[0016]
In addition, antibacterial agents, adsorbents and other function-providing agents, pigments, dyes, etc. are added to the spinning dope as long as the deodorant performance, light fastness and fiber strength retention are not reduced, or solidification during the fiber production process It can also be added to baths, washing baths, oil baths, etc. Also, spinning process conditions such as coagulation bath and coagulation method, drawing, washing, drying and relaxation are the same as those employed when producing ordinary acrylic fibers. Etc. The yarn making process conditions apply.
[0017]
【Example】
Hereinafter, the present invention will be specifically described by way of examples. The light fastness and deodorant performance were measured according to the following methods.
[0018]
<Light fastness>
The knitted acrylic fiber knitted fabric was dipped in an aqueous solution having a score roll of 400 (manufactured by Kao Corporation, surfactant) 1 g / liter and a liquid ratio of 1:50, and scoured at 70 ° C. for 20 minutes. Next, 0.5 parts by weight of Eisen Catillon Blue KGLH (made by Hodogaya Chemical Co., Ltd., cationic dye), 100 parts by weight of knitted fabric, 2 parts by weight of acetic acid, 0.5 parts by weight of sodium acetate, and a dye ratio of 1:50. The sample was heated to 100 ° C. in 30 minutes, dyed at 100 ° C. for 60 minutes, washed with water and air-dried to obtain a sample for evaluation. The light fastness of the sample for evaluation was measured by irradiating with a fade meter and judging according to JIS L-842.
[0019]
<Deodorization performance>
1 g of the sample for evaluation was placed in a 5 liter Tedlar bag and sealed. Subsequently, air containing ammonia was injected using a syringe to make the initial ammonia concentration 100 ppm. The Tedlar bag is left at a distance of 15 cm from the 27 W white fluorescent lamp, and the entire sample for evaluation is irradiated with light (ultraviolet rays), and the ammonia concentration in the Tedlar bag after 1 hour is measured with a gas detector tube (manufactured by Gastec, for ammonia). 3L type), and the ammonia removal rate was calculated.
[0020]
(Examples 1-4, Comparative Examples 1-5)
From a monomer having a ratio of 92.5% by weight of acrylonitrile / 7% by weight of vinyl acetate / 0.5% by weight of sodium methallylsulfonate by an aqueous suspension polymerization method, a specific viscosity of 0.17 (0.1 g of 0.1 g of polymer was reduced to 0.1%). It was dissolved in 100 ml of dimethylformamide containing 1N rhodan soda, and an acrylonitrile polymer (measured at 25 ° C.) was obtained. Next, this acrylonitrile-based polymer was dissolved in dimethylacetamide to prepare a stock solution A having a polymer concentration of 25% by weight. Further, 16 parts by weight of anatase-type titanium oxide (manufactured by Nippon Aerosil Co., Ltd., TITANIUM DIOXIDE P25) having an average particle size of about 0.2 μm and a specific surface area of about 50 m 2 / g and 10 parts by weight of the acrylonitrile-based polymer were added to 74 parts by weight of dimethylacetamide. A master batch stock solution B dispersed in was prepared in the dark.
[0021]
A sheath spinning stock solution C was prepared by changing the addition amount of stock solution B to stock solution A to the concentrations shown in Table 1, and mixing and dispersing them in a static mixer installed just before the spinning nozzle. In addition, a phenolic antioxidant (Adeka Stub AO-50, manufactured by Asahi Denka Kogyo Co., Ltd.) was added to the stock solution A, and the addition amount was changed to the concentrations shown in Table 1, and mixed and dispersed to prepare a core spinning stock solution D. did.
[0022]
These two types of spinning stock solutions C and D were discharged from a sheath-core type composite spinning nozzle having 60 circular holes with a hole diameter of 0.2 mm, changing the sheath-core ratio as shown in Table 1, and discharging 6 mm air. The layer was led to a 40 ° C. coagulation bath of 73 wt% dimethylacetamide / 27 wt% water. Next, the film was taken up to 60 m / min with a roll outside the coagulation bath, washed in warm water, and then first stretched three times in boiling water. After sufficiently drying the yarn, dry-heated twice the secondary stretching and 10% relaxation with a hot plate at 260 ° C to give a single denier fineness of 150 denier / 60 filaments of 2.5 denier, single fiber cross section A filament yarn having a substantially circular sheath core structure was obtained. The obtained filament yarn is knitted and dyed to obtain a sample for evaluation. Table 1 shows the measurement results of light fastness and deodorizing performance.
[0023]
[Table 1]
Figure 0003635183
[0024]
(Examples 5-7, Comparative Examples 6-8)
By an aqueous suspension polymerization method, an acrylonitrile polymer having a specific viscosity of 0.16 was obtained from a monomer having a ratio of 93.5% by weight of acrylonitrile / 6% by weight of methyl acrylate / 0.5% by weight of sodium methallyl sulfonate. . Next, this acrylonitrile-based polymer was dissolved in dimethylformamide to prepare a stock solution E having a polymer concentration of 30% by weight. Further, 16 parts by weight of anatase-type titanium oxide (manufactured by Nippon Aerosil Co., Ltd., TITANIUM DIOXIDE P25) having an average particle size of about 0.2 μm and a specific surface area of about 50 m 2 / g and 14 parts by weight of the acrylonitrile-based polymer were added to 70 parts by weight of dimethylformamide. A master batch stock solution F dispersed in was prepared in the dark.
[0025]
In a static mixer installed immediately before the spinning nozzle, the stock solution F was changed to the stock solution E, and the addition amount was changed to the concentrations shown in Table 2, and mixed and dispersed to prepare a sheath spinning stock solution G. In addition, phenol stock antioxidant (Adeka Stub AO-50, manufactured by Asahi Denka Kogyo Co., Ltd.) is added to stock solution E, and the addition amount is changed to the concentrations shown in Table 2, and mixed and dispersed to prepare core spinning stock solution H. did.
[0026]
These two types of spinning stock solutions G and H were changed from a sheath-core type composite spinning nozzle having 600 circular holes with a hole diameter of 0.2 mm, and the sheath-core ratio was changed as shown in Table 2, and an inert gas at 230 ° C. The undrawn yarn having a sheath core structure was obtained. The unstretched yarn is bundled into a fiber bundle of 480,000 denier, drawn four times in hot water, washed in hot water, treated with an oil agent, and the fiber bundle is subjected to 10% relative humidity under no tension. Then, drying and relaxation treatment were performed at a temperature of 150 ° C., mechanical crimping was further applied, and the product was cut to a length of 51 mm. The obtained short fibers had a sheath core structure in which the single fiber fineness was 3 denier, the cross section of the single fiber was dumbbell shape, and a part of the core portion was exposed on the surface. The obtained spun yarns of short fibers were knitted and dyed to obtain samples for evaluation. Table 2 shows the measurement results of light fastness and deodorizing performance.
[0027]
[Table 2]
Figure 0003635183
[0028]
【The invention's effect】
The deodorant acrylic fiber of the present invention has excellent light fastness together with the excellent color developability inherent in the acrylic fiber, and at the same time has excellent permanent deodorizing performance, such as clothing, interior, materials, etc. It is suitable as a material, and it can be combined with animal hair such as wool, natural fibers such as cotton and hemp, synthetic fibers such as polyester fibers, polyamide fibers, and acetate fibers, or mixed with chemical fibers, mixed fibers or mixed papers. It is possible and can be used in a wide range of fields.

Claims (3)

光触媒を0.5〜10重量%含有するアクリロニトリル系重合体を鞘部とし、抗酸化剤を0.1〜10重量%含有するアクリロニトリル系重合体を芯部とする鞘芯構造を有し、鞘部の重合体の比率が1〜50重量%であることを特徴とする消臭性アクリル繊維。It has a sheath-core structure in which a acrylonitrile-based polymer containing 0.5 to 10% by weight of a photocatalyst is used as a sheath and an acrylonitrile-based polymer containing 0.1 to 10% by weight of an antioxidant is used as a core. The deodorant acrylic fiber characterized by the ratio of the polymer of 1 part to 50% by weight. 光触媒がアナターゼ型酸化チタンである請求項1記載の消臭性アクリル繊維。The deodorant acrylic fiber according to claim 1, wherein the photocatalyst is anatase type titanium oxide. 耐光堅牢度が4級以上の耐光堅牢性を有する請求項1又は請求項2記載の消臭性アクリル繊維。The deodorant acrylic fiber according to claim 1 or 2, wherein the light fastness is a light fastness of grade 4 or higher.
JP05543997A 1997-02-25 1997-02-25 Deodorant acrylic fiber Expired - Lifetime JP3635183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05543997A JP3635183B2 (en) 1997-02-25 1997-02-25 Deodorant acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05543997A JP3635183B2 (en) 1997-02-25 1997-02-25 Deodorant acrylic fiber

Publications (2)

Publication Number Publication Date
JPH10245721A JPH10245721A (en) 1998-09-14
JP3635183B2 true JP3635183B2 (en) 2005-04-06

Family

ID=12998636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05543997A Expired - Lifetime JP3635183B2 (en) 1997-02-25 1997-02-25 Deodorant acrylic fiber

Country Status (1)

Country Link
JP (1) JP3635183B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820219B1 (en) * 2000-12-28 2008-04-08 쇼와 덴코 가부시키가이샤 Powder exhibiting optical function and use thereof
US7060643B2 (en) 2000-12-28 2006-06-13 Showa Denko Kabushiki Kaisha Photo-functional powder and applications thereof
JP2010119970A (en) * 2008-11-20 2010-06-03 Teijin Fibers Ltd Deodorizing fiber and manufacturing method therefor
CN114086278A (en) * 2021-11-17 2022-02-25 安徽元琛环保科技股份有限公司 Preparation method of antioxidant polyphenylene sulfide fiber

Also Published As

Publication number Publication date
JPH10245721A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
JP4962619B2 (en) Antistatic acrylic fiber and method for producing the same
TWI237669B (en) Acrylic composite fiber, the manufacturing method therefor, and the fiber complex by using the same
JP3635183B2 (en) Deodorant acrylic fiber
DE2607996A1 (en) HYDROPHILIC FIBERS AND FABRICS MADE FROM SYNTHETIC POLYMERS
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JP5696944B2 (en) Antistatic acrylic fiber excellent in color development and production method thereof
TW201920800A (en) Moisture-absorptive acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7177982B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP2013204205A (en) Deodorant regenerated cellulosic fiber, method for producing the same, and fiber structure
JP2009256841A (en) Metal oxide microparticle-containing acrylic fiber having photocatalytic function
JP3979545B2 (en) Functional fiber and production method thereof
JP2843519B2 (en) Regenerated cellulose fiber dyeable to disperse dye and method for producing the same
JP2843517B2 (en) Rayon cake yarn with no difference in inner and outer layer dyeing with disperse dye
EP1029957B1 (en) Polybenzazole article and production method thereof
JPH06207311A (en) Acrylic synthetic fiber excellent in ultraviolet permeation-preventing property and its production
JP2005200799A (en) Woven or knitted fabric of polyester fiber having water absorption property/quick-drying property and method for producing the same
JP7340128B2 (en) Regenerated cellulose fiber, method for producing the same, and fiber structure containing the same
JPH10168652A (en) Tobacco deodorant and crimped polyolefin fiber, its production and tobacco deodorant carpet using the same crimped fiber
JPH08170224A (en) Organic solvent-based cellulosic fiber soluble in disperse dye and its production
JPS61138710A (en) Production of acrylic yarn having improved durability
JPH02300315A (en) Deodorizing acrylic conjugate fiber and production thereof
JP2005009034A (en) Acrylic fiber containing photocatalyst and method for producing the same
JPS61119710A (en) Production of acrylic fiber having high tenacity and modules
JPS58169520A (en) Production of heat stable fiber and filament
JP2010018895A (en) Wet spinning method for antimicrobial acrylic fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term