JP2010018895A - Wet spinning method for antimicrobial acrylic fiber - Google Patents

Wet spinning method for antimicrobial acrylic fiber Download PDF

Info

Publication number
JP2010018895A
JP2010018895A JP2008177950A JP2008177950A JP2010018895A JP 2010018895 A JP2010018895 A JP 2010018895A JP 2008177950 A JP2008177950 A JP 2008177950A JP 2008177950 A JP2008177950 A JP 2008177950A JP 2010018895 A JP2010018895 A JP 2010018895A
Authority
JP
Japan
Prior art keywords
antibacterial
fiber
acrylic fiber
mass
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008177950A
Other languages
Japanese (ja)
Other versions
JP5183329B2 (en
Inventor
Hiroshi Yamamoto
洋 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2008177950A priority Critical patent/JP5183329B2/en
Publication of JP2010018895A publication Critical patent/JP2010018895A/en
Application granted granted Critical
Publication of JP5183329B2 publication Critical patent/JP5183329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an antimicrobial acrylic fiber that retains antimicrobial activity for a long period of time, is mixed with another fiber material to give a mixed spun yarn having soft and excellent feeling. <P>SOLUTION: In the method for producing an antimicrobial acrylic fiber having a single fiber fineness of not more than 2.2 dtex, a crystalline fine particle supporting silver having a median diameter in a master batch of not less than 1 μm and a 90% particle diameter of not more than 5 μm is added as an antimicrobial agent in the spinning process and the ratio of the discharge linear velocity of a polymer from nozzles to the take-off speed of coagulated yarn is 0.7-1.2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、細番手紡績糸の原綿となる抗菌性アクリル繊維において、特に綿、レーヨン等の他素材と混綿して使用した際に風合いを損ねることなく、且つ、長期間抗菌効果を保持する抗菌性アクリル繊維の製造方法に関する。ノン   The present invention is an antibacterial acrylic fiber that is used as a raw cotton for fine yarns, especially when mixed with other materials such as cotton and rayon, without sacrificing the texture and having an antibacterial effect for a long period of time. The present invention relates to a method for producing conductive acrylic fiber. Non

繊維に抗菌性を付与する方法としては、抗菌剤を紡糸液に含ませて、紡糸した後加熱処理して樹脂に固定する方法、あるいは、抗菌剤を含む液に繊維を浸漬して繊維表面にある官能基に抗菌剤を反応させて固定する方法に大別されているが、快適な生活環境の要求の高まりから、かかる要求にこたえるため、様々な方法が提案されている。   As a method for imparting antibacterial properties to the fiber, an antibacterial agent is included in the spinning solution, and after spinning, heat treatment is performed and the resin is fixed to the resin. Although it is roughly classified into a method for fixing an antibacterial agent by reacting with a certain functional group, various methods have been proposed in order to meet such a demand due to the increasing demand for a comfortable living environment.

特許文献1には、SCN- 、P27 4- 、C24 2- の酸性基を導入したアニオン染料可染性アクリロニトリル系繊維を、銀、銅、亜鉛の各金属化合物の水溶液で加熱処理して、繊維表面に水不溶性の金属化合物を形成した抗菌性アクリロニトリル系繊維が記載されている。しかし、この繊維は、染色性に優れているが、アクリル繊維あるいは他の繊維と混綿して使用した場合、十分な抗菌性能が得られるだけの抗菌性を得ることは難しかった。 Patent Document 1 discloses an anionic dye-dyeable acrylonitrile fiber into which an acidic group of SCN , P 2 O 7 4− , and C 2 O 4 2− is introduced with an aqueous solution of silver, copper, and zinc metal compounds. An antibacterial acrylonitrile fiber in which a water-insoluble metal compound is formed on the fiber surface by heat treatment is described. However, although this fiber is excellent in dyeability, it has been difficult to obtain antibacterial properties sufficient to obtain sufficient antibacterial performance when used in combination with acrylic fibers or other fibers.

アクリル繊維の製造においては、細繊度原綿を製糸する場合に、非常に口径の小さいノズルが必要となり、製造の難度が高い。特許文献2では、銀を担持したゼオライトをアクリル繊維に添加した繊維が提案されているが、他素材混で使用した際の風合いを考慮した細繊度アクリル繊維の製造には至っていない。   In the production of acrylic fibers, a nozzle with a very small diameter is required when spinning fine raw cotton, which is difficult to manufacture. Patent Document 2 proposes a fiber in which silver-supported zeolite is added to an acrylic fiber, but has not yet been produced into a fine-fine acrylic fiber considering the texture when used in a mixture of other materials.

一方、特許文献3、4には、抗菌作用を有する金属イオンを保持した抗菌性ゼオライト粒子を含有する繊維が記載されているが、溶融工程でポリマーが劣化し、繊維が黄色に着色するなどの問題が生じた。
また、特許文献5には、カチオン染料可染性アクリロニトリル系繊維に抗菌性を示す微細な金属化合物付与した抗菌性アクリロニトリル系繊維が記載されている。しかし、特許文献5に記載の抗菌性アクリロニトリル系繊維の製法によると細繊度の抗菌性繊維を得ることは可能であるが、第1及び第2の処理という煩雑な処理を行なっているにも拘わらず、当該繊維を綿混素材として使用した場合、晒し工程など後加工で抗菌性能を維持することがむずかしかった。
On the other hand, Patent Documents 3 and 4 describe fibers containing antibacterial zeolite particles retaining metal ions having antibacterial action, but the polymer deteriorates in the melting process, and the fibers are colored yellow. There was a problem.
Patent Document 5 describes an antibacterial acrylonitrile fiber obtained by adding a fine metal compound exhibiting an antibacterial property to a cationic dye dyeable acrylonitrile fiber. However, according to the method for producing an antibacterial acrylonitrile fiber described in Patent Document 5, it is possible to obtain an antibacterial fiber having a fineness, but despite the complicated treatments of the first and second treatments. However, when the fiber was used as a cotton blend material, it was difficult to maintain antibacterial performance by post-processing such as an exposure process.

特開平8−27621号公報JP-A-8-27621 特開平2−160914号公報JP-A-2-160914 特開昭63−175117号公報JP-A-63-175117 特開平3−205436号公報Japanese Patent Laid-Open No. 3-205436 特開平7−243169号公報JP-A-7-243169

本発明の目的は、抗菌力を長期に渡って保持し、且つ、アクリル繊維だけでなく綿などの他素材と混綿して柔らかい良好な風合いの混紡績糸を得ることができる抗菌性アクリル繊維を工業的に安定して製造する方法を開発することにある。   An object of the present invention is to provide an antibacterial acrylic fiber that retains antibacterial activity over a long period of time and can be blended with not only acrylic fibers but also other materials such as cotton to obtain a soft and soft blended yarn. The purpose is to develop a method for industrially stable production.

本発明者は、上記課題を解決するため鋭意研究を進めたところ、ノズル孔からのポリマー溶液吐出線速度と凝固糸引取り速度を調節することによって、良好な抗菌性を保持した細繊度のアクリル繊維を得ることに成功した。
すなわち、本発明は、単繊維繊度が2.2dtex以下の抗菌性アクリル繊維を製造する方法において、マスターバッチ中でのメジアン径が1μm以上で、90%粒子径が5μm以下である銀を担持した結晶性微粒子を抗菌剤として紡糸工程で添加し、ノズル孔からのポリマー溶液吐出線速度と、凝固糸引取り速度の比(以下JSR)を、0.7〜1.2とする湿式紡糸方法による抗菌性アクリル繊維の製造方法を提供するものである。
The present inventor has made extensive studies to solve the above-mentioned problems. As a result, by adjusting the polymer solution discharge linear velocity from the nozzle hole and the solidified yarn take-up speed, the fine fiber acrylic fiber having good antibacterial properties is maintained. Succeeded in getting.
That is, the present invention carries silver having a median diameter in a masterbatch of 1 μm or more and a 90% particle diameter of 5 μm or less in a method for producing an antibacterial acrylic fiber having a single fiber fineness of 2.2 dtex or less. Antibacterial by a wet spinning method in which crystalline fine particles are added as an antibacterial agent in the spinning process, and the ratio of the polymer solution discharge linear velocity from the nozzle hole to the coagulated yarn take-off rate (hereinafter JSR) is 0.7 to 1.2. A method for producing a reactive acrylic fiber is provided.

本発明により、綿、レーヨン等の他素材と混綿して使用した際に、風合いを損ねることなく、良好な抗菌性が付与された細繊度アクリル繊維を得ることができ、該抗菌性アクリル繊維を使用することにより、衣料用途で特に肌着等に好適に用いることができる細番手アクリル或いはアクリル混紡績糸が提供される。   According to the present invention, when mixed with other materials such as cotton and rayon, it is possible to obtain a fine fineness acrylic fiber imparted with good antibacterial properties without impairing the texture, and the antibacterial acrylic fiber By using it, a fine count acrylic or acrylic blended yarn can be provided that can be suitably used for clothing, particularly underwear.

以下、本発明について詳しく説明する。
本発明で使用される抗菌剤としては、銀を担持した結晶性微粒子が好適に使用される。結晶性微粒子としては、銀を担持し水中でイオンとして放出させながら、抗菌性能を発現できる粒子であればよく、ゼオライトやリン酸ジルコニウムが挙げられる。特にゼオライトが好適に使用できる。
The present invention will be described in detail below.
As the antibacterial agent used in the present invention, crystalline fine particles carrying silver are preferably used. The crystalline fine particles may be any particles that can exhibit antibacterial performance while supporting silver and releasing it as ions in water, and examples thereof include zeolite and zirconium phosphate. In particular, zeolite can be preferably used.

銀を担持した結晶性微粒子のメジアン径については1μm以上でなければならない。メジアン径とは、湿式紡糸される紡糸原液に添加するためのマスターバッチ中の粒度分布測定結果から算出される粒子径を指す。メジアン径が1μm以下の場合、銀イオンの放出速度が速くなるために、アクリル繊維の染色工程や晒し工程、製品の洗濯などにより抗菌性能が低下するので好ましくない。1μm以上の結晶性微粒子を使用した場合、実用上問題のないの性能が維持される。また、結晶性微粒子の粒度分布の上限は、90%粒子径が5μm以下でなければならない。
なお、マスターバッチは通常紡糸原液と同溶媒を使用し、抗菌剤の他に分散剤或いは、粘度を調整するためのポリマーなどが添加されていてもよい。
The median diameter of the crystalline fine particles supporting silver must be 1 μm or more. The median diameter refers to a particle diameter calculated from a particle size distribution measurement result in a master batch for addition to a spinning dope for wet spinning. When the median diameter is 1 μm or less, the release rate of silver ions is increased, and therefore, the antibacterial performance is deteriorated due to the dyeing process or exposure process of acrylic fibers, washing of products, etc., which is not preferable. When crystalline fine particles having a size of 1 μm or more are used, the performance with no practical problem is maintained. Further, the upper limit of the particle size distribution of the crystalline fine particles must be 90% particle size of 5 μm or less.
In addition, the masterbatch usually uses the same solvent as the spinning dope, and in addition to the antibacterial agent, a dispersant or a polymer for adjusting the viscosity may be added.

アクリル繊維の湿式紡糸工程で使用される紡糸ノズルの口径は一般的な溶融紡糸で使用されるノズルと比較して非常に小さく、特に細繊度のアクリル繊維を紡糸するノズルでは100μm以下のノズルが使用される。このため粒子状の添加物がある場合は、平均粒径よりもむしろ含まれている粗大粒子の量が、製糸安定性に影響を及ぼすことになる。このためアクリル繊維に添加される結晶性微粒子の粒子径の上限を、ここでは90%粒子径を基に設定した。90%粒子径は、粒度分布測定結果の頻度分布において粒子径が小さい方からの累積値が90%になる粒子径であり、この値が5μmより大きい場合、2.2dtex以下の細繊度原糸を湿式紡糸にて製造する際に、ノズル口詰まりが発生し、ノズル圧力が短時間で上昇するなど、製糸安定性が悪化することがあるために好ましくない。   The diameter of the spinning nozzle used in the wet spinning process of acrylic fiber is very small compared with the nozzle used in general melt spinning, and the nozzle of 100 μm or less is used especially for the nozzle that spins acrylic fiber with fineness. Is done. For this reason, when there are particulate additives, the amount of coarse particles contained rather than the average particle size affects the spinning stability. For this reason, the upper limit of the particle diameter of the crystalline fine particles added to the acrylic fiber was set here based on the 90% particle diameter. The 90% particle diameter is the particle diameter at which the cumulative value from the smaller particle diameter in the frequency distribution of the particle size distribution measurement result becomes 90%. When this value is larger than 5 μm, the fineness raw yarn of 2.2 dtex or less Is produced by wet spinning, nozzle clogging occurs, and the nozzle pressure rises in a short time.

本発明の抗菌性アクリル繊維に添加される銀を担持した抗菌剤の量は、0.2質量%から3質量%の範囲にあることが好ましい。0.2質量%より少ない場合には、他素材50%以下の割合で混綿した時に十分な抗菌性が得られなくなるために好ましくない。3質量%より多い場合には、ノズル閉塞やノズル圧上昇など長期の製糸安定性に問題が生じるために好ましくない。他素材と混綿した状態で十分な抗菌性能が得られ、経済的に優れる範囲として、0.5質量%以上1.5質量%以下の範囲であることがさらに好ましい。   The amount of the antibacterial agent supporting silver added to the antibacterial acrylic fiber of the present invention is preferably in the range of 0.2% by mass to 3% by mass. When the amount is less than 0.2% by mass, it is not preferable because sufficient antibacterial properties cannot be obtained when blended at a rate of 50% or less of other materials. When the amount is more than 3% by mass, there is a problem in long-term yarn production stability such as nozzle clogging and nozzle pressure increase, which is not preferable. As a range in which sufficient antibacterial performance is obtained in a state of being blended with other materials and is economically excellent, it is more preferably in a range of 0.5 mass% or more and 1.5 mass% or less.

本発明を構成するアクリル繊維とは、アクリロニトリルを50質量%以上含有するポリマーからなる。アクリロニトリル以外の成分は、アクリロニトリルと共重合可能な不飽和モノマー、またはその重合体であればよい。
アクリロニトリルと共重合可能な不飽和モノマーとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシプロピル等のアクリル酸エステル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチル等のメタクリル酸エステル、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン等の不飽和モノマーが挙げられる。
The acrylic fiber constituting the present invention comprises a polymer containing 50% by mass or more of acrylonitrile. The component other than acrylonitrile may be an unsaturated monomer copolymerizable with acrylonitrile or a polymer thereof.
Examples of unsaturated monomers copolymerizable with acrylonitrile include, for example, acrylic acid esters such as methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and hydroxypropyl acrylate, ethyl methacrylate, and methacrylic acid. Methacrylic acid esters such as isopropyl, n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, diethylaminoethyl methacrylate, acrylic acid, methacrylic acid, maleic acid, itaconic acid, Acrylamide, N-methylolacrylamide, diacetoneacrylamide, styrene, vinyltoluene, vinyl acetate, vinylidene chloride, vinyl bromide, vinylidene bromide, etc. Monomer, and the like.

さらに染色性を改良する目的で共重合されるモノマーとして、p−スルホフェニルメタリルエーテル、メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、およびこれらのアルカリ金属塩が挙げられる。アクリロニトリルを含有するポリマーのアクリロニトリル含有量が50質量%未満では、耐熱性はじめ原糸の強度などの物性が低下する傾向となるために好ましくない。
本発明のアクリル繊維トウを構成する断面は、特に限定されない。例えば通常の丸形状ノズルから湿式紡糸により製造される丸断面の一部が凹状に変形したそら豆状の断面や、丸断面、扁平断面或いはY断面など任意の断面が採用されてよい。
Further, monomers that are copolymerized for the purpose of improving dyeability include p-sulfophenylmethallyl ether, methallylsulfonic acid, allylsulfonic acid, styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and alkalis thereof. Metal salts are mentioned. When the acrylonitrile content of the polymer containing acrylonitrile is less than 50% by mass, physical properties such as heat resistance and strength of the raw yarn tend to decrease, which is not preferable.
The cross section constituting the acrylic fiber tow of the present invention is not particularly limited. For example, an arbitrary cross-section such as a broad bean-shaped cross section produced by wet spinning from a normal round nozzle, a round cross section, a flat cross section, or a Y cross section may be employed.

本発明の抗菌性アクリル繊維は、2.2dtex以下の繊度でなければならない。天然繊維の綿や半合成繊維のレーヨンと混紡する場合、2.2dtexより太いアクリル繊維を使用すると、風合いが硬くなり、綿やレーヨンの風合いを損ねるために好ましくない。風合いをそのままに、又はさらに柔らかいものにするためには、2.2dtex以下でなくてはならない。風合い、紡績性の点から、0.5dtexから1.7dtexの範囲にあることがさらに好ましい。
本発明の抗菌性アクリル繊維は、湿式紡糸法により製造される。湿式紡糸方法はアクリロニトリルを50質量%以上含むポリマーを溶剤に溶解してなる紡糸原液を、溶剤と水とを混合した凝固槽に紡糸ノズルより吐出して、凝固、脱溶剤、延伸、乾燥する一般的な紡糸方法を採用することができる。
The antibacterial acrylic fiber of the present invention must have a fineness of 2.2 dtex or less. When blending with natural fiber cotton or semi-synthetic fiber rayon, use of acrylic fiber thicker than 2.2 dtex is not preferable because the texture becomes hard and the texture of cotton or rayon is impaired. In order to make the texture as it is or even softer, it must be 2.2 dtex or less. From the viewpoint of texture and spinnability, it is more preferably in the range of 0.5 dtex to 1.7 dtex.
The antibacterial acrylic fiber of the present invention is produced by a wet spinning method. In the wet spinning method, a spinning stock solution obtained by dissolving a polymer containing acrylonitrile in an amount of 50% by mass or more in a solvent is discharged from a spinning nozzle into a coagulation tank in which a solvent and water are mixed, and then coagulated, desolvated, stretched, and dried. A typical spinning method can be employed.

本発明の湿式紡糸の紡糸原液及び凝固浴に用いられる溶剤としては、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、エチレンカーボネート、アセトン等の有機溶剤、硝酸、ロダン酸ソーダ、塩化亜鉛等の無機溶剤が挙げられ、好ましくは有機溶剤が用いられる。
凝固浴としては、組成が有機溶剤を30〜60質量%含有する水溶液で、温度が30〜60℃の範囲であることが好ましい。有機溶剤が30質量%未満では、繊維中にボイドが生成し発色性が悪くなり、60質量%を超えると紡糸性が低下し、糸切れなどの工程トラブルが発生しやすくなるために好ましくない。凝固浴温度が30℃未満では、紡糸性が低下し、また60℃を超えると繊維にボイドが発生しやすくなるために好ましくない。
Examples of the solvent used in the spinning dope and the coagulation bath of the wet spinning of the present invention include organic solvents such as dimethylacetamide, dimethylformamide, dimethyl sulfoxide, ethylene carbonate, and acetone, and inorganic solvents such as nitric acid, sodium rhodanate, and zinc chloride. Preferably, an organic solvent is used.
As the coagulation bath, the composition is an aqueous solution containing 30 to 60% by mass of an organic solvent, and the temperature is preferably in the range of 30 to 60 ° C. If the organic solvent is less than 30% by mass, voids are generated in the fiber and the color developability deteriorates, and if it exceeds 60% by mass, the spinnability is lowered and process troubles such as yarn breakage are liable to occur. If the coagulation bath temperature is less than 30 ° C., the spinnability is lowered, and if it exceeds 60 ° C., voids are easily generated in the fiber, which is not preferable.

本発明の抗菌性アクリル繊維の製造においては、ノズル口径が60μm以上であることが好ましい。2.2dtex以下の細繊度アクリル繊維の製造においては、60μm以下のノズルが好適に使用されるが、本発明の範囲にある抗菌剤を添加する場合、ノズル口に粒子が詰まり、長時間製糸を行うと製糸安定性が低下するために好ましくない。ノズル口径は60μm以上が好ましく、さらに75μm以上であることがノズル詰まりの点から好ましい。扁平或いは三角断面など非円形断面のアクリル繊維の製造においては、ノズル断面積の円換算径が、60μm以上であれば良い。   In the production of the antibacterial acrylic fiber of the present invention, the nozzle diameter is preferably 60 μm or more. In the production of acrylic fibers having a fineness of 2.2 dtex or less, a nozzle of 60 μm or less is preferably used. However, when an antibacterial agent within the scope of the present invention is added, particles are clogged in the nozzle mouth, and long-time yarn production is performed. If it is carried out, it is not preferable because the yarn-forming stability is lowered. The nozzle diameter is preferably 60 μm or more, and more preferably 75 μm or more from the viewpoint of nozzle clogging. In the production of an acrylic fiber having a non-circular cross section such as a flat or triangular cross section, the circle equivalent diameter of the nozzle cross sectional area may be 60 μm or more.

また、JSR=(ポリマーの平均吐出線速度)/(凝固糸の引取り速度)は0.7から1.2の範囲になければならない。通常細繊度アクリル繊維を製造する場合、紡糸原液は生産性を高めるためにポリマー濃度を製糸可能な範囲でできる限り高め、ノズル口径が60μm以下のノズルを使用する。しかしながら、本発明の細繊度の抗菌性アクリル繊維を製造する場合、粒子状の抗菌剤を使用するために60μm以上のノズルを使用しなければならないが、細繊度繊維を紡糸する場合、JSRが1.2より大きい値となり、このような条件で粗大粒子が繊維糸条に含まれると凝固槽内で繊維が切れやすくなり、結果として製糸安定性を損ねるために好ましくない。   Further, JSR = (average discharge linear velocity of polymer) / (take-up speed of coagulated yarn) should be in the range of 0.7 to 1.2. In general, when producing fine-fine acrylic fibers, the spinning dope is increased as much as possible in the range where the yarn can be produced in order to increase productivity, and a nozzle having a nozzle diameter of 60 μm or less is used. However, when the fine antibacterial acrylic fiber of the present invention is produced, a nozzle of 60 μm or more must be used in order to use the particulate antibacterial agent. When the coarse yarn is contained in the fiber yarn under such conditions, the fiber is likely to be broken in the coagulation tank, and as a result, the yarn forming stability is impaired.

このためノズル口は銀を担持した結晶性微粒子により閉塞されることがない60μm以上とし、2.2dtex以下の繊度のアクリル繊維を紡糸しようとする場合、JSRが0.7から1.2の範囲となるように、紡糸原液のポリマー濃度を調整しなければならない。JSRが1.2より大きな値となる場合には、上記理由から製糸安定性を損ねることになるために好ましくない。またJSRが0.7より小さい値となる場合には、その下限値として0.5程度までは製糸することが可能であるものの、ポリマー濃度が低くなると、同時に生産性が低くなるために好ましくない。   For this reason, when the nozzle opening is set to 60 μm or more so as not to be blocked by crystalline fine particles supporting silver, and an acrylic fiber having a fineness of 2.2 dtex or less is to be spun, the JSR is in the range of 0.7 to 1.2. Thus, the polymer concentration of the spinning dope must be adjusted. When JSR is a value larger than 1.2, it is not preferable because the yarn making stability is impaired for the above-mentioned reason. If the JSR value is less than 0.7, it is possible to produce a yarn up to about 0.5 as the lower limit. However, if the polymer concentration is lowered, the productivity is lowered at the same time, which is not preferable. .

上記ポリマー濃度は18質量%から25質量%の範囲が好ましい。25質量%より濃度が高い場合には、紡糸原液の粘度が高くなるために、ノズル圧力が上昇したり、紡糸引取り性が低下するために好ましくない。また、18質量%より低い場合には、凝固浴中で吐出したポリマー溶液が接着するなどの問題が起こるために好ましくない。紡出した未延伸糸は、通常の湿式紡糸方法により、製糸される。   The polymer concentration is preferably in the range of 18% to 25% by weight. When the concentration is higher than 25% by mass, the viscosity of the spinning dope becomes high, which is not preferable because the nozzle pressure increases and the spinning take-up property decreases. On the other hand, when the content is lower than 18% by mass, problems such as adhesion of the polymer solution discharged in the coagulation bath occur, which is not preferable. The spun undrawn yarn is produced by a normal wet spinning method.

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited by these Examples.

(ポリマーの製造方法)
水系懸濁重合法によりアクリロニトリル93質量%、酢酸ビニル7質量%からなる還元粘度1.90のポリマー(以下PAN−A)を得た。
(抗菌剤マスターバッチ作成方法)
PAN−Aをジメチルアセトアミドに溶解し、PAN−Aが20質量%であるジメチルアセトアミド溶液を作成する。次に銀担持ゼオライト微粒子((株)シナネンゼオミック社製、製品名:ゼオミック−AW10D、−AW80D、−SW80N)とPAN−A20質量%溶液、及びジメチルアセトアミドを、銀担持ゼオライト微粒子20質量%、PAN−A10質量%、ジメチルアセトアミド70質量%となるように混合して均一に攪拌した後、サンドミル(アシザワ(株)製 製品名:ST1STS)に2回通し、抗菌剤マスターバッチとした。
(Method for producing polymer)
A polymer having a reduced viscosity of 1.90 (hereinafter referred to as PAN-A) comprising 93% by mass of acrylonitrile and 7% by mass of vinyl acetate was obtained by an aqueous suspension polymerization method.
(Method for creating antibacterial agent master batch)
PAN-A is dissolved in dimethylacetamide to prepare a dimethylacetamide solution in which PAN-A is 20% by mass. Next, silver supported zeolite fine particles (manufactured by Sinanen Zeomic Co., Ltd., product names: Zeomic-AW10D, -AW80D, -SW80N), PAN-A 20% by mass solution, and dimethylacetamide, silver supported zeolite fine particles 20% by mass, PAN -A 10% by mass and dimethylacetamide 70% by mass were mixed and stirred uniformly, and then passed twice through a sand mill (product name: ST1STS manufactured by Ashizawa Corporation) to obtain an antibacterial agent master batch.

(粒度分布測定)
レーザー回折/散乱式粒度分布測定装置((株)堀場製作所製 製品名:HORIBA LA−910)を使用して抗菌剤マスターバッチ中の粒度分布を測定した。希釈溶剤はジメチルアセトアミドを使用した。メジアン径及び90%粒子径は、付属ソフト Ver.120(for WINDOWS(登録商標))による計算結果を参照して使用した。
(Particle size distribution measurement)
The particle size distribution in the antibacterial agent master batch was measured using a laser diffraction / scattering type particle size distribution measuring device (product name: HORIBA LA-910, manufactured by Horiba, Ltd.). Dimethylacetamide was used as a dilution solvent. The median size and 90% particle size can be obtained from the attached software Ver. 120 (for WINDOWS (registered trademark)) was used with reference to the calculation results.

(抗菌性能評価)
試験は、財団法人日本化学繊維検査協会 生物試験センターにて次の方法で行った。
JIS L 1902 菌液吸収法により実施し、共試菌は黄色ブドウ球菌とした。試験前処理は、沸騰水で20分間処理したものと、さらにJIS L 0217、103号法でJAFET標準洗剤を使用して10回洗濯を行ったものを2種類測定し、両方の試験で静菌活性値が2.2以上の場合を抗菌性評価合格とし、2.2より小さい場合は不合格とした。
(Antimicrobial performance evaluation)
The test was conducted by the following method at the Biological Testing Center of the Japan Chemical Fiber Inspection Association.
This was carried out by the JIS L 1902 bacterial solution absorption method, and the co-test bacteria were Staphylococcus aureus. Two types of pre-test treatments were performed: one treated with boiling water for 20 minutes and the other washed 10 times using JAFET standard detergent according to JIS L 0217, method 103, and bacteriostatic in both tests. When the activity value was 2.2 or more, the antibacterial property evaluation was passed, and when the activity value was smaller than 2.2, it was rejected.

[実施例1、比較例1,2]
銀を担持した結晶性微粒子として(シナネンゼオミック(株)製、製品名:ゼオミックAW10D、AW80D、SW80N)3種類の抗菌剤を使用してそれぞれマスターバッチ(以下MB)を作成した。
MBとPAN−Aとジメチルアセトアミドを、表1に示した実施例1及び比較例1,2の濃度になるように調整して攪拌した後、全体を80℃まで加熱し、PAN−Aを完全に溶解した。
前記ポリマー溶液を脱気した後、金巾フィルター(東洋紡績(株)製、製品名:S−618)を35mmφに加工したフィルターを通過させ、口径60μm、ホール数400の紡糸ノズルから、吐出量9.17cc/minで凝固液中に吐出した。凝固液の組成は、ジメチルアセトアミド56質量%、水44質量%とし、温度は41℃とした。凝固液中に吐出されたポリマー糸条は、引取り速度6m/minで引取り、温水中で脱溶媒を進めながら、5.0倍に延伸した後、油剤を付与し150℃の熱ローラーにより乾燥を行い、730dtexの紡糸トウを得た。乾燥を終えたトウは、バッチ処理で198kPaの加圧スチームで緩和処理し、単糸繊度2.2dtex、トウ繊度880dtexの抗菌性アクリル繊維を得た。ノズル圧力上昇は、ノズル取付後、1時間から、6時間後までの5時間の間の圧力差を示した。
アクリル繊維は捲縮を付け、38mmにカットした後、綿80質量%、抗菌性アクリル繊維20質量%の割合で紡績して筒編地を作成し、沸騰水にて20分間処理を行い、さらに晒し加工を想定して、pH11に調整した0.5質量%過酸化水素水中で、80℃15分間処理をした後、抗菌性能評価を行った。それらの結果を合わせて表1に示した。
[Example 1, Comparative Examples 1 and 2]
Master batches (hereinafter referred to as MB) were prepared using three types of antibacterial agents (product names: Zeomic AW10D, AW80D, SW80N, manufactured by Sinanen Zeomic Co., Ltd.) as crystalline fine particles supporting silver.
After MB and PAN-A and dimethylacetamide were adjusted to the concentrations of Example 1 and Comparative Examples 1 and 2 shown in Table 1, the whole was heated to 80 ° C., and PAN-A was completely removed. Dissolved in.
After degassing the polymer solution, a gold-width filter (manufactured by Toyobo Co., Ltd., product name: S-618) was passed through a filter processed to 35 mmφ and discharged from a spinning nozzle having a diameter of 60 μm and 400 holes. It was discharged into the coagulation liquid at .17 cc / min. The composition of the coagulation liquid was 56 mass% dimethylacetamide, 44 mass% water, and the temperature was 41 ° C. The polymer yarn discharged into the coagulation liquid is taken up at a take-up speed of 6 m / min, stretched 5.0 times while advancing desolvation in warm water, and then an oil agent is applied and heated by a 150 ° C. hot roller. Drying was performed to obtain a spun tow of 730 dtex. After drying, the tow was subjected to relaxation treatment with pressurized steam of 198 kPa in a batch process to obtain an antibacterial acrylic fiber having a single yarn fineness of 2.2 dtex and a tow fineness of 880 dtex. Nozzle pressure increase showed a pressure difference for 5 hours from 1 hour to 6 hours after nozzle installation.
The acrylic fiber is crimped and cut to 38 mm, and then spun at a ratio of 80% by mass of cotton and 20% by mass of antibacterial acrylic fiber to form a tubular knitted fabric, which is treated with boiling water for 20 minutes. The antibacterial performance evaluation was performed after processing for 15 minutes at 80 degreeC in 0.5 mass% hydrogen peroxide water adjusted to pH11 supposing the exposure process. The results are shown in Table 1.

Figure 2010018895
Figure 2010018895

実施例1で使用したAW80Dは、メジアン径が2.127μmであり、90%粒子径が3.902μmであった。ランニング中にノズル圧力の上昇も見られず、凝固浴での糸切れも観察されず良好な製糸結果であった。さらに、抗菌性評価においても、合格であった。比較例1で使用したAW10Dは、メジアン径が2.385μmで、90%粒子径が5.566μmであった。ノズル圧力は、5時間のランニングで780kPaから820kPaまで、40kPa上昇しており、短時間で圧力が上がることが確認された。凝固浴での糸切れは観察されず、抗菌性評価においても合格判定が得られた。比較例2ではSW80Nを使用した。メジアン径0.821μm、90%粒子径1.188μmであり、ノズル圧力上昇は確認されなったが、抗菌性能評価では、不合格であった。   The AW80D used in Example 1 had a median diameter of 2.127 μm and a 90% particle diameter of 3.902 μm. No increase in nozzle pressure was observed during running, and no yarn breakage was observed in the coagulation bath. Furthermore, the antibacterial evaluation was also acceptable. The AW10D used in Comparative Example 1 had a median diameter of 2.385 μm and a 90% particle diameter of 5.566 μm. The nozzle pressure increased by 40 kPa from 780 kPa to 820 kPa after running for 5 hours, and it was confirmed that the pressure increased in a short time. No thread breakage in the coagulation bath was observed, and a pass judgment was obtained in antibacterial evaluation. In Comparative Example 2, SW80N was used. Although the median diameter was 0.821 μm and the 90% particle diameter was 1.188 μm, no increase in nozzle pressure was confirmed, but the antibacterial performance evaluation failed.

[実施例2、比較例3,4]
銀を担持した結晶性微粒子として(シナネンゼオミック(株)製、製品名:ゼオミックAW80D)を使用してMBを作成した。MBとPAN−Aとジメチルアセトアミドを、表2実施例2及び比較例3,4の濃度になるように調整して攪拌した後、全体を80℃まで加熱し、PAN−Aを完全に溶解した。
該ポリマー溶液を脱気した後、金巾フィルター(東洋紡績(株)製、製品名:S−618)を35mmφに加工したフィルターを通過させ、口径がそれぞれ60μm、50μm、70μmホール数400の紡糸ノズルから、吐出量7.39cc/minで凝固液中に吐出した。凝固液の組成は、ジメチルアセトアミド56質量%、水44質量%とし、温度は41℃とした。凝固液中に吐出されたポリマー糸条は、引取り速度6m/minで引取り、温水中で脱溶媒を進めながら、5.0倍又は4.5倍に延伸した後、油剤を付与し150℃の熱ローラーにより乾燥を行い、566dtexの紡糸トウを得た。乾燥を終えたトウは、バッチ処理で198kPaの加圧スチームで緩和処理し、単糸繊度1.7dtex、トウ繊度680dtexの抗菌性アクリル繊維を得た。
製糸安定性は、吐出開始1時間後から5時間の紡糸において、凝固浴中での単繊維切れの発生状況により判断した。
アクリル繊維により筒編地を作成し、沸騰水にて20分間処理をした後、抗菌性能評価を行った。これらの結果を合わせて表2に示す。
[Example 2, Comparative Examples 3 and 4]
MB was prepared using crystalline fine particles carrying silver (Sinen Zeomic Co., Ltd., product name: Zeomic AW80D). MB, PAN-A, and dimethylacetamide were adjusted so as to have the concentrations of Table 2 Example 2 and Comparative Examples 3 and 4, and the whole was heated to 80 ° C. to completely dissolve PAN-A. .
After degassing the polymer solution, a gold width filter (manufactured by Toyobo Co., Ltd., product name: S-618) is passed through a filter processed to 35 mmφ, and the spinning nozzles have a diameter of 60 μm, 50 μm, and 70 μm and a hole number of 400, respectively. From this, it was discharged into the coagulation liquid at a discharge rate of 7.39 cc / min. The composition of the coagulation liquid was 56 mass% dimethylacetamide, 44 mass% water, and the temperature was 41 ° C. The polymer yarn discharged into the coagulating liquid is taken up at a take-up speed of 6 m / min, stretched 5.0 times or 4.5 times while proceeding with desolvation in warm water, and then applied with an oil agent. Drying was performed with a hot roller at 0 ° C. to obtain a spun tow of 666 dtex. After drying, the tow was subjected to relaxation treatment with pressurized steam of 198 kPa in a batch process to obtain an antibacterial acrylic fiber having a single yarn fineness of 1.7 dtex and a tow fineness of 680 dtex.
The spinning stability was judged from the occurrence of single fiber breakage in the coagulation bath during spinning for 5 hours from 1 hour after the start of discharge.
A cylindrical knitted fabric was made of acrylic fiber, treated with boiling water for 20 minutes, and then evaluated for antibacterial performance. These results are shown together in Table 2.

Figure 2010018895
Figure 2010018895

実施例2では、JSRは0.92であり、製糸安定性が良好であった。これに対して比較例3では、JSRが0.64であり、凝固浴中で単繊維切れが発生し、製糸安定性が不良となった。紡糸終了後ノズルをジメチルアセトアミドで洗浄し、光学顕微鏡で観察した結果、抗菌剤粒子により閉塞したノズル口が観察された。比較例4では、JSRが1.25となり、凝固浴中で頻繁に単繊維切れが発生し、製糸不良となった。   In Example 2, JSR was 0.92, and the spinning stability was good. On the other hand, in Comparative Example 3, the JSR was 0.64, single fiber breakage occurred in the coagulation bath, and the yarn-making stability was poor. After spinning, the nozzle was washed with dimethylacetamide and observed with an optical microscope. As a result, a nozzle opening blocked with antibacterial agent particles was observed. In Comparative Example 4, JSR was 1.25, and single fiber breakage occurred frequently in the coagulation bath, resulting in poor yarn production.

「実施例3、比較例5」
銀を担持した結晶性微粒子として(シナネンゼオミック(株)製、製品名:ゼオミックAW80D)を使用してMBを作成した。MBとPAN−Aとジメチルアセトアミドを、表3実施例3及び比較例5の濃度になるように調整して攪拌した後、全体を80℃まで加熱し、PAN−Aを完全に溶解した。
前記ポリマー溶液を脱気した後、金巾フィルター(東洋紡績(株)製、製品名:S−618)を35mmφに加工したフィルターを通過させ、口径が60μm、ホール数400の紡糸ノズルから、表3記載の吐出量でそれぞれ凝固液中に吐出した。凝固液の組成は、ジメチルアセトアミド56質量%、水44質量%とし、温度は41℃とした。凝固液中に吐出されたポリマー糸条は、引取り速度6m/minで引取り、温水中で脱溶媒を進めながら、5.0倍又は6.0倍に延伸した後、油剤を付与し150℃の熱ローラーにより乾燥を行い、433dtexの紡糸トウを得た。乾燥を終えたトウは、バッチ処理で198kPaの加圧スチームで緩和処理し、単糸繊度1.3dtex、トウ繊度520dtexの抗菌性アクリル繊維を得た。
製糸安定性は、吐出開始1時間後から5時間の紡糸において、凝固浴中での単繊維切れの発生状況により判断した。
アクリル繊維により筒編地を作成し、沸騰水にて20分間処理をした後、抗菌性能評価を行った。これらの結果を合わせて表3に示す。
"Example 3, comparative example 5"
MB was prepared using crystalline fine particles carrying silver (Sinen Zeomic Co., Ltd., product name: Zeomic AW80D). MB, PAN-A and dimethylacetamide were adjusted to the concentrations shown in Table 3 Example 3 and Comparative Example 5 and stirred, and then the whole was heated to 80 ° C. to completely dissolve PAN-A.
After degassing the polymer solution, a gold width filter (manufactured by Toyobo Co., Ltd., product name: S-618) was passed through a filter processed to 35 mmφ, and from a spinning nozzle having a diameter of 60 μm and 400 holes, Table 3 Each of the indicated discharge amounts was discharged into the coagulation liquid. The composition of the coagulation liquid was 56 mass% dimethylacetamide, 44 mass% water, and the temperature was 41 ° C. The polymer yarn discharged into the coagulating liquid is taken up at a take-up speed of 6 m / min, stretched 5.0 times or 6.0 times while proceeding with desolvation in warm water, and then an oil agent is applied thereto. Drying was performed with a hot roller at 0 ° C. to obtain a spinning tow of 433 dtex. After drying, the tow was subjected to relaxation treatment with pressurized steam of 198 kPa in a batch process to obtain an antibacterial acrylic fiber having a single yarn fineness of 1.3 dtex and a toe fineness of 520 dtex.
The spinning stability was judged by the occurrence of single fiber breakage in the coagulation bath during spinning for 5 hours from 1 hour after the start of discharge.
A cylindrical knitted fabric was made of acrylic fiber, treated with boiling water for 20 minutes, and then evaluated for antibacterial performance. These results are shown together in Table 3.

Figure 2010018895
Figure 2010018895

実施例3では、JSRは0.92であり、製糸安定性が良好であった。これに対して比較例5では、JSRが1.25となり、凝固浴中で単繊維切れが発生し、製糸安定性が不良となった。   In Example 3, the JSR was 0.92, and the spinning stability was good. On the other hand, in Comparative Example 5, JSR was 1.25, single fiber breakage occurred in the coagulation bath, and the yarn production stability was poor.

Claims (2)

単繊維繊度が2.2dtex以下の抗菌性アクリル繊維を製造する方法において、マスターバッチ中でのメジアン径が1μm以上で、90%粒子径が5μm以下である銀を担持した結晶性微粒子を抗菌剤として紡糸工程で添加し、ノズル孔からのポリマー溶液吐出線速度と、凝固糸引取り速度の比を、0.7〜1.2とする抗菌性アクリル繊維の湿式紡糸方法。   In a method for producing an antibacterial acrylic fiber having a single fiber fineness of 2.2 dtex or less, an antibacterial agent comprising crystalline fine particles carrying silver having a median diameter of 1 μm or more and a 90% particle diameter of 5 μm or less in a masterbatch As an antibacterial acrylic fiber wet spinning method in which the ratio of the linear velocity of the polymer solution discharged from the nozzle hole and the solidified yarn take-up speed is 0.7 to 1.2. 銀を担持した結晶性微粒子の添加量を、0.2質量%以上3質量%以下とする請求項1記載の抗菌性アクリル繊維の湿式紡糸方法。   The wet spinning method for antibacterial acrylic fibers according to claim 1, wherein the addition amount of the crystalline fine particles supporting silver is 0.2 mass% or more and 3 mass% or less.
JP2008177950A 2008-07-08 2008-07-08 Wet spinning method of antibacterial acrylic fiber Active JP5183329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177950A JP5183329B2 (en) 2008-07-08 2008-07-08 Wet spinning method of antibacterial acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177950A JP5183329B2 (en) 2008-07-08 2008-07-08 Wet spinning method of antibacterial acrylic fiber

Publications (2)

Publication Number Publication Date
JP2010018895A true JP2010018895A (en) 2010-01-28
JP5183329B2 JP5183329B2 (en) 2013-04-17

Family

ID=41704070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177950A Active JP5183329B2 (en) 2008-07-08 2008-07-08 Wet spinning method of antibacterial acrylic fiber

Country Status (1)

Country Link
JP (1) JP5183329B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101940049B1 (en) * 2017-07-25 2019-04-11 코오롱글로텍주식회사 function spun Yarn for disinfectant and deodorant and method of manufacture same, textile for disinfectant and deodorant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133235A (en) * 1983-01-21 1984-07-31 Kanebo Ltd Zeolite particle-containing polymer and its production
JPH01250413A (en) * 1988-03-31 1989-10-05 Mitsubishi Rayon Co Ltd Antifungal acrylic fiber
JPH03113011A (en) * 1989-09-26 1991-05-14 Kuraray Co Ltd Synthetic yarn and production thereof
JPH05132814A (en) * 1991-11-12 1993-05-28 Mitsubishi Rayon Co Ltd Acrylonitrile-based filament bundle
JP2001316933A (en) * 2000-04-04 2001-11-16 Bishu Seki Method for producing fiber containing mineral powder added thereto and fiber produced therefrom
JP2004084153A (en) * 2002-07-04 2004-03-18 Kanebo Ltd Method for improving bacteriostatic action of fiber products and bacteriostatic fiber products obtained by the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133235A (en) * 1983-01-21 1984-07-31 Kanebo Ltd Zeolite particle-containing polymer and its production
JPH01250413A (en) * 1988-03-31 1989-10-05 Mitsubishi Rayon Co Ltd Antifungal acrylic fiber
JPH03113011A (en) * 1989-09-26 1991-05-14 Kuraray Co Ltd Synthetic yarn and production thereof
JPH05132814A (en) * 1991-11-12 1993-05-28 Mitsubishi Rayon Co Ltd Acrylonitrile-based filament bundle
JP2001316933A (en) * 2000-04-04 2001-11-16 Bishu Seki Method for producing fiber containing mineral powder added thereto and fiber produced therefrom
JP2004084153A (en) * 2002-07-04 2004-03-18 Kanebo Ltd Method for improving bacteriostatic action of fiber products and bacteriostatic fiber products obtained by the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101940049B1 (en) * 2017-07-25 2019-04-11 코오롱글로텍주식회사 function spun Yarn for disinfectant and deodorant and method of manufacture same, textile for disinfectant and deodorant

Also Published As

Publication number Publication date
JP5183329B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
EP3819410A2 (en) Plant-based functional polyester filament and preparation method thereof
JP2010522833A (en) Antibacterial, antifungal and antiviral rayon fibers
KR20120078238A (en) Method for manufacturing controlled-release skin-core type composite fiber and composite fiber made thereof
KR100769974B1 (en) Production method of lyocell filament having uniformity for the clothes
JP5183329B2 (en) Wet spinning method of antibacterial acrylic fiber
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JP7167991B2 (en) Acrylic fiber, spun yarn and knitted fabric containing said fiber
JP2008088591A (en) Acrylic synthetic fiber and method for producing the same
JP2001316936A (en) Method for producing solvent spun cellulose fiber
KR100263961B1 (en) A crylic fiber containing chitosan and method of preparing the same
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JP2013253817A (en) Radiation shielding fiber and fabric
JPH1136136A (en) Antibacterial polyvinyl alcohol fiber, its production and construction
JP2018053378A (en) Acrylic fiber excellent in ultraviolet shielding property
JP2007270390A (en) Acrylic synthetic fiber, method for producing the same and textile product
JP2021130887A (en) Acrylic composite deodorant fiber
JP2015014060A (en) Functional acrylic fiber
JPH05148709A (en) Acrylic modified cross section fiber and its production
JP2843519B2 (en) Regenerated cellulose fiber dyeable to disperse dye and method for producing the same
JP2015209618A (en) Method for producing antifungal acrylic fiber
JP2017179627A (en) High full-dull fine-denier acrylic fiber
KR100611892B1 (en) Cellulose fiber and its manufacturing process
JPH11229233A (en) Polyvinyl alcohol-based yarn and its production
CN116024685A (en) Method for manufacturing nano Ag-ZnO cellulose fiber
JP6089786B2 (en) Sea-island composite fiber made of polylactic acid and polyglycolic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R151 Written notification of patent or utility model registration

Ref document number: 5183329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250