JP2008088591A - Acrylic synthetic fiber and method for producing the same - Google Patents

Acrylic synthetic fiber and method for producing the same Download PDF

Info

Publication number
JP2008088591A
JP2008088591A JP2006270045A JP2006270045A JP2008088591A JP 2008088591 A JP2008088591 A JP 2008088591A JP 2006270045 A JP2006270045 A JP 2006270045A JP 2006270045 A JP2006270045 A JP 2006270045A JP 2008088591 A JP2008088591 A JP 2008088591A
Authority
JP
Japan
Prior art keywords
fiber
photocatalyst
synthetic fiber
acrylic synthetic
acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006270045A
Other languages
Japanese (ja)
Inventor
Toshiyuki Iwabuchi
俊行 岩渕
Original Assignee
Toray Ind Inc
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Ind Inc, 東レ株式会社 filed Critical Toray Ind Inc
Priority to JP2006270045A priority Critical patent/JP2008088591A/en
Publication of JP2008088591A publication Critical patent/JP2008088591A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acrylic synthetic fiber having excellent deodorizing properties without impairing operability during production of the acrylic synthetic fiber and processability, and to provide a method for producing the same. <P>SOLUTION: The acrylic synthetic fiber contains 0.1-3.0 wt.% of a photocatalyst, wherein at least a part of the catalyst is caught in voids on the surface of the fiber and the fiber has a modified cross section. The method for producing the acrylic synthetic fiber by a wet spinning method or a dry and wet spinning method includes immersing a fiber in a gel swollen state in the dispersion of a photocatalyst, and drying and densifying the fiber. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は光触媒を含有し、消臭性良好なアクリル系合成繊維およびその製造方法に関する。   The present invention relates to an acrylic synthetic fiber containing a photocatalyst and having good deodorizing properties and a method for producing the same.

快適な生活を求めて、繊維製品を含めた身の回りの製品には様々な機能が付与されている。消臭性能はその一つである。   In search of a comfortable life, various functions are added to personal products including textiles. Deodorizing performance is one of them.

繊維および繊維製品に消臭性能を付与する方法として、1.消臭剤を繊維表面に付与する、2.消臭剤を繊維に練り込むなどの方法がある。   As a method for imparting deodorant performance to fibers and textile products, 1. 1. Apply a deodorant to the fiber surface. There are methods such as kneading a deodorant into the fiber.

繊維に消臭剤を練り込む方法では繊維内部に分布している消臭剤は悪臭物質と接触できないため、消臭性を確保するためには多量の消臭剤を練り込む必要があり、消臭剤が凝集しやすくなり、紡糸時に口金やフィルターが閉塞しやすく、操業性が劣りがちである。加えて、繊維物性が悪くなりがちである。   In the method of kneading the deodorant into the fiber, the deodorant distributed inside the fiber cannot contact the malodorous substance, so it is necessary to knead a large amount of the deodorant in order to ensure deodorization. Odorants tend to agglomerate, the base and filter tend to close during spinning, and the operability tends to be poor. In addition, the fiber properties tend to be poor.

一方、消臭剤に限らず微粒子を繊維表面に付与する方法として、もっとも広く用いられている方法はバインダーを用いる方法である。特許文献1の方法では光触媒性酸化チタンをバインダーを用いて、繊維表面に付与しているため、少ない光触媒量で効率的に消臭効果を発揮するが、光触媒がバインダーとともに脱落し易く、耐久性が劣る。また、バインダーにより、繊維の表面状態を変化させるため、物性、加工性などが付与させていないものとは異なったものになってしまう。   On the other hand, not only the deodorant but also the most widely used method for applying fine particles to the fiber surface is a method using a binder. In the method of Patent Document 1, since photocatalytic titanium oxide is applied to the fiber surface using a binder, it effectively exhibits a deodorizing effect with a small amount of photocatalyst, but the photocatalyst easily falls off with the binder, and is durable. Is inferior. In addition, since the surface state of the fiber is changed by the binder, it is different from those not imparted with physical properties and workability.

これを解決し、耐久性を向上させる方法として、湿式もしくは乾湿式紡糸法で得られ、ゲル膨潤状態にあるアクリル系合成繊維を消臭剤(光触媒)の分散液に接触した後、乾燥緻密化する方法が提案されている(特許文献2)。同文献によれば、0.07μm以下の酸化チタンであれば、繊維固着が強固で脱落が少なく、繊維風合いにも影響を与えない。   As a method to solve this and improve durability, it is obtained by wet or dry-wet spinning method. After contacting acrylic synthetic fiber in gel swelling state with deodorant (photocatalyst) dispersion, it is dried and densified. A method to do this has been proposed (Patent Document 2). According to this document, if the titanium oxide has a thickness of 0.07 μm or less, the fiber fixation is strong, the dropout is small, and the fiber texture is not affected.

しかし、通常の湿式もしくは乾湿式紡糸法で得られ、ゲル膨潤状態にあるアクリル系合成繊維に消臭剤(光触媒)の分散液に接触させて付与する方法では脱落無く数wt%以上付与するのは事実上困難である。
特開平8−74171号公報(特許請求の範囲) 特開平10−8327号公報(特許請求の範囲)
However, in the method of applying to the acrylic synthetic fiber in a gel swollen state obtained by a normal wet or dry-wet spinning method in contact with a dispersion of a deodorant (photocatalyst), it is applied several wt% or more without dropping. Is practically difficult.
JP-A-8-74171 (Claims) JP 10-8327 A (Claims)

本発明では消臭剤を練り込んだ場合のような操業性悪化もなく、バインダーを用いた場合のような、物性、加工性の変化および脱落による耐久性不足などもない優れた消臭性能を有するアクリル系合成繊維およびその製造方法を提供することにある。   In the present invention, there is no deterioration in operability as in the case where a deodorant is kneaded, and excellent deodorization performance such as in the case of using a binder, there is no change in physical properties, processability and lack of durability due to dropping off. An object of the present invention is to provide an acrylic synthetic fiber and a method for producing the same.

本発明者は鋭意検討した結果、湿式紡糸法もしくは乾湿式紡糸法で得られ、ゲル膨潤状態でのボイドが多いアクリル系合成繊維を光触媒の分散液に浸漬した後、乾燥緻密化することにより、光触媒を繊維表面もしくは繊維内部のごく浅い箇所に多量に付与できることを見出した。 すなわち本発明は、0.1重量%〜3.0重量%の光触媒を含有しているアクリル系合成繊維であって、前記触媒の少なくとも一部が該繊維表面のボイドに捕捉され、かつ該繊維の断面が異形であることを特徴とするアクリル系合成繊維であり、さらに、湿式紡糸法もしくは乾湿式紡糸法によるアクリル系合成繊維の製造方法であって、ゲル膨潤状態の繊維を光触媒の分散液に浸漬した後、乾燥緻密化することを特徴とする前記アクリル系合成繊維の製造方法である。   As a result of intensive studies, the present inventors have obtained a wet spinning method or a dry wet spinning method, and after immersing an acrylic synthetic fiber having many voids in a gel-swollen state in a dispersion of a photocatalyst, by drying and densifying, It has been found that a large amount of photocatalyst can be applied to the surface of the fiber or to a very shallow portion inside the fiber. That is, the present invention is an acrylic synthetic fiber containing 0.1% to 3.0% by weight of a photocatalyst, wherein at least a part of the catalyst is captured by a void on the fiber surface, and the fiber A synthetic synthetic fiber characterized in that the cross-section of the synthetic fiber is an irregular shape, and a method for producing an acrylic synthetic fiber by a wet spinning method or a dry-wet spinning method. It is the method for producing the acrylic synthetic fiber, wherein the acrylic synthetic fiber is dried and densified after being dipped in a glass.

本発明によれば、このように得られたアクリル系合成繊維はバインダーによる物性変化もなく、光触媒の脱落も少なく、加えて、繊維表面に集中して光触媒が存在しているため、効率的に消臭などの光触媒能を発揮できるものである。   According to the present invention, the acrylic synthetic fiber thus obtained has no change in physical properties due to the binder, and the photocatalyst is not dropped out. In addition, since the photocatalyst is concentrated on the fiber surface, It can exhibit photocatalytic activity such as deodorization.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明で使用するアクリル系重合体としては、アクリロニトリルを30重量%以上含有するアクリル系ポリマーで繊維形成能を有していれば良い。アクリロニトリル以外の共重合成分としてはアクリル酸、メタクリル酸およびそれらのアルキルエステル類、アクリルアミド、メタクリルアミド、酢酸ビニル、塩化ビニル、スチレン、塩化ビニリデンなどのビニル系化合物の他に、ビニルスルホン酸、アクリルスルホン酸、メタリルスルホン酸、パラスチレンスルホン酸などの不飽和スルホン酸およびそれらの塩類を用いることができるが、これらに限られるものではない。   The acrylic polymer used in the present invention may be an acrylic polymer containing 30% by weight or more of acrylonitrile and having fiber forming ability. As copolymerization components other than acrylonitrile, in addition to vinyl compounds such as acrylic acid, methacrylic acid and their alkyl esters, acrylamide, methacrylamide, vinyl acetate, vinyl chloride, styrene, vinylidene chloride, vinyl sulfonic acid, acrylic sulfone Unsaturated sulfonic acids such as acid, methallylsulfonic acid, parastyrenesulfonic acid, and salts thereof can be used, but are not limited thereto.

上記アクリル系重合体は懸濁重合、溶液重合、乳化重合等のいずれの方法によって製造されたものでもよい。また、溶媒は上記アクリル系重合体を溶解するものであればよく、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、アセトン等の有機系溶媒や硝酸、ロダン酸ソーダ、塩化亜鉛等の無機塩水溶液等の無機系溶媒が好ましく用いられる。   The acrylic polymer may be produced by any method such as suspension polymerization, solution polymerization, and emulsion polymerization. The solvent may be any solvent that dissolves the acrylic polymer, and is an organic solvent such as dimethyl sulfoxide, dimethylacetamide, dimethylformamide, or acetone, or an inorganic salt solution such as nitric acid, sodium rhodanate, or zinc chloride. A system solvent is preferably used.

これら方法により得られたアクリル系重合体溶液を公知の方法により、繊維化する。すなわち、湿式、乾湿式および乾式紡糸法である。しかし、後述する理由により湿式および乾湿式紡糸法が好ましく、湿式紡糸法がもっとも好ましい。   The acrylic polymer solution obtained by these methods is fiberized by a known method. That is, wet, dry wet and dry spinning methods. However, wet and dry wet spinning methods are preferred for the reasons described below, and wet spinning methods are most preferred.

本発明はゲル膨潤状態にあるアクリル系合成繊維が持つ、ボイドと呼ばれる穴に光触媒を入れることにより達成されるため、このボイドが発生しやすい紡糸方法がより好ましい。乾式紡糸法はボイドが発生しにくい方法で、本発明には用いることができない。乾湿式および湿式紡糸法はボイドが発生するため、本発明で用いることができる。両者のうち、湿式紡糸法がボイドがもっとも発生しやすく、最適な紡糸法である。
このボイド量は乾燥緻密化前の状態で断面中に5個/100μm以上であることが好ましい。5個/100μm未満では光触媒を必要量付与できない場合がある。
Since the present invention is achieved by putting a photocatalyst into holes called voids possessed by acrylic synthetic fibers in a gel-swollen state, a spinning method in which voids are easily generated is more preferable. The dry spinning method is less likely to generate voids and cannot be used in the present invention. Since the wet and wet spinning methods generate voids, they can be used in the present invention. Of these, the wet spinning method is the most suitable spinning method because voids are most likely to occur.
The void amount is preferably 5/100 μm 2 or more in the cross section before being dried and densified. If it is less than 5/100 μm 2 , the required amount of photocatalyst may not be provided.

また、本発明のアクリル系合成繊維の断面は異型断面であることが必要である。これは異型断面とすることでボイドが発生しやすくなるためである。本発明において異型断面とは丸、小判型、βなど円形の紡糸孔から紡出される以外のものを指す。例えば、長方形、+、Y、星、Cなどを指すが、これらに限定されるものではない。異型断面のうち、C型が大きなボイドが多数発生しやすく、好ましい。   Moreover, the cross section of the acrylic synthetic fiber of the present invention needs to be an irregular cross section. This is because voids are likely to be generated by using an atypical cross section. In the present invention, the atypical cross section refers to a circle, oval shape, β, or the like other than those spun from a circular spinning hole. For example, it indicates a rectangle, +, Y, star, C, etc., but is not limited thereto. Of the irregular cross sections, the C type is easy to generate many large voids, which is preferable.

紡糸した後、数段の延伸槽で延伸し、残留溶媒を除くため、水洗する。水洗後、光触媒を分散した水もしくは水以外のアクリル系重合体を溶解しない溶媒に浸漬し、光触媒を繊維に付与する。本工程ではなく、次工程の膠着防止油剤付与工程にて、油剤と光触媒を同時に付与しても良い。   After spinning, the film is drawn in several drawing tanks and washed with water to remove residual solvent. After washing with water, the photocatalyst is applied to the fiber by immersing it in water in which the photocatalyst is dispersed or an acrylic polymer other than water. The oil agent and the photocatalyst may be applied simultaneously in the subsequent anti-sticking oil agent application step instead of this step.

本発明で使用する光触媒としては、アナターゼ型酸化チタン微粒子からなるものが一般的であるが、光触媒能を有していれば、いずれも用いることができる。例えば、石原産業(株)STシリーズ、STSシリーズなどが上げられるがこれらに限られない。   The photocatalyst used in the present invention is generally made of anatase-type titanium oxide fine particles, but any photocatalytic ability can be used. For example, Ishihara Sangyo Co., Ltd. ST series, STS series, etc. can be raised, but not limited to these.

また、酸化チタンからなる光触媒は380nm以下の紫外線照射下でないと機能しなかったが、最近では可視光下でも光触媒能を発揮する製品も市販されている。   In addition, the photocatalyst made of titanium oxide did not function unless irradiated with ultraviolet rays of 380 nm or less, but recently, a product that exhibits photocatalytic activity even under visible light is commercially available.

なお、光触媒の粒子径は光触媒を付与する工程で使用する溶媒に分散した場合に凝集せず、安定的に分散できる限り小さいものが望ましい。具体的には500nm以下、好ましくは200nm以下、さらに好ましくは50nm以下である。これは前述したように本発明ではゲル膨潤状態にあるアクリル系合成繊維が持つ、ボイドと呼ばれる穴に光触媒を入れることにより達成されるため、当然、粒子径が小さいほどボイドに入りやすくなるためである。   The particle diameter of the photocatalyst is preferably as small as possible without being aggregated when dispersed in the solvent used in the step of applying the photocatalyst. Specifically, it is 500 nm or less, preferably 200 nm or less, and more preferably 50 nm or less. As described above, this is achieved by putting a photocatalyst into a hole called a void of the acrylic synthetic fiber in a gel-swelled state in the present invention. Naturally, the smaller the particle diameter, the easier it is to enter the void. is there.

光触媒の含有率は0.1重量%〜3重量%である必要がある。0.1重量%未満では含有量が少なく、ほとんど光触媒の効果が期待できない。一方、3重量%を超えた場合、消臭性などの性能は高まるが、前述した繊維のボイドに入る量には限りがあるため、それ以上は入ることができず、繊維表面に単純に付着するだけの状態になり、耐久性も悪化する。さらに好ましくは0.3重量%〜1.0重量%である。なお、本発明において、A〜Bとした場合はAおよびBともに含むものとする。
光触媒を付与した後、乾燥緻密化を行う。乾燥緻密化後、必要に応じて、捲縮付与、熱
処理、紡績油剤付与およびカットなどを経て、目的のアクリル系合成繊維が得られる。
The content of the photocatalyst needs to be 0.1% by weight to 3% by weight. If it is less than 0.1% by weight, the content is small, and almost no photocatalytic effect can be expected. On the other hand, when it exceeds 3% by weight, the performance such as deodorization is improved, but since the amount of the above-mentioned fiber voids is limited, it cannot enter any more and simply adheres to the fiber surface. It becomes a state to just do, and durability also deteriorates. More preferably, it is 0.3 weight%-1.0 weight%. In the present invention, when A to B are used, both A and B are included.
After applying the photocatalyst, dry densification is performed. After drying and densification, the target acrylic synthetic fiber is obtained through crimping, heat treatment, spinning oil application, and cutting, if necessary.

このようにして得られたアクリル系合成繊維の断面の例を図1に示すが、これらに限られるものではない。   Although the example of the cross section of the acrylic synthetic fiber obtained in this way is shown in FIG. 1, it is not restricted to these.

以下実施例により本発明を具体的に説明する。
本発明における特性値の測定・判定方法は以下のとおりである。
<ボイド量>
光触媒を付与する前のゲル膨潤状態にある繊維の断面を光学顕微鏡で400倍に拡大し、0.5μm以上(真円換算で半径0.4μm相当)のボイド数を計測し、これを断面積で除して、求める。単位は個/100μmである。
<消臭率>
光触媒性能評価試験法IIb[2001年度版]ガスバックB法で消臭率を測定した。対象物質はアンモニアとした。
<光触媒含有率>
700℃で5時間処理し、処理前の重量をA(g)、残留物の重量をB(g)とした場合に式1で計算した。
光触媒含有率(%)=(B/A)×100・・・(1)
<繊維物性>
JIS L1015に従い、繊維の強度を測定した。つかみ間隔は20mm、試験機は定速伸長形(伸長速度つかみ間隔の100%/分)であった。
<光触媒耐久性>
筒編みしたものを抗ピル性測定方法である、JIS L1076ピリング試験A法で8時間処理したものの光触媒含有率を上記方法にて測定した。
<光触媒分散濃度>
光触媒分散液の重量をA(g)とし、これを絶燥したものを700℃で5時間処理し、残留物の重量をB(g)とした場合に式2で計算した。
光触媒分散濃度(%)=(B/A)×100・・・(式2)
(実施例1)
繊維を形成するポリマーとして、アクリロニトリル(AN)/アクリル酸メチル(MEA)/メタリルスルホン酸ナトリウム(SMAS)=95.5/4.2/0.3(mol%)を用い、これを溶媒ジメチルスルホキシド(DMSO)にポリマー濃度25重量%になるように溶解して紡糸原液を得た。これをC型の孔を有する口金を使用して、紡糸した。紡糸浴はDMSO濃度65重量%、温度40℃の水溶液とした。紡糸原液を紡糸浴中に口金より押し出し、凝固させた。次いで凝固したトウを順次DMSO濃度が低下する数段の浴にて、脱溶媒させながら、5倍延伸した。延伸後、水洗機にて完全にDMSOを除いた。断面中のボイド量はこの段階の繊維で測定した。ボイド量は10個/100μmであった。水洗後のトウを分散濃度が5%の光触媒水分散液に浸漬する。光触媒は石原産業(株)製酸化チタン“STS−01”を希釈して使用した。その後、膠着防止油剤を付与し、乾燥緻密化し、単糸繊度3.3dtex、トータル繊度660dtexのフィラメントを採取した。該フィラメントを筒編みし、目付80g/mの編み地を得た。
The present invention will be specifically described below with reference to examples.
The characteristic value measurement / judgment method in the present invention is as follows.
<Void amount>
The cross section of the fiber in the gel swelling state before applying the photocatalyst was magnified 400 times with an optical microscope, and the number of voids of 0.5 μm 2 or more (equivalent to a radius of 0.4 μm in terms of a perfect circle) was measured. Divide by area to find. The unit is pieces / 100 μm 2 .
<Deodorization rate>
The deodorization rate was measured by the photocatalyst performance evaluation test method IIb [2001 version] gas back B method. The target substance was ammonia.
<Photocatalyst content>
The treatment was carried out at 700 ° C. for 5 hours, and the weight was calculated by Formula 1 when the weight before treatment was A (g) and the weight of the residue was B (g).
Photocatalyst content (%) = (B / A) × 100 (1)
<Fiber physical properties>
The strength of the fiber was measured according to JIS L1015. The holding interval was 20 mm, and the tester was a constant speed extension type (100% / min of the extension rate holding interval).
<Photocatalytic durability>
The content of the photocatalyst was measured by the above-mentioned method after processing for 8 hours by the JIS L1076 pilling test method A, which is an anti-pill property measurement method.
<Photocatalyst dispersion concentration>
When the weight of the photocatalyst dispersion was A (g), the dried product was treated at 700 ° C. for 5 hours, and the weight of the residue was B (g).
Photocatalyst dispersion concentration (%) = (B / A) × 100 (Equation 2)
(Example 1)
As the polymer for forming the fiber, acrylonitrile (AN) / methyl acrylate (MEA) / sodium methallyl sulfonate (SMAS) = 95.5 / 4.2 / 0.3 (mol%) was used as the solvent dimethyl. A spinning dope was obtained by dissolving in sulfoxide (DMSO) to a polymer concentration of 25% by weight. This was spun using a die having a C-shaped hole. The spinning bath was an aqueous solution having a DMSO concentration of 65% by weight and a temperature of 40 ° C. The stock solution for spinning was extruded from a die into a spinning bath and solidified. Next, the coagulated tow was stretched 5 times while removing the solvent in several baths where the DMSO concentration gradually decreased. After stretching, DMSO was completely removed with a water washer. The amount of voids in the cross section was measured with the fibers at this stage. The amount of voids was 10/100 μm 2 . The tow after washing with water is immersed in a photocatalyst aqueous dispersion having a dispersion concentration of 5%. As the photocatalyst, titanium oxide “STS-01” manufactured by Ishihara Sangyo Co., Ltd. was diluted and used. Thereafter, an anti-sticking oil was applied, dried and densified, and filaments having a single yarn fineness of 3.3 dtex and a total fineness of 660 dtex were collected. The filament was tubular knitted to obtain a knitted fabric having a basis weight of 80 g / m 2 .

該フィラメントおよび編み地にて表1にある評価を実施した結果、強度低下もほとんどなく、耐久性も良好だった。消臭率も95%と良好だった。   As a result of carrying out the evaluation shown in Table 1 with the filament and the knitted fabric, there was almost no decrease in strength and the durability was good. The deodorization rate was also good at 95%.

(実施例2)
実施例1と同様の方法で繊維断面が+である繊維を得た。単糸繊度およびトータル繊度ともに実施例1と同様である。実施例1と同様に良好な消臭率を示した。
(Example 2)
A fiber having a cross section of + was obtained in the same manner as in Example 1. Both the single yarn fineness and the total fineness are the same as in Example 1. A good deodorization rate was shown as in Example 1.

(比較例1)
実施例1および2と同様の方法で○断面の繊維を得た。光触媒の含有率が少なく、その結果、消臭率も低かった。
(Comparative Example 1)
A cross-section fiber was obtained in the same manner as in Examples 1 and 2. The photocatalyst content was low, and as a result, the deodorization rate was also low.

(比較例2)
光触媒(石原産業(株)製酸化チタン“ST−01”)を繊維に対し、1.2wt%となるように練り込んだ以外は実施例1と同様の方法で繊維を得た。全体が白色のため、ボイド量は計測できなかったが、繊維強度も低く、消臭率も低かった。
(Comparative Example 2)
A fiber was obtained in the same manner as in Example 1 except that a photocatalyst (titanium oxide “ST-01” manufactured by Ishihara Sangyo Co., Ltd.) was kneaded to 1.2% by weight of the fiber. Since the whole was white, the void amount could not be measured, but the fiber strength was low and the deodorization rate was also low.

(比較例3)
光触媒を付与しないことを除いて、実施例1と同様の方法で繊維を得た。消臭性はまったくなかった。
(Comparative Example 3)
A fiber was obtained in the same manner as in Example 1 except that no photocatalyst was applied. There was no deodorant property.

本発明により得られるアクリル系合成繊維は優れた消臭性を有し、かつ、製造時の操業性および紡績などの後加工性も良好である。そのため、本発明のアクリル系合成繊維は未加工のアクリル系合成繊維とまったく同様に使用できるものである。   The acrylic synthetic fiber obtained by the present invention has excellent deodorizing properties, and also has good operability during production and post-processing properties such as spinning. Therefore, the acrylic synthetic fiber of the present invention can be used in the same manner as an unprocessed acrylic synthetic fiber.

本発明の一実施態様の繊維の横断面概略図である。It is a cross-sectional schematic of the fiber of one embodiment of this invention.

Claims (6)

0.1重量%〜3.0重量%の光触媒を含有したアクリル系合成繊維であって、前記触媒の少なくとも一部が該繊維表面のボイドに捕捉され、かつ該繊維の断面が異形であることを特徴とするアクリル系合成繊維。 An acrylic synthetic fiber containing 0.1 to 3.0% by weight of a photocatalyst, wherein at least a part of the catalyst is trapped by voids on the fiber surface, and the cross section of the fiber is irregular. Acrylic synthetic fiber characterized by 光触媒が酸化チタンであることを特徴とする請求項1記載のアクリル系合成繊維。 2. The acrylic synthetic fiber according to claim 1, wherein the photocatalyst is titanium oxide. 繊維の断面がC型であることを特徴とする請求項1または2記載のアクリル系合成繊維。   The acrylic synthetic fiber according to claim 1 or 2, wherein the cross section of the fiber is C-shaped. 乾燥緻密化前の繊維の断面に存在するボイドのうち、0.5μm以上のボイド数が5個/100μmであることを特徴とする請求項1〜3のいずれかに記載のアクリル系合成繊維。 The acrylic synthesis according to any one of claims 1 to 3, wherein among the voids existing in the cross section of the fiber before drying and densification, the number of voids of 0.5 µm 2 or more is 5/100 µm 2. fiber. 湿式紡糸法もしくは乾湿式紡糸法によるアクリル系合成繊維の製造方法であって、ゲル膨潤状態の繊維を光触媒の分散液に浸漬した後、乾燥緻密化することを特徴とする請求項1記載のアクリル系合成繊維の製造方法。   2. The acrylic synthetic fiber according to the wet spinning method or the dry and wet spinning method, wherein the gel-swelled fiber is dipped in a photocatalyst dispersion and then dried and densified. Of manufacturing synthetic fiber. ゲル膨潤状態の繊維が、その断面に存在するボイド数が5個/100μm以上であるアクリル系合成繊維を、光触媒の分散液に浸漬した後、乾燥緻密化することを特徴とする請求項5記載のアクリル系合成繊維の製造方法。 6. The gel-swelled fiber is obtained by densifying an acrylic synthetic fiber having a void number of 5/100 μm 2 or more in its cross section in a photocatalyst dispersion, followed by densification. The manufacturing method of the acrylic synthetic fiber of description.
JP2006270045A 2006-09-29 2006-09-29 Acrylic synthetic fiber and method for producing the same Pending JP2008088591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006270045A JP2008088591A (en) 2006-09-29 2006-09-29 Acrylic synthetic fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270045A JP2008088591A (en) 2006-09-29 2006-09-29 Acrylic synthetic fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008088591A true JP2008088591A (en) 2008-04-17

Family

ID=39373030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270045A Pending JP2008088591A (en) 2006-09-29 2006-09-29 Acrylic synthetic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008088591A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055379A (en) * 2012-09-13 2014-03-27 Japan Exlan Co Ltd Functional acrylonitrile-based fiber and fiber structure containing the same, and their production methods
JP2014074243A (en) * 2012-10-03 2014-04-24 Japan Exlan Co Ltd Photocatalyst inclusion fiber and fiber structure including the fiber
CN105088417A (en) * 2015-09-16 2015-11-25 苏州大学 Metal oxide macro fibers and preparation method thereof
CN111455499A (en) * 2020-06-02 2020-07-28 中原工学院 Preparation method of polyacrylonitrile carbon fiber hybrid composite photocatalytic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055379A (en) * 2012-09-13 2014-03-27 Japan Exlan Co Ltd Functional acrylonitrile-based fiber and fiber structure containing the same, and their production methods
JP2014074243A (en) * 2012-10-03 2014-04-24 Japan Exlan Co Ltd Photocatalyst inclusion fiber and fiber structure including the fiber
CN105088417A (en) * 2015-09-16 2015-11-25 苏州大学 Metal oxide macro fibers and preparation method thereof
CN111455499A (en) * 2020-06-02 2020-07-28 中原工学院 Preparation method of polyacrylonitrile carbon fiber hybrid composite photocatalytic material

Similar Documents

Publication Publication Date Title
JP2010522833A (en) Antibacterial, antifungal and antiviral rayon fibers
JP2008088591A (en) Acrylic synthetic fiber and method for producing the same
JP2007100230A (en) Inorganic particle-bearing polytetrafluoroethylene fiber and method for producing the same
JP4992024B2 (en) Chitosan ultrafine fiber and method for producing the same
JP5128540B2 (en) Spun yarn containing acrylic fiber and knitted fabric using the same
JP2020504791A (en) Lyocell fiber, nonwoven fiber aggregate including the same, and mask pack sheet including the same
JP5183329B2 (en) Wet spinning method of antibacterial acrylic fiber
JP2013199718A (en) Acrylic deodorant fiber, and spun yarn and woven and knitted fabric containing the same
JP2008280632A (en) Method for producing precursor fiber bundle of carbon fiber
JP2011001638A (en) Antiallergic cellulose fiber and method for producing the same
JP3979545B2 (en) Functional fiber and production method thereof
JP3635183B2 (en) Deodorant acrylic fiber
JP2005009034A (en) Acrylic fiber containing photocatalyst and method for producing the same
JP3338604B2 (en) Method for producing deodorant / antibacterial acrylic synthetic fiber
JPH05148709A (en) Acrylic modified cross section fiber and its production
JP2005120512A (en) Acrylic conjugate fiber having refreshing cool feeling and method for producing the same
JP2007204858A (en) Photocatalyst-supporting polytetrafluoroethylene fiber and method for producing the same
JP2008138307A (en) Photocatalyst-supporting polytetrafluoroethylene fiber and method for producing the same
JP2006045720A (en) Hollow acrylic fiber and method for producing the same
WO2006109440A1 (en) Process for production of lightweight acrylic synthetic fiber
JP6008240B2 (en) Functional acrylonitrile fiber, fiber structure containing the fiber, and method for producing the same
JP2021070887A (en) Regenerated cellulosic fiber, method for producing the same, and fiber structure including the same
WO2018047344A1 (en) Modified acrylonitrile-based fiber, method for producing said fiber, and fibrous structure containing said fiber
JP2022011493A (en) Fiber, nonwoven fabric, and sound absorbing material
JPH108376A (en) Deodorizing fiber product