JP3633302B2 - Flat cable conductor - Google Patents

Flat cable conductor Download PDF

Info

Publication number
JP3633302B2
JP3633302B2 JP24145998A JP24145998A JP3633302B2 JP 3633302 B2 JP3633302 B2 JP 3633302B2 JP 24145998 A JP24145998 A JP 24145998A JP 24145998 A JP24145998 A JP 24145998A JP 3633302 B2 JP3633302 B2 JP 3633302B2
Authority
JP
Japan
Prior art keywords
conductor
flat cable
flat
copper
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24145998A
Other languages
Japanese (ja)
Other versions
JP2000067642A (en
Inventor
貴朗 市川
寛 山野辺
正義 青山
真人 伊藤
勉 小森
正敏 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP24145998A priority Critical patent/JP3633302B2/en
Publication of JP2000067642A publication Critical patent/JP2000067642A/en
Application granted granted Critical
Publication of JP3633302B2 publication Critical patent/JP3633302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気、電子機器の配線材料等に使用される、耐屈曲性に優れたフラットケーブル用導体に関するものである。
【0002】
【従来の技術】
図1は、フラットケーブルの一例の横断面図である。フラットケーブルは、図1に示すように、間隔をおいて平行に配列した複数本の平角導体1を、片面に接着剤層3を形成した2枚の絶縁フィルム2で接着剤層3を内側にして挟み込み、加熱により、上記接着剤層3を融着することにより製造されている。上記絶縁フィルム2としては、ポリエステルやPETフィルムが用いられ、接着剤層3としては、ポリエチレン、ポリエステルをベースポリマーとしたものが使用されており、平角導体1には、錫またははんだめっきされた純銅(TPC,OFHC)が用いられている。
【0003】
上述のようなフラットケーブルは、屈曲耐久性が要求される部位に使用されることが多く、これまで、導体、接着剤層、絶縁フィルムをできる限り薄くしたフラットケーブルがこのような部位に使用されてきた。ところが、使用される状況によっては導体の厚さを薄くできない場合がある。例えば、ケーブルの電気抵抗値に上限がある場合である。このような場合でも耐屈曲性に優れたフラットケーブル用導体が要求されている。
【0004】
【発明が解決しようとする課題】
上記したように、近年、電気、電子機器に使用されるフラットケーブルには、その使用環境の面から、より優れた屈曲寿命を持つ薄いフラットケーブルが求められている。フラットケーブル用導体に着目してこの要求に応えようとすると、耐屈曲性に優れた銅合金の適用が考えられるが、導電性が従来使用されている純銅(100%IACS)と比較して90%IACS程度に大きく低下してしまうため問題がある。
【0005】
そこで、本発明の目的は、上記課題を解決し、結晶粒を微細化した純銅を用いることにより、屈曲寿命に優れた特性を持つフラットケーブル用導体を提供することにある。
【0006】
【課題を解決するための手段】
本発明の要旨は、前述の課題を解決したフラットケーブル用導体を提供するために、平角導体に結晶粒を微細化した純銅を用いたことにある。
【0013】
また、添加元素の添加量としては、B、Sn、In、Mgのうち、1種もしくはそれ以上を合計で0.005wt%〜0.045wt%添加したものが好ましい(請求項)。各元素の添加量の下限を0.005wt%〜0.045wt%としたのは、0.005wt%未満であると導体の結晶粒を十分に微細化できない傾向になるため好ましくなく、また、0.045wt%を越えると導電性が大きく低下する傾向になるので好ましくないためである。
【0014】
従って、フラットケーブル用導体として最も好ましい形態は、平角導体に、B、Sn、In、Mgのうち、1種もしくはそれ以上を合計で0.005wt%〜0.045wt%添加して結晶粒を5μm以下に微細化した銅を使用したものである(請求項)。
【0015】
上記フラットケーブル用導体は、厚さ15μm〜100μmの平角導体として形成することが好ましく、これにより薄型のフラットケーブルを得ることができる(請求項)。
【0016】
【発明の実施の形態】
本発明の実施の形態の一例について説明する。
【0017】
図1において、平行に配列した厚さ15μm〜100μmの複数本の平角導体1を、片面に接着剤層3を形成した絶縁フィルム2を2枚用いて、上記接着剤層3を内側にして挟み込むことで、フラットケーブルを構成した。
【0018】
このフラットケーブルにおいては、フラットケーブル用導体として、結晶粒を微細化するためにB、Sn、In、Mgを1種もしくは、2種以上を合計で0.005wt%〜0.05wt%添加した銅を使用して平角導体1を構成し、従来品の導体(OFHC)よりも屈曲寿命を改善した。このとき元素の添加は微量であることから、平角導体1の導電性は大きく低下しなかった。
【0019】
【実施例】
フラットケーブル用導体の評価用のサンプルを以下のようにして作製した。
【0020】
小型連鋳機にてB、Sn、Mgを所定量添加した表1に示す組成の母材を鋳造し、これらを冷間加工して平角線とし、その後、アニーラ焼鈍および錫めっきを実施して平角軟銅導体を得た。この際、導体の横断面組織をミクロ的に観察し、平均結晶粒径を測定した。
【0021】
これらの平角軟銅導体を上記平角導体1として用い、前述した絶縁フィルム2、接着剤層3を用いて図1のフラットケーブルを製造した。
【0022】
製造したフラットケーブルは、絶縁フィルム(ポリエステルフィルム)2が厚さ25μmで、接着剤3は難燃性ポリエステル系のものを厚さ35μmで、平角導体1は、厚さ0.05mm、幅0.5mmのもの10本を1.5mmピッチで並べた構成のもである。
【0023】
得られたサンプルの屈曲特性をJISC5016の方法により測定した。これは試験機の摺動棒と試料固定枠の間に、所定の屈曲半径に屈曲させてサンプルを装着し、前記摺動棒を所定のストロークで往復運動させるとともに、サンプルの導体を直列に接続して通電して、電流が10−6秒間以上停止するまでの屈曲回数を調べるものである。
【0024】
これら試作したフラットケーブル用導体の導電率、屈曲寿命を評価した結果を表1に示す。表1中、添加元素B、Sn、In、Mgについてはその重量パーセントを1万倍したもので示した。また、屈曲寿命(回数:Nf)は、従来導体(OFHC)の比較例11との寿命比で表した。
【0025】
【表1】

Figure 0003633302
【0026】
実施例1〜4は、添加元素にB、Sn、In、Mgのいずれか一つを微量に含むほぼ純銅といえる組成の銅合金であり、実施例5は添加元素にSnとMgを微量に含むほぼ純銅といえる組成の銅合金の場合である。これら実施例1〜5では、銅合金組成がB、Sn、Mgのうち、1種もしくはそれ以上を合計で0.003wt%〜0.045wt%添加することにより、平均結晶粒径を7μm〜5μmに微細化した銅を使用した。
【0027】
これらの実施例1〜5においては全て、導電率が100%IACSと良好で、且つ屈曲寿命が純銅の1.5倍以上を示した。
【0028】
このうち、特に平均結晶粒径を5μmにした実施例4と実施例5については、導電率が100%IACSで、且つ屈曲寿命が従来導体(OFHC)の1.7倍及び1.9倍という高い値を示した。
【0029】
このことからすると、平均結晶粒径を5μm以下にすると屈曲寿命を延ばすことができると予測されるが、比較例6〜8に示すように、平均結晶粒径が同じ5μmの場合でも、合金組成が添加元素B、Sn、In、Mgのうち、1種もしくはそれ以上を合計で0.09wt%以上添加した銅の場合には、屈曲寿命が1.5倍以上に延びているものの、導電率は90〜96%IACSに低下した。
【0030】
一方、実施例9、10のように、添加元素としてBやSn、In、Mgを含む銅を使用した場合でも、平均結晶粒径が19μm〜20μmと大きい場合には、屈曲寿命が従来の導体(OFHC)の場合と変わらなかった。
【0031】
このように、実施例1〜5のものについては、比較例11の従来導体(OFHC)の1.5倍以上の屈曲寿命を有し、且つ導電性も100%以上と優れていることがわかる。しかしながら、元素添加量の合計が0.05wt%を越える比較例6、7、8および平均結晶粒径が7μmを越える比較例9、10においては、屈曲寿命と導電性を両立させることができなかった。
【0032】
上記実施例には、全て厚さ0.05mm(50μm)の平角導体を用いたが、厚さ15μm〜100μmの平角導体を用いた場合にも同様な長い屈曲寿命と高い導電性が得られた。
【0033】
【発明の効果】
以上説明したように本発明によれば、次のような優れた効果が得られる。
【0034】
本発明のフラットケーブル用導体は、B、Sn、In、Mgのうち、1種もしくはそれ以上を合計で0.005wt%〜0.045wt%添加して、結晶粒を7μm以下、好ましくは5μm以下に微細化した銅を使用したものである(請求項1及び請求項)。
【0035】
これは、B、Sn、In、Mgを1種もしくは2種以上を微量な値で添加して、銅の平均結晶粒径を微細化した構成であるので、本発明によれば、従来品よりも屈曲寿命が改善されたフラットケーブル用導体が得られる。また、その元素添加は微量であることから、得られたフラットケーブル用導体の導電性も大きく低下しない。従って、結晶粒微細化による屈曲寿命の向上を図りつつ、高い導電性を維持したフラットケーブル用導体が得られる。
【0036】
また、厚さ15μm〜100μmの平角導体に形成することにより、薄型のフラットケーブル用の導体が得られる(請求項)。
【図面の簡単な説明】
【図1】本発明のフラットケーブル用導体を適用したフラットケーブルの構造を示した断面図である。
【符号の説明】
1 平角導体(フラットケーブル用導体)
2 絶縁フィルム
3 接着剤層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flat cable conductor having excellent bending resistance, which is used for wiring materials for electrical and electronic equipment.
[0002]
[Prior art]
FIG. 1 is a cross-sectional view of an example of a flat cable. As shown in FIG. 1, the flat cable is composed of a plurality of flat conductors 1 arranged in parallel at intervals, and two insulating films 2 each having an adhesive layer 3 formed on one side so that the adhesive layer 3 faces inside. And the adhesive layer 3 is fused by heating. The insulating film 2 is made of polyester or PET film, the adhesive layer 3 is made of polyethylene or polyester as a base polymer, and the flat conductor 1 is pure copper plated with tin or solder. (TPC, OFHC) is used.
[0003]
Flat cables such as those described above are often used in areas where bending durability is required, and so far flat cables with conductors, adhesive layers, and insulation films as thin as possible have been used in such areas. I came. However, the thickness of the conductor may not be reduced depending on the usage situation. For example, there is a case where there is an upper limit in the electric resistance value of the cable. Even in such a case, a conductor for a flat cable excellent in bending resistance is required.
[0004]
[Problems to be solved by the invention]
As described above, in recent years, a thin flat cable having a better bending life is required for a flat cable used in an electric or electronic device from the viewpoint of its use environment. In order to meet this demand by paying attention to the conductor for the flat cable, it is conceivable to apply a copper alloy having excellent bending resistance. However, the conductivity is 90% compared to pure copper (100% IACS) conventionally used. There is a problem because it greatly decreases to about% IACS.
[0005]
Accordingly, an object of the present invention is to provide a flat cable conductor having characteristics excellent in bending life by solving the above-described problems and using pure copper with fine crystal grains.
[0006]
[Means for Solving the Problems]
The gist of the present invention resides in that pure copper with fine crystal grains is used for a flat conductor in order to provide a flat cable conductor that solves the above-mentioned problems.
[0013]
Further, the addition amount of the additive element is preferably one in which one or more of B, Sn, In, and Mg are added in a total amount of 0.005 wt% to 0.045 wt% (Claim 1 ). Setting the lower limit of the amount of each element to 0.005 wt% to 0.045 wt% is not preferable if it is less than 0.005 wt% because the crystal grains of the conductor tend not to be sufficiently refined. If it exceeds 0.045 wt%, the conductivity tends to decrease greatly, which is not preferable.
[0014]
Accordingly, the most preferable form as a conductor for a flat cable is that a flat conductor is added with one or more of B, Sn, In, and Mg in a total amount of 0.005 wt% to 0.045 wt% to add 5 μm crystal grains. In the following, refined copper is used (Claim 2 ).
[0015]
Conductor the flat cable is preferably formed as a flat conductor having a thickness of 15Myuemu~100myuemu, thereby to obtain a thin flat cable (claim 3).
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An example of an embodiment of the present invention will be described.
[0017]
In FIG. 1, a plurality of flat conductors 1 having a thickness of 15 μm to 100 μm arranged in parallel are sandwiched between two insulating films 2 each having an adhesive layer 3 formed on one side, with the adhesive layer 3 inside. Thus, a flat cable was configured.
[0018]
In this flat cable, copper containing 0.005 wt% to 0.05 wt% of B, Sn, In, or Mg as a conductor for a flat cable is added in order to refine crystal grains. The flat conductor 1 was constructed using a wire, and the bending life was improved compared to the conventional conductor (OFHC). At this time, since the addition of the element was very small, the conductivity of the flat conductor 1 was not greatly reduced.
[0019]
【Example】
A sample for evaluation of a conductor for a flat cable was produced as follows.
[0020]
Cast a base material having the composition shown in Table 1 with a predetermined amount of B, Sn, and Mg added in a small continuous caster, and cold-work them into a flat wire, and then anneal and anneal the tin. A flat-angle soft copper conductor was obtained. At this time, the cross-sectional structure of the conductor was observed microscopically, and the average crystal grain size was measured.
[0021]
These flat rectangular soft copper conductors were used as the flat rectangular conductor 1, and the flat cable shown in FIG. 1 was manufactured using the insulating film 2 and the adhesive layer 3 described above.
[0022]
In the manufactured flat cable, the insulating film (polyester film) 2 has a thickness of 25 μm, the adhesive 3 is a flame-retardant polyester-based one having a thickness of 35 μm, and the flat conductor 1 has a thickness of 0.05 mm and a width of 0. The configuration is such that 10 pieces of 5 mm are arranged at a pitch of 1.5 mm.
[0023]
The bending property of the obtained sample was measured by the method of JISC5016. This is done by bending the sample to a predetermined bending radius between the sliding rod of the test machine and the sample fixing frame, reciprocating the sliding rod with a predetermined stroke, and connecting the conductors of the sample in series. Then, the number of bendings until the current stops for 10 −6 seconds or longer is checked.
[0024]
Table 1 shows the results of evaluating the conductivity and flex life of these prototype flat cable conductors. In Table 1, the additive elements B, Sn, In, and Mg are represented by 10,000 times their weight percent. Further, the flex life (number of times: Nf) is expressed as a life ratio with the comparative example 11 of the conventional conductor (OFHC).
[0025]
[Table 1]
Figure 0003633302
[0026]
Examples 1 to 4 are copper alloys having a composition that can be said to be almost pure copper containing a trace amount of any one of B, Sn, In, and Mg as an additive element, and Example 5 includes trace amounts of Sn and Mg as additive elements. This is the case of a copper alloy having a composition that can be said to be almost pure copper. In these Examples 1 to 5, the average crystal grain size is 7 μm to 5 μm by adding 0.003 wt% to 0.045 wt% in total of one or more of the copper alloy compositions B, Sn, and Mg. The refined copper was used.
[0027]
In all of Examples 1 to 5, the conductivity was as good as 100% IACS, and the bending life was 1.5 times or more that of pure copper.
[0028]
Of these, in particular, in Examples 4 and 5 in which the average crystal grain size is 5 μm, the conductivity is 100% IACS, and the flex life is 1.7 times and 1.9 times that of the conventional conductor (OFHC). High value was shown.
[0029]
From this, it is predicted that the bending life can be extended when the average crystal grain size is 5 μm or less. However, as shown in Comparative Examples 6 to 8, even when the average crystal grain size is the same 5 μm, the alloy composition In the case of copper to which one or more of the additive elements B, Sn, In, and Mg are added in a total amount of 0.09 wt% or more, the bending life is 1.5 times or more, but the conductivity is increased. Dropped to 90-96% IACS.
[0030]
On the other hand, even when copper containing B, Sn, In, or Mg is used as an additive element as in Examples 9 and 10, if the average crystal grain size is as large as 19 μm to 20 μm, the bending life is a conventional conductor. It was not different from the case of (OFHC).
[0031]
Thus, it can be seen that Examples 1 to 5 have a flex life of 1.5 times or more that of the conventional conductor (OFHC) of Comparative Example 11 and excellent conductivity of 100% or more. . However, in Comparative Examples 6, 7, 8 in which the total amount of element addition exceeds 0.05 wt% and in Comparative Examples 9, 10 in which the average crystal grain size exceeds 7 μm, it is not possible to achieve both a flex life and conductivity. It was.
[0032]
In all of the above examples, a flat conductor having a thickness of 0.05 mm (50 μm) was used, but when a flat conductor having a thickness of 15 μm to 100 μm was used, the same long bending life and high conductivity were obtained. .
[0033]
【The invention's effect】
As described above, according to the present invention, the following excellent effects can be obtained.
[0034]
The conductor for a flat cable of the present invention comprises one or more of B, Sn, In, and Mg in a total of 0 . 005 wt% to 0.045 wt% is added, and the crystal grains are refined to 7 μm or less, preferably 5 μm or less (claims 1 and 2 ).
[0035]
This is a structure in which one or two or more of B, Sn, In, and Mg are added in a minute amount to refine the average crystal grain size of copper. In addition, a conductor for a flat cable having an improved bending life can be obtained. Moreover, since the element addition is trace amount, the electroconductivity of the obtained flat cable conductor is not greatly reduced. Therefore, it is possible to obtain a flat cable conductor that maintains high conductivity while improving the bending life by refining crystal grains.
[0036]
Further, by forming the rectangular conductor thickness 15Myuemu~100myuemu, conductors for thin flat cable is obtained (claim 3).
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure of a flat cable to which a flat cable conductor of the present invention is applied.
[Explanation of symbols]
1 Flat conductor (Flat cable conductor)
2 Insulating film 3 Adhesive layer

Claims (3)

B、Sn、In、Mgのうち、1種もしくはそれ以上を合計で0.005 wt %〜0.045 wt 添加して結晶粒を7μm以下に微細化した銅から成るフラットケーブル用導体。A conductor for a flat cable made of copper in which one or more of B, Sn, In, and Mg are added in a total amount of 0.005 wt % to 0.045 wt % to refine crystal grains to 7 μm or less. B、Sn、In、Mgのうち、1種もしくはそれ以上を合計で0.005 wt %〜0.045 wt 添加して結晶粒を5μm以下に微細化した銅から成るフラットケーブル用導体。A flat cable conductor made of copper in which one or more of B, Sn, In, and Mg are added in a total amount of 0.005 wt % to 0.045 wt % to refine crystal grains to 5 μm or less. 厚さ15μm〜100μmの平角導体として形成されていることを特徴とする請求項1又は2記載のフラットケーブル用導体。 The flat cable conductor according to claim 1, wherein the flat cable conductor is formed as a flat conductor having a thickness of 15 μm to 100 μm .
JP24145998A 1998-08-27 1998-08-27 Flat cable conductor Expired - Fee Related JP3633302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24145998A JP3633302B2 (en) 1998-08-27 1998-08-27 Flat cable conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24145998A JP3633302B2 (en) 1998-08-27 1998-08-27 Flat cable conductor

Publications (2)

Publication Number Publication Date
JP2000067642A JP2000067642A (en) 2000-03-03
JP3633302B2 true JP3633302B2 (en) 2005-03-30

Family

ID=17074640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24145998A Expired - Fee Related JP3633302B2 (en) 1998-08-27 1998-08-27 Flat cable conductor

Country Status (1)

Country Link
JP (1) JP3633302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034098A1 (en) * 2016-08-16 2018-02-22 古河電気工業株式会社 Rotary connector device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734695B2 (en) * 2000-07-07 2011-07-27 日立電線株式会社 Flex-resistant flat cable
JP3921941B2 (en) * 2000-12-13 2007-05-30 日立電線株式会社 Shielded flat cable
WO2004009859A1 (en) * 2002-07-18 2004-01-29 Honda Giken Kogyo Kabushiki Kaisha Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
JP2008041447A (en) * 2006-08-07 2008-02-21 Hitachi Cable Ltd Conductor for cable, manufacturing method of the same, and flex-resistant cable using the same
JP5772338B2 (en) * 2011-07-21 2015-09-02 日立金属株式会社 Soft dilute copper alloy wire, soft dilute copper alloy sheet and soft dilute copper alloy stranded wire
JP2013040384A (en) * 2011-08-17 2013-02-28 Hitachi Cable Ltd Wiring material and plate material using soft dilute copper alloy
WO2013161069A1 (en) * 2012-04-27 2013-10-31 三洋電機株式会社 Solar cell module and method for producing solar cell module
KR20180071649A (en) 2016-12-20 2018-06-28 현대자동차주식회사 Flexible flat cable, vehicle comprising the same and flexible flat cable manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034098A1 (en) * 2016-08-16 2018-02-22 古河電気工業株式会社 Rotary connector device
JPWO2018034098A1 (en) * 2016-08-16 2019-06-13 古河電気工業株式会社 Rotating connector device
US10574012B2 (en) 2016-08-16 2020-02-25 Furukawa Electric Co., Ltd. Rotatable connector device

Also Published As

Publication number Publication date
JP2000067642A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
JP4367149B2 (en) Flat cable conductor, method of manufacturing the same, and flat cable
KR101044324B1 (en) Plated flat conductor and flexible flat cable therewith
CN101128887B (en) Aluminum conductive wire
TW200842904A (en) Flat cable
JP3633302B2 (en) Flat cable conductor
JP4044805B2 (en) Flat shielded cable
US7491102B2 (en) Printed circuit wiring board and electronic apparatus
JP4288844B2 (en) Extra fine copper alloy wire
JP2009004256A (en) Compound conductor and cable for cabling using it
FI60462C (en) ELEKTRISK LEDARE AV ALUMINIUMLEGERING
JP4734695B2 (en) Flex-resistant flat cable
JP2005512302A (en) Contact terminal with doped coating
US6806519B2 (en) Surface mountable device
CN109155208B (en) Coating material for electrical contacts and method for producing said coating material
JP2020187971A (en) Connector terminal, terminal-attached wire and terminal pair
CN112423465B (en) Heat-conducting substrate
EP3731242B1 (en) Cable
JP4164887B2 (en) High flex flat cable
JPH02111834A (en) High conductive copper alloy for wiring of electrical and electronic parts having excellent migration resistance
JP3885809B2 (en) Copper alloy for terminals and connectors
JP3850725B2 (en) Conductive paste
JP2005302309A (en) Coaxial cable
JP2005243345A (en) Conductor for flat cable and flat cable using it
JP2003045232A (en) Flat conductor and flat cable
JP2008081836A (en) Method for manufacturing copper alloy strip or copper alloy foil with excellent strength, electric conductivity and bendability, copper alloy strip or copper alloy foil, and electronic parts using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees