JP2005302309A - Coaxial cable - Google Patents

Coaxial cable Download PDF

Info

Publication number
JP2005302309A
JP2005302309A JP2004111964A JP2004111964A JP2005302309A JP 2005302309 A JP2005302309 A JP 2005302309A JP 2004111964 A JP2004111964 A JP 2004111964A JP 2004111964 A JP2004111964 A JP 2004111964A JP 2005302309 A JP2005302309 A JP 2005302309A
Authority
JP
Japan
Prior art keywords
coaxial cable
carbon
jacket
shielding effect
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004111964A
Other languages
Japanese (ja)
Other versions
JP4729751B2 (en
Inventor
Osamu Matsumoto
修 松本
Keigo Goshiki
慶悟 五色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junkosha Co Ltd
Original Assignee
Junkosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junkosha Co Ltd filed Critical Junkosha Co Ltd
Priority to JP2004111964A priority Critical patent/JP4729751B2/en
Priority to PCT/JP2005/006983 priority patent/WO2005098874A1/en
Publication of JP2005302309A publication Critical patent/JP2005302309A/en
Application granted granted Critical
Publication of JP4729751B2 publication Critical patent/JP4729751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1869Construction of the layers on the outer side of the outer conductor

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coaxial cable having an extremely thin diameter that has improved flexibility, can obtain a sufficient shield effect, further can reduce an outer diameter, and can also reduce weight. <P>SOLUTION: In the coaxial cable, where a dielectric layer is formed around a center conductor, an external conductive layer is formed around the dielectric layer, and a coating is applied to the periphery of the external conductive layer, the coating is made of a thermoplastic resin containing a carbon-based conductive substance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、折畳式携帯電話の信号処理部に用いられるプリント基板とディスプレイとの間を電気的に接続する際に使用される同軸ケーブルに関し、特にシールド効果を高め、軽量化、細線化を可能にすると共に、可撓性も向上する極細同軸ケーブルに関する。 The present invention relates to, for example, a coaxial cable used when electrically connecting a printed circuit board used in a signal processing unit of a foldable mobile phone and a display. The present invention relates to a micro coaxial cable that can be made flexible and also has improved flexibility.

従来、例えば、上記したような折畳式携帯電話の信号処理部に用いられるプリント基板とディスプレイとの間、あるいはノート型パソコンの本体とディスプレイとの間を電気的に接続するには、折畳部におけるヒンジ部内の狭い内部空間を介して、シールド対策などの観点から外部導体層が設けられた極細径の同軸ケーブルが多数本、用いられている。このような同軸ケーブルは、高い周波数信号を用いる折畳式携帯電話においては、良好なシールド効果が求められると共に、折畳式携帯電話の開閉に伴って、頻繁な屈曲作用を受け、これに十分耐えられるように可撓性が必要とされている。 Conventionally, for example, in order to electrically connect between a printed circuit board used in the signal processing unit of a foldable mobile phone as described above and a display, or between the main body of a notebook computer and the display, the foldable A large number of ultra-thin coaxial cables provided with an outer conductor layer are used from the viewpoint of shielding measures through a narrow internal space in the hinge portion. Such a coaxial cable is required to have a good shielding effect in a foldable mobile phone using a high frequency signal, and is frequently subjected to a bending action as the foldable mobile phone is opened and closed. Flexibility is required to withstand.

また、最近の折畳式携帯電話の小型化と共に、その高性能化に伴って、信号処理部に用いられるプリント基板の回路配置が高密度実装化され、回路に接続するためのプリント基板の接続端子が狭小なピッチ間隔を有するものになってきているのに対応して、この種の同軸ケーブルも、同じく狭いピッチ間隔で配置される必要がある。したがって、この狭小なピッチ間隔を有するプリント基板の接続端子に同軸ケーブルを接続するには、狭いピッチ間隔で同軸ケーブルを配置可能としなければならず、そのためには同軸ケーブルの外径が小さいことが必要であるが、これまでの同軸ケーブルでは、シールド効果を一層向上させるための外部導体として、編組構造、2重横巻シールド構造を備える同軸ケーブルが用いられたり、あるいは横巻シールド層のような外部導体の外周に巻かれ、この外部導体に接する側の面に金属層が形成された金属層付プラスチックテープを備える同軸ケーブルを用いることが提案されている(例えば、特許文献1参照)。 In addition, along with the recent miniaturization of foldable mobile phones, along with their higher performance, the circuit layout of the printed circuit board used for the signal processing unit has been mounted with high density, and the connection of the printed circuit board to connect to the circuit Corresponding to the fact that the terminals have a narrow pitch interval, this type of coaxial cable also needs to be arranged with a narrow pitch interval. Therefore, in order to connect the coaxial cable to the connection terminal of the printed circuit board having this narrow pitch interval, it is necessary to be able to arrange the coaxial cable at a narrow pitch interval. For this purpose, the outer diameter of the coaxial cable must be small. Although it is necessary, in the conventional coaxial cable, a coaxial cable having a braided structure or a double horizontal shield structure is used as an outer conductor for further improving the shielding effect, or a horizontal shield layer is used. It has been proposed to use a coaxial cable provided with a metal layer-attached plastic tape wound around the outer conductor and having a metal layer formed on the surface in contact with the outer conductor (see, for example, Patent Document 1).

しかし、この種の同軸ケーブルでは、同軸ケーブルの外径が太くなって狭いピッチ間隔で同軸ケーブルを配置することができず、狭小なピッチ間隔を有するプリント基板の接続端子に同軸ケーブルを接続することができないという問題があり、さらに、シールド効果のような電気的特性を向上させると共に、できるだけ細い外径が求められる同軸ケーブルにおいては、薄い金属層付プラスチックテープを有する特許文献1に示すような同軸ケーブルであっても、この金属層付プラスチックテープによるケーブルの外径増加、重量増加も避けられないものとなる。しかも、この同軸ケーブルでは、外部導体の外周に金属層付プラスチックテープを巻かなければならないと言う煩わしい作業工程があり、さらに、この巻回された金属層付プラスチックテープにより同軸ケーブルの可撓性が損なわれるという問題もある。 However, in this type of coaxial cable, the outer diameter of the coaxial cable becomes thick and the coaxial cable cannot be arranged at a narrow pitch interval, and the coaxial cable is connected to the connection terminal of the printed circuit board having a narrow pitch interval. In a coaxial cable that has a problem that the electrical characteristics such as the shielding effect are improved and the outer diameter is required to be as thin as possible, the coaxial cable as shown in Patent Document 1 having a thin metal layer-attached plastic tape. Even in the case of a cable, an increase in the outer diameter and weight of the cable due to the metal layer-attached plastic tape are inevitable. Moreover, in this coaxial cable, there is a troublesome work process in which a metal layer-attached plastic tape must be wound around the outer periphery of the outer conductor, and the flexibility of the coaxial cable is further improved by the wound metal layer-attached plastic tape. There is also a problem that damage is lost.

すなわち、シールド効果のような電気的特性を向上させるために、外部導体として、編組構造、2重横巻シールド構造、あるいは横巻シールド層のような外部導体の外周に巻かれ、この外部導体に接する側の面に金属層が形成された金属層付プラスチックテープを用いた同軸ケーブルの構成では、可撓性の問題と共に、同軸ケーブルの外径および重量の増加を招き、外径が極めて細いことが要求される極細径の同軸ケーブルについては、特に大きな影響を与えることになる。それゆえ、さらにいっそうの外径および重量の減少を図ることができると共に、いっそうの可撓性を有し、しかも十分なシールド効果を得ることができる極細径の同軸ケーブルの実現が求められている。   That is, in order to improve the electrical characteristics such as the shielding effect, the outer conductor is wound around the outer conductor, such as a braided structure, a double horizontal shield structure, or a horizontal shield layer. In the configuration of a coaxial cable using a plastic tape with a metal layer with a metal layer formed on the surface on the contact side, the outer diameter and weight of the coaxial cable are increased along with the flexibility problem, and the outer diameter is extremely thin. Especially, an extremely small-diameter coaxial cable is required to have a great influence. Therefore, there is a demand for the realization of an ultra-thin coaxial cable that can further reduce the outer diameter and weight, have more flexibility, and obtain a sufficient shielding effect. .

特開2003−86030号JP 2003-86030 A

したがって、本発明は、上記の点に鑑みてなされたもので、その目的は、優れた可撓性を有すると共に、十分なシールド効果を得ることができ、さらに、外径を一層減少させ、重量減少も図ることができる極細径の同軸ケーブルを提供することにある。   Therefore, the present invention has been made in view of the above points, and the object thereof is to have excellent flexibility, obtain a sufficient shielding effect, further reduce the outer diameter, and reduce the weight. An object of the present invention is to provide an ultra-thin coaxial cable that can be reduced.

上記目的は、本発明に係わる同軸ケーブルによって達成される。すなわち、要約すれば、本発明は、中心導体の周囲に誘電体層を設け、この誘電体層の周囲に外部導体層を設け、この外部導体層の周囲に外被を設けてなる同軸ケーブルにおいて、前記外被がカーボン系導電性物質を含有した熱可塑性樹脂からなることを特徴とする同軸ケーブルである。また、本発明は、上記したカーボン系導電性物質が、カーボンナノチューブであることを特徴とする上記の同軸ケーブルである。 The above objective is accomplished by a coaxial cable according to the present invention. That is, in summary, the present invention relates to a coaxial cable in which a dielectric layer is provided around a central conductor, an outer conductor layer is provided around the dielectric layer, and a jacket is provided around the outer conductor layer. The coaxial cable is characterized in that the jacket is made of a thermoplastic resin containing a carbon-based conductive material. The present invention is the above coaxial cable, wherein the carbon-based conductive material is a carbon nanotube.

本発明の同軸ケーブルによれば、中心導体の周囲に誘電体層を設け、この誘電体層の周囲に外部導体層を設け、この外部導体層の周囲に外被を設けてなる同軸ケーブルにおいて、前記外被がカーボン系導電性物質を含有した熱可塑性樹脂からなることを特徴とする同軸ケーブルとしたので、本発明の同軸ケーブルは、優れた可撓性を有すると共に、良好なシールド効果を有し、さらに、カーボン系導電性物質を含有した外被の薄肉化により、外径を一層減少させ、重量減少も図ることができる極細径の同軸ケーブルとすることができる。 According to the coaxial cable of the present invention, in the coaxial cable in which a dielectric layer is provided around the central conductor, an outer conductor layer is provided around the dielectric layer, and a jacket is provided around the outer conductor layer. The coaxial cable according to the present invention has an excellent flexibility and a good shielding effect because the outer cover is made of a thermoplastic resin containing a carbon-based conductive material. Furthermore, by making the jacket containing the carbon-based conductive material thinner, it is possible to obtain an ultra-thin coaxial cable that can further reduce the outer diameter and reduce the weight.

以下、本発明による同軸ケーブルを、好ましい実施の形態について、添付図面を参照して説明する。
図1は、本発明による同軸ケーブルの好ましい実施の形態の概略部分斜視図である。
Hereinafter, preferred embodiments of a coaxial cable according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic partial perspective view of a preferred embodiment of a coaxial cable according to the present invention.

図1を参照すると、本発明による同軸ケーブル10が示されており、この同軸ケーブル10は、例えば、錫メッキ錫入り銅合金線、銀メッキ高抗張力銅合金線等の単線あるいは撚り線からなる中心導体1の周囲に、比誘電率の低いふっ素樹脂のような熱可塑性樹脂の誘電体層2が、押出し成形などにより被覆されている。また、この誘電体層2は、多孔質構造を形成するように延伸処理されて得られる延伸膨張ポリテトラフルオロエチレン(E-PTFE)テープを巻回して形成しても良い。 Referring to FIG. 1, a coaxial cable 10 according to the present invention is shown. The coaxial cable 10 is a center made of a single wire or a stranded wire such as a tin-plated tin-containing copper alloy wire or a silver-plated high strength copper alloy wire. A dielectric layer 2 of a thermoplastic resin such as a fluorine resin having a low relative dielectric constant is coated around the conductor 1 by extrusion molding or the like. The dielectric layer 2 may be formed by winding an expanded polytetrafluoroethylene (E-PTFE) tape obtained by stretching so as to form a porous structure.

この誘電体層2の周囲には、外部導体層3として、錫メッキ軟銅線等のような導体素線からなる複数本の素線を巻回して形成された横巻シールド層が設けられており、この横巻シールド層3の周囲には、ふっ素樹脂のような熱可塑性樹脂にカーボン系導電性物質を分散含有させたカーボン系導電性物質入り外被4が押出し成形等により被覆される。
このカーボン系導電性物質入り外被4は、導電性が付与された導電性外被となり、その結果、シールド効果の向上を図ることができる。
Around the dielectric layer 2, a laterally wound shield layer formed by winding a plurality of strands made of a conductor strand such as a tinned annealed copper wire is provided as the external conductor layer 3. The outer periphery of the horizontally wound shield layer 3 is covered with a jacket 4 containing a carbon-based conductive material obtained by dispersing and containing a carbon-based conductive material in a thermoplastic resin such as a fluororesin.
The carbon-containing conductive envelope 4 is a conductive envelope to which conductivity is imparted, and as a result, the shielding effect can be improved.

なお、この導電性外被4の体積固有抵抗は、10の10乗Ω・cm以下である。この体積固有抵抗が、10の10乗Ω・cm以上であると、シールド効果が減少するから好ましくない。なお、体積固有抵抗の下限には特に制限が無く、到達し得る最も低い体積固有抵抗を有する導電性外被を利用することができる。
また、導電性外被4の被覆厚さは、ケーブル径が太くならないように、しかもシールド効果が減少しないように、できるだけ薄肉に形成することが好ましい。
In addition, the volume specific resistance of the conductive jacket 4 is 10 10 Ω · cm or less. If the volume resistivity is 10 10 Ω · cm or more, the shielding effect decreases, which is not preferable. In addition, there is no restriction | limiting in particular in the minimum of volume specific resistance, The electroconductive jacket which has the lowest volume specific resistance which can be reached | attained can be utilized.
Moreover, it is preferable to form the coating thickness of the conductive jacket 4 as thin as possible so that the cable diameter does not increase and the shielding effect does not decrease.

ここで、導電性外被を形成するために用いられる上記した熱可塑性樹脂としては、エチレンーテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレンーパーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレンーヘキサフルオロプロピレン共重合体(FEP)のような高い耐熱性を有する熱可塑性ふっ素樹脂が好ましく、またカーボン系導電性物質としては、カーボン繊維、カーボンブラック、グラファイト、カーボンナノチューブなどを挙げることができるが、その中でカーボンナノチューブが好ましい。カーボンナノチューブは、導電性外被を形成するために用いられるふっ素樹脂のような熱可塑性樹脂に対し、少量の含有量で高いシールド効果を得ることができると共に、良好な成形性も得ることができ、さらに同軸ケーブルの細線化に寄与することができる。 Here, as the above-mentioned thermoplastic resin used for forming the conductive jacket, ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetra A thermoplastic fluororesin having high heat resistance such as fluoroethylene-hexafluoropropylene copolymer (FEP) is preferable, and examples of the carbon-based conductive material include carbon fiber, carbon black, graphite, and carbon nanotube. Of these, carbon nanotubes are preferred. Carbon nanotubes can provide a high shielding effect with a small amount of a thermoplastic resin such as a fluororesin used to form a conductive sheath, and can also provide good moldability. Furthermore, it can contribute to the thinning of the coaxial cable.

なお、ふっ素樹脂のような熱可塑性樹脂にカーボン系導電性物質を配合、含有させる割合は、熱可塑性樹脂70重量%〜99重量%に対し、30重量%〜1重量%のカーボンナノチューブが配合、含有される。上記した熱可塑性樹脂に対し、カーボンナノチューブの配合、含有割合が1重量%以下であると、シールド効果がなく、30重量%以上であると、成形性が悪くなり、横巻シールド層3の周囲にカーボン系導電性物質入り外被4を被覆する際に、薄肉で押出し成形することができない。 In addition, a carbon-based conductive material is blended and contained in a thermoplastic resin such as a fluororesin, and a proportion of 30% to 1% by weight of carbon nanotubes is blended with respect to 70% to 99% by weight of the thermoplastic resin. Contained. When the carbon nanotube content and content is less than 1% by weight with respect to the thermoplastic resin described above, there is no shielding effect. When the outer sheath 4 containing a carbon-based conductive material is coated, it cannot be extruded with a thin wall.

このようにして作製された同軸ケーブル10は、外部導体層3として、横巻シールド層が形成され、しかもカーボン系導電性物質入り外被4に配合、含有されるカーボン系導電性物質がカーボンナノチューブである場合には、外被4が薄肉に形成しても、シールド効果が高いので、外被4の薄肉と相俟って、この同軸ケーブルは、良好なシールド効果を有すると共に、全体として良好な可撓性をも有している。 The thus produced coaxial cable 10 has a horizontal shield layer formed as the outer conductor layer 3, and the carbon-based conductive material blended and contained in the jacket 4 containing the carbon-based conductive material is a carbon nanotube. In this case, since the shielding effect is high even if the jacket 4 is formed thin, this coaxial cable has a good shielding effect and is good overall as a result of the thin coating of the jacket 4. Flexibility.

径が25μmの錫メッキ錫入り銅合金線を7個撚りして形成した中心導体1の周囲に、PFAを押出し成形などにより被覆して、厚さ160μmの誘電体層2を形成した。この誘電体層2の周囲には、外部導体層3として、径が30μmの錫メッキ無酸素軟銅線を18本、横巻きして形成した横巻シールド層を設け、この横巻シールド層の周囲には、PFAにカーボンナノチューブを分散、含有させたカーボン系導電性物質入り外被4が押出し成形等により、30μmの厚さで被覆形成され、外径が280μmの同軸ケーブル10を作製した。
この同軸ケーブル10のシールド効果の測定をネットワークアナライザ(アンリツ社製)を用いて行った結果を図2に示す。
A dielectric layer 2 having a thickness of 160 μm was formed by covering the center conductor 1 formed by twisting seven tin-plated tin-containing copper alloy wires having a diameter of 25 μm with extrusion molding or the like. Around the dielectric layer 2, a laterally wound shield layer formed by laterally winding 18 tin-plated oxygen-free annealed copper wires with a diameter of 30 μm is provided as the outer conductor layer 3. In this way, a jacket 4 containing a carbon-based conductive material in which carbon nanotubes are dispersed and contained in PFA was coated and formed with a thickness of 30 μm by extrusion molding or the like, and a coaxial cable 10 having an outer diameter of 280 μm was produced.
The result of measuring the shielding effect of the coaxial cable 10 using a network analyzer (manufactured by Anritsu) is shown in FIG.

図2に示されるように、カーボン系導電性物質入り外被4を有する本発明による同軸ケーブル10のシールド効果(実線で示されている)は、カーボン系導電性物質を外被に有さず、他の構成は本発明の同軸ケーブルと同じである従来の同軸ケーブルのシールド効果(破線で示されている)に比較して、優れていることがわかる。また、本発明の同軸ケーブルは、カーボン系導電性物質入り外被4が薄肉に形成されていても、上記したようにシールド効果が高いので、このカーボン系導電性物質入り外被4の薄肉と相俟って、この同軸ケーブルは、良好なシールド効果を有すると共に、全体として良好な可撓性をも有しており、さらに外被4の薄肉化により、外径の増加を招くこともなく、重量の増加を招くこともない。 As shown in FIG. 2, the shielding effect (shown by a solid line) of the coaxial cable 10 according to the present invention having the jacket 4 containing the carbon-based conductive material does not have the carbon-based conductive material in the jacket. It can be seen that the other configuration is superior to the shielding effect (shown by a broken line) of the conventional coaxial cable which is the same as the coaxial cable of the present invention. In addition, the coaxial cable of the present invention has a high shielding effect as described above even if the outer sheath 4 containing the carbon-based conductive material is formed thin. Together, this coaxial cable has a good shielding effect and also has a good flexibility as a whole, and further, the outer diameter is not increased due to the thinning of the jacket 4. It does not cause an increase in weight.

なお、このようにして作製した複数本の極細径の同軸ケーブルを並置し、製織を行って製織ケーブルとすることもでき、あるいは複数本の極細径の同軸ケーブルを並置してラミネートを行ってラミネートケーブルとすることもでき、あるいは複数本の極細径の同軸ケーブルを並置してフラット化したフラットケーブルとすることもでき、もしくは複数本の極細径の同軸ケーブルをラウンド化してラウンドケーブルとすることもでき、そのケーブル化は所望に応じて種々の形態を取り得る。   In addition, a plurality of ultra-thin coaxial cables produced in this way can be juxtaposed and weaved to form a woven cable, or a plurality of ultra-thin coaxial cables can be juxtaposed for lamination. It can also be a cable, or it can be a flat cable that is flattened by juxtaposing multiple ultrafine coaxial cables, or it can be rounded by rounding multiple ultrafine coaxial cables The cabling can take various forms as desired.

本発明による同軸ケーブルの好ましい実施の形態の概略部分斜視図である。1 is a schematic partial perspective view of a preferred embodiment of a coaxial cable according to the present invention. 本発明による同軸ケーブルのシールド効果と従来の同軸ケーブルのシールド効果との比較を示す図である。It is a figure which shows the comparison with the shielding effect of the coaxial cable by this invention, and the shielding effect of the conventional coaxial cable.

符号の説明Explanation of symbols

1:中心導体、 2:誘電体層、 3:外部導体層、 4:外被、
10:同軸ケーブル。
1: central conductor, 2: dielectric layer, 3: outer conductor layer, 4: jacket,
10: Coaxial cable.

Claims (2)

中心導体の周囲に誘電体層を設け、この誘電体層の周囲に外部導体層を設け、この外部導体層の周囲に外被を設けてなる同軸ケーブルにおいて、前記外被がカーボン系導電性物質を含有した熱可塑性樹脂からなることを特徴とする同軸ケーブル。 In a coaxial cable in which a dielectric layer is provided around a central conductor, an outer conductor layer is provided around the dielectric layer, and a jacket is provided around the outer conductor layer, the jacket is a carbon-based conductive material. A coaxial cable comprising a thermoplastic resin containing 前記カーボン系導電性物質は、カーボンナノチューブであることを特徴とする請求項1に記載の同軸ケーブル。 The coaxial cable according to claim 1, wherein the carbon-based conductive material is a carbon nanotube.
JP2004111964A 2004-04-06 2004-04-06 coaxial cable Expired - Fee Related JP4729751B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004111964A JP4729751B2 (en) 2004-04-06 2004-04-06 coaxial cable
PCT/JP2005/006983 WO2005098874A1 (en) 2004-04-06 2005-04-04 Coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004111964A JP4729751B2 (en) 2004-04-06 2004-04-06 coaxial cable

Publications (2)

Publication Number Publication Date
JP2005302309A true JP2005302309A (en) 2005-10-27
JP4729751B2 JP4729751B2 (en) 2011-07-20

Family

ID=35125335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004111964A Expired - Fee Related JP4729751B2 (en) 2004-04-06 2004-04-06 coaxial cable

Country Status (2)

Country Link
JP (1) JP4729751B2 (en)
WO (1) WO2005098874A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187944A (en) * 2008-02-01 2009-08-20 Qinghua Univ Method of manufacturing coaxial cable
US8268398B2 (en) 2008-02-01 2012-09-18 Tsinghua Universtiy Method for making carbon nanotube composite structure
CN102110501B (en) * 2008-04-09 2012-11-21 清华大学 Preparation method of wire cable and cable core thereof
US8604340B2 (en) 2008-04-09 2013-12-10 Tsinghua Univeristy Coaxial cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424048B2 (en) 2018-06-28 2022-08-23 Carlisle Interconnect Technologies, Inc. Coaxial cable utilizing plated carbon nanotube elements and method of manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275142A (en) * 1993-03-19 1994-09-30 Nissei Denki Kk Low noise coaxial cable
JPH1153956A (en) * 1997-08-07 1999-02-26 Sumitomo Wiring Syst Ltd Emi suppressing cable
JP2000030548A (en) * 1998-07-14 2000-01-28 Junkosha Co Ltd Low noise coaxial cable and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275142A (en) * 1993-03-19 1994-09-30 Nissei Denki Kk Low noise coaxial cable
JPH1153956A (en) * 1997-08-07 1999-02-26 Sumitomo Wiring Syst Ltd Emi suppressing cable
JP2000030548A (en) * 1998-07-14 2000-01-28 Junkosha Co Ltd Low noise coaxial cable and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187944A (en) * 2008-02-01 2009-08-20 Qinghua Univ Method of manufacturing coaxial cable
US8247036B2 (en) 2008-02-01 2012-08-21 Tsinghua University Method for making coaxial cable
US8268398B2 (en) 2008-02-01 2012-09-18 Tsinghua Universtiy Method for making carbon nanotube composite structure
CN102110501B (en) * 2008-04-09 2012-11-21 清华大学 Preparation method of wire cable and cable core thereof
US8604340B2 (en) 2008-04-09 2013-12-10 Tsinghua Univeristy Coaxial cable

Also Published As

Publication number Publication date
WO2005098874A1 (en) 2005-10-20
JP4729751B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4229124B2 (en) coaxial cable
US20070175652A1 (en) Flat-shaped cable
JP2006019080A (en) Differential signal transmission cable
JP2010080097A (en) Coaxial cable
JP4044805B2 (en) Flat shielded cable
WO2010123105A1 (en) Electrical wire and method for producing same
CN209691475U (en) Coaxial cable, center component and mobile terminal
JP6164844B2 (en) Insulated wire, coaxial cable and multi-core cable
JP3900864B2 (en) 2-core parallel micro coaxial cable
JP2022103384A (en) Coaxial cable and cable assembly
JP4860944B2 (en) Flat cable
JP2004014337A (en) Extrafine multicore coaxial cable
WO2005098874A1 (en) Coaxial cable
JP2007280762A (en) Non-halogen coaxial cable, and multicore cable using it
JP2017033837A (en) Flat cable and flat cable with connector
JP4591094B2 (en) Coaxial cable and multi-core coaxial cable
JP2009164039A (en) Two-core parallel cable
JP5595754B2 (en) Ultra-fine coaxial cable and manufacturing method thereof
JP5381281B2 (en) Electric wire manufacturing method
JP4686931B2 (en) Ultra-fine coaxial cable
JP2019179594A (en) cable
JP2010073463A (en) High-speed differential cable
JP2011222201A (en) Coaxial cable and articles fabricated therefrom
JP5315815B2 (en) Thin coaxial cable
JPH0613014U (en) Coaxial cable and composite cable with coaxial

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4729751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees