JP3631985B2 - Ion conductive organic-inorganic composite electrolyte - Google Patents

Ion conductive organic-inorganic composite electrolyte Download PDF

Info

Publication number
JP3631985B2
JP3631985B2 JP2001197298A JP2001197298A JP3631985B2 JP 3631985 B2 JP3631985 B2 JP 3631985B2 JP 2001197298 A JP2001197298 A JP 2001197298A JP 2001197298 A JP2001197298 A JP 2001197298A JP 3631985 B2 JP3631985 B2 JP 3631985B2
Authority
JP
Japan
Prior art keywords
conductive organic
electrolyte
composite electrolyte
inorganic
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001197298A
Other languages
Japanese (ja)
Other versions
JP2003016834A (en
Inventor
衛平 湯
良明 小郷
緩子 小林
友幸 山本
力 近藤
Original Assignee
財団法人かがわ産業支援財団
近藤化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人かがわ産業支援財団, 近藤化学工業株式会社 filed Critical 財団法人かがわ産業支援財団
Priority to JP2001197298A priority Critical patent/JP3631985B2/en
Publication of JP2003016834A publication Critical patent/JP2003016834A/en
Application granted granted Critical
Publication of JP3631985B2 publication Critical patent/JP3631985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【産業の属する技術分野】
本発明は、電池あるいはセンサー等に利用するのに十分に適したイオン伝導性有機−無機複合電解質に関するものである。
【0002】
【従来の技術】
リチウム電池においては電解質として液体を使用している。電極間のイオンの移動速度が速いからである。しかし、電解質として液体を使用する場合、液漏れの心配がある。電解質として固体電解質を使用することで液漏れの問題を無くすことが提案されている。例えばヨウ化リチウムにゼオライトを添加した組成物よりなるリチウムイオン伝導性固体電解質(特開昭58−172802号)、2相高分子固体電解質(特開平4−162306号)等がある。
【0003】
これらのリチウムイオン伝導性固体電解質では、そのイオン伝導率が10−5S/cmのオーダーあるいは10−4S/cmの低いところにあり、充分なイオン移動度を得ることができないため、電池への利用には不十分である。特に、小電流型の電池では、10−4−10−3S/cmのイオン伝導度が必要であり、さらに大電流型の電池では、10−3S/cm以上のイオン伝導度が必要となる。
従来のリチウムイオン伝導性固体電解質においては、イオン伝導率が低く、電池として利用するのに充分な伝導度を得ることができないことから、電池あるいはセンサー等に利用するのに十分ではないという問題があった。
【0004】
有機−無機複合材料に関する従来の研究では、有機ポリマーに無機微粒子を添加することによってポリマーのイオン伝導率を向上することが報告されている。イオン伝導率の向上は無機微粒子の添加によってポリマーの結晶性が抑制されることから説明されている。一方、イオンの拡散は界面を通して行いやすいことから、面積の大きい多孔性無機微粒子/ポリマー界面におけるイオンの高速拡散が複合電解質のイオン伝導率の向上に寄与することが期待される。
【0005】
【発明が解決しようとする課題】
本発明は、従来技術の問題を解消するために成されたもので、固体内において伝導に寄与する溶媒和イオンが充分な移動度を有するものとして、電池あるいはセンサー等に利用するのに充分な伝導度を得ることが可能なイオン伝導性有機−無機複合電解質を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、無機化合物としてメソ多孔性材料、高分子化合物としてポリアルキレンオキシド、および電解質塩としてアルカリ金属塩の複合反応生成物を用いたイオン伝導性有機−無機複合電解質である。
【0007】
メソ多孔性材料がゼオライトまたは層状粘土鉱物であり、その場合、本発明は、無機化合物としてゼオライトまたは層状粘土鉱物、高分子化合物としてポリアルキレンオキシド、および電解質塩としてアルカリ金属塩の複合反応生成物を用いたイオン伝導性有機−無機複合電解質である。
【0008】
複合反応生成物の組成が、多孔性材料とポリアルキレンオキシドを重量比で1:0.2〜5、アルカリ金属塩〜20モルパーセントを含むものであり、その場合、本発明は、無機化合物としてメソ多孔性材料、より具体的にはゼオライトまたは層状粘土鉱物、高分子化合物としてポリアルキレンオキシド、および電解質塩としてアルカリ金属塩の、組成がメソ多孔性材料とポリアルキレンオキシドを重量比で1:0.2〜5、アルカリ金属塩〜20モルパーセントを含む複合反応生成物を用いたイオン伝導性有機−無機複合電解質である。
【0009】
常温における伝導度が10−3S/cm以上を示しており、その場合、本発明は、無機化合物としてメソ多孔性材料、より具体的にはゼオライトまたは層状粘土鉱物、高分子化合物としてポリアルキレンオキシド、および電解質塩としてアルカリ金属塩の複合反応生成物、より具体的には組成がメソ多孔性材料とポリアルキレンオキシドを重量比で1:0.2〜5、アルカリ金属塩〜20モルパーセントを含む複合反応生成物を用いた、常温における伝導度が10−3S/cm以上を示すイオン伝導性有機−無機複合電解質である。
【0010】
【発明の実施の形態】
原料化合物としては、いずれも公知のものが使用できる。
複合反応に用いられるメソ多孔性材料は、ゼオライトや層状粘土鉱物などがあげられる。ゼオライトとしては、LTA型、FAU型、CHA型、MOR型の少なくともいずれかの構造を有するアルミノシリケート系ゼオライトであって、ゼオライト骨格におけるAl/Si比が10以下であるものが好適に用いられる。このうち、LTA型のものとしては、3A(K−A)型や4A(Na−A)型、あるいは5(Ca−A)型のものが好適に用いられ、FAU型のものとしては、X(Na−X)型もしくはY(Na−Y)型のものが好適に用いられる。使用するゼオライトは用いる高分子の形態や分子量によって選択できるが、複合反応に用いたポリエチレンオキシド(PEO)を界面活性剤として合成したゼオライトが好ましい。すなわち、ゼオライト骨格におけるAl/Si比が10以下であれば、一般的に親水性であり、低水分圧下での吸着特性に優れるため好ましい。
【0011】
高分子化合物としては、ポリアルキレンオキシド、好ましくはポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)などである。
複合反応を進行する際には、多孔性材料とポリアルキレンオキシドを重量比で1:0.2〜10、好ましくは0.5〜2となるように混合すればよい。
アルカリ金属塩の添加量は、PEOに対して0〜20モルパーセント、好ましくは2〜20モル%の量で含まれる。
【0012】
電解質塩としてはアルカリ金属塩、好ましくはリチウム塩、その具体例として過塩素酸リチウム(LiClO)、テトラフルオロホウ酸リチウム(LiBF)、ヘキサフルオロリン酸リチウム(LiPF)、トリフルオロメタンスルホン酸リチウム(LiCFSO、LiN(CFSO)などがある。リチウム塩の含量は、高分子固体電解質において使用する通常的な水準である。
【0013】
【作用】
有機−無機複合材料に関する従来の研究では、有機ポリマーに無機微粒子を添加することによってポリマーのイオン伝導率を向上することが報告されている。本発明では、多孔性の無機微粒子にポリマーを吸着させることによってポリマーの結晶性が抑制され、イオン伝導率が向上させることができる。用いる多孔性の無機化合物にPEOの分子鎖の一部あるいはその全体を吸着させれば、PEO分子鎖が無機微粒子中に固定され、ポリマーの結晶性が確実に抑制できる。更に、低分子で液状のPEOの場合には、ポリマーの無機微粒子の細孔への吸着によって複合電解質固化体を作製することが可能になる。
【0014】
一方、イオンの拡散は界面を通して行いやすいことから、面積の大きい多孔性無機微粒子/ポリマー界面におけるイオンの高速拡散が複合電解質のイオン伝導率の向上に寄与することが期待される。すなわち、通常の溶液中におけるイオン導電を無機微粒子のような大きな空孔を有する固体中で行なうことにより、固体内において導電に寄与する溶媒和イオンが充分な移動度を有し、電池あるいはセンサー等に利用するのに充分な伝導度を得ることができる。
即ち、この複合電解質のイオン伝導率を向上させる効果としてはポリマーの結晶性の抑制と界面におけるイオンの高速移動の両方にある。
従って、本発明のリチウムイオンを含むアルミノ珪酸塩よりなるリチウムイオン伝導性固体電解質においては、アルミノ珪酸塩中のすなわち固体内で溶媒和したリチウムイオンが導電に寄与し、かつ十分な移動度を持たせることができるという性質を有するため、極めて良好な固体電解質となる。
【0015】
【実施例】
本願発明の詳細を実施例で説明する。本願発明はこれら実施例によって何ら限定されるものではない。
【0016】
実施例1
ゼオライトは市販のF−9(組成式:NAO・Al・2.5SiO)を160℃で真空乾燥したものを使用した。
一方、分子量200のPEO 15gを注入した二つのビーカーにLiSOCF 1.5gを溶解したPEO−LiSOCF溶液を調整した。
PEO−LiSOCF溶液とF−9を重量比で2:1混合した。その後、真空で一日保持した。
得られた複合電解質をローラプレスで成膜した後イオン伝導率を測定した。インピーダンスアナライザで測定した結果を図1に示す。Liイオン伝導率は3.5×10−3S/cmである。
【0017】
実施例2
ゼオライトF−9 10gを2M LiNO中に2日間撹拌し、Na/Liイオン交換反応を進行することによってLi型F−9を作製した。
実施例1と同様な方法で作製したPEO−LiSOCF溶液1.2gにLi型F−9 1gを添加し、乳鉢で混合した後、室温で真空一日処理した。
得られた複合電解質をローラプレスで製膜し、そのイオン伝導率をインピーダンスアナライザで測定した。得られた測定結果を図2に示す。Liイオン伝導率は1.4×10−3S/cmである。
【0018】
【発明の効果】
電池あるいはセンサー等に利用するのに充分な伝導度を得ることが可能なイオン伝導性有機−無機複合電解質を提供することができる。
【図面の簡単な説明】
【図1】実施例1のゼオライト−PEO−LiSOCF複合電解質のインピーダンスアナライザ分析結果を示す図面である。
【図2】実施例2のLi型ゼオライト−PEO−LiSOCF複合電解質のインピーダンスアナライザ分析結果を示す図面である。
[0001]
[Technical field to which industry belongs]
The present invention relates to an ion conductive organic-inorganic composite electrolyte that is sufficiently suitable for use in a battery, a sensor, or the like.
[0002]
[Prior art]
Lithium batteries use liquid as the electrolyte. This is because the moving speed of ions between the electrodes is fast. However, when a liquid is used as the electrolyte, there is a risk of liquid leakage. It has been proposed to eliminate the problem of liquid leakage by using a solid electrolyte as the electrolyte. For example, there are a lithium ion conductive solid electrolyte (Japanese Patent Laid-Open No. 58-172802) and a two-phase polymer solid electrolyte (Japanese Patent Laid-Open No. Hei 4-162306) made of a composition obtained by adding zeolite to lithium iodide.
[0003]
In these lithium ion conductive solid electrolytes, the ion conductivity is in the order of 10-5 S / cm or as low as 10-4 S / cm, and sufficient ion mobility cannot be obtained. It is insufficient for use. In particular, a small current type battery requires an ion conductivity of 10 −4 -10 −3 S / cm, and a large current type battery requires an ion conductivity of 10 −3 S / cm or more. Become.
The conventional lithium ion conductive solid electrolyte has a low ionic conductivity and cannot obtain sufficient conductivity for use as a battery, so that it is not sufficient for use in a battery or a sensor. there were.
[0004]
Previous studies on organic-inorganic composite materials have reported improving the ionic conductivity of polymers by adding inorganic particulates to organic polymers. The improvement in ionic conductivity is explained by the fact that the crystallinity of the polymer is suppressed by the addition of inorganic fine particles. On the other hand, since ion diffusion is easy to be performed through the interface, high-speed ion diffusion at the porous inorganic fine particle / polymer interface having a large area is expected to contribute to improvement of the ionic conductivity of the composite electrolyte.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the problems of the prior art, and solvated ions contributing to conduction in a solid have sufficient mobility, and are sufficient for use in batteries or sensors. It is an object to provide an ion conductive organic-inorganic composite electrolyte capable of obtaining conductivity.
[0006]
[Means for Solving the Problems]
The present invention is an ion conductive organic-inorganic composite electrolyte using a mesoporous material as an inorganic compound, a polyalkylene oxide as a polymer compound, and a composite reaction product of an alkali metal salt as an electrolyte salt.
[0007]
The mesoporous material is a zeolite or a lamellar clay mineral, in which case the present invention provides a complex reaction product of a zeolite or lamellar clay mineral as an inorganic compound, a polyalkylene oxide as a polymer compound, and an alkali metal salt as an electrolyte salt. It is the ion conductive organic-inorganic composite electrolyte used.
[0008]
The composition of the composite reaction product includes a porous material and a polyalkylene oxide in a weight ratio of 1: 0.2 to 5, and 2 to 20 mole percent of an alkali metal salt. As a mesoporous material, more specifically, a zeolite or a layered clay mineral, a polyalkylene oxide as a polymer compound, and an alkali metal salt as an electrolyte salt, the composition of the mesoporous material and the polyalkylene oxide is 1: An ion conductive organic-inorganic composite electrolyte using a composite reaction product containing 0.2 to 5 and 2 to 20 mole percent of an alkali metal salt.
[0009]
The conductivity at normal temperature is 10 −3 S / cm or more. In that case, the present invention is a mesoporous material as an inorganic compound, more specifically, a zeolite or layered clay mineral, and a polyalkylene oxide as a polymer compound. , and complex reaction product of the alkali metal salt as an electrolyte salt, the more mesoporous material composition specifically and polyalkylene oxide in a weight ratio of 1: 0.2-5, 2 20 mol percent alkali metal salt It is an ion conductive organic-inorganic composite electrolyte having a conductivity at room temperature of 10 −3 S / cm or more, using a composite reaction product.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Any known compound can be used as the raw material compound.
Examples of the mesoporous material used for the composite reaction include zeolite and layered clay mineral. As the zeolite, an aluminosilicate zeolite having at least one of the LTA type, FAU type, CHA type, and MOR type structure having an Al / Si ratio of 10 or less in the zeolite skeleton is preferably used. Of these, 3A (KA), 4A (Na-A), or 5 (Ca-A) types are preferably used as LTA types, and X (Na-X) type or Y (Na-Y) type is preferably used. The zeolite to be used can be selected depending on the form and molecular weight of the polymer to be used, but zeolite synthesized using polyethylene oxide (PEO) used for the complex reaction as a surfactant is preferable. That is, if the Al / Si ratio in the zeolite skeleton is 10 or less, it is generally preferable because it is hydrophilic and has excellent adsorption characteristics under a low water pressure.
[0011]
Examples of the polymer compound include polyalkylene oxide, preferably polyethylene oxide (PEO) and polypropylene oxide (PPO).
When the composite reaction proceeds, the porous material and the polyalkylene oxide may be mixed so that the weight ratio is 1: 0.2 to 10, preferably 0.5 to 2.
The addition amount of the alkali metal salt is from 0 to 20 mole percent relative to PEO, preferably contained in an amount of 2 to 20 mol%.
[0012]
The electrolyte salt is an alkali metal salt, preferably a lithium salt, and specific examples thereof are lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), trifluoromethanesulfonic acid. Examples include lithium (LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 ). The lithium salt content is a normal level used in polymer solid electrolytes.
[0013]
[Action]
Previous studies on organic-inorganic composite materials have reported improving the ionic conductivity of polymers by adding inorganic particulates to organic polymers. In the present invention, by adsorbing the polymer to the porous inorganic fine particles, the crystallinity of the polymer can be suppressed and the ionic conductivity can be improved. If a part or the whole of the PEO molecular chain is adsorbed to the porous inorganic compound to be used, the PEO molecular chain is fixed in the inorganic fine particles, and the crystallinity of the polymer can be reliably suppressed. Furthermore, in the case of low molecular and liquid PEO, a composite electrolyte solidified body can be produced by adsorption of polymer fine particles into the pores.
[0014]
On the other hand, since ion diffusion is easy to be performed through the interface, high-speed ion diffusion at the porous inorganic fine particle / polymer interface having a large area is expected to contribute to improvement of the ionic conductivity of the composite electrolyte. That is, by conducting ionic conduction in a normal solution in a solid having large vacancies such as inorganic fine particles, the solvated ions contributing to the conduction in the solid have sufficient mobility, and the battery or sensor, etc. It is possible to obtain a sufficient conductivity for use in the above.
In other words, the effect of improving the ionic conductivity of the composite electrolyte is both the suppression of the crystallinity of the polymer and the rapid movement of ions at the interface.
Therefore, in the lithium ion conductive solid electrolyte made of an aluminosilicate containing lithium ions of the present invention, lithium ions solvated in the aluminosilicate, that is, in the solid contribute to conduction and have sufficient mobility. Therefore, it becomes a very good solid electrolyte.
[0015]
【Example】
The details of the present invention will be described in Examples. The present invention is not limited to these examples.
[0016]
Example 1
The zeolite used was a commercially available F-9 (composition formula: NA 2 O · Al 2 O 3 · 2.5SiO 2 ) vacuum-dried at 160 ° C.
Meanwhile, a PEO-LiSO 3 CF 3 solution prepared by dissolving 1.5 g of LiSO 3 CF 3 in two beakers into which 15 g of PEO having a molecular weight of 200 was injected was prepared.
The PEO-LiSO 3 CF 3 solution and F-9 were mixed at a weight ratio of 2: 1. Thereafter, it was kept in a vacuum for a day.
The resulting composite electrolyte was formed into a film with a roller press, and the ionic conductivity was measured. The results measured with the impedance analyzer are shown in FIG. Li ion conductivity is 3.5 × 10 −3 S / cm.
[0017]
Example 2
Li-type F-9 was produced by stirring 10 g of zeolite F-9 in 2M LiNO 3 for 2 days and proceeding with Na + / Li + ion exchange reaction.
1 g of Li-type F-9 was added to 1.2 g of the PEO-LiSO 3 CF 3 solution prepared in the same manner as in Example 1, mixed in a mortar, and then treated at room temperature for one day in a vacuum.
The obtained composite electrolyte was formed into a film with a roller press, and its ionic conductivity was measured with an impedance analyzer. The obtained measurement results are shown in FIG. Li ion conductivity is 1.4 × 10 −3 S / cm.
[0018]
【The invention's effect】
It is possible to provide an ion conductive organic-inorganic composite electrolyte capable of obtaining a sufficient conductivity for use in a battery or a sensor.
[Brief description of the drawings]
1 is a drawing showing the results of an impedance analyzer analysis of a zeolite-PEO-LiSO 3 CF 3 composite electrolyte of Example 1. FIG.
2 is a drawing showing impedance analyzer analysis results of Li-type zeolite-PEO-LiSO 3 CF 3 composite electrolyte of Example 2. FIG.

Claims (4)

無機化合物としてメソ多孔性材料、高分子化合物としてポリアルキレンオキシド、および電解質塩としてアルカリ金属塩の複合反応生成物を用いたイオン伝導性有機−無機複合電解質。An ion conductive organic-inorganic composite electrolyte using a composite reaction product of a mesoporous material as an inorganic compound, a polyalkylene oxide as a polymer compound, and an alkali metal salt as an electrolyte salt. メソ多孔性材料がゼオライトまたは層状粘土鉱物である請求項1のイオン伝導性有機−無機複合電解質。The ion-conductive organic-inorganic composite electrolyte according to claim 1, wherein the mesoporous material is a zeolite or a layered clay mineral. 複合反応生成物の組成が、多孔性材料とポリアルキレンオキシドを重量比で1:0.2〜5、アルカリ金属塩〜20モルパーセントを含むものである請求項1または2のイオン伝導性有機−無機複合電解質。3. The ion-conductive organic-inorganic of claim 1 or 2, wherein the composition of the composite reaction product comprises a porous material and polyalkylene oxide in a weight ratio of 1: 0.2 to 5 and 2 to 20 mole percent of alkali metal salt. Composite electrolyte. 常温における伝導度が10−3S/cm以上を示す請求項1、2または3のイオン伝導性有機−無機複合電解質。The ion conductive organic-inorganic composite electrolyte according to claim 1, 2 or 3, wherein the conductivity at normal temperature is 10-3 S / cm or more.
JP2001197298A 2001-06-28 2001-06-28 Ion conductive organic-inorganic composite electrolyte Expired - Fee Related JP3631985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197298A JP3631985B2 (en) 2001-06-28 2001-06-28 Ion conductive organic-inorganic composite electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197298A JP3631985B2 (en) 2001-06-28 2001-06-28 Ion conductive organic-inorganic composite electrolyte

Publications (2)

Publication Number Publication Date
JP2003016834A JP2003016834A (en) 2003-01-17
JP3631985B2 true JP3631985B2 (en) 2005-03-23

Family

ID=19034929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197298A Expired - Fee Related JP3631985B2 (en) 2001-06-28 2001-06-28 Ion conductive organic-inorganic composite electrolyte

Country Status (1)

Country Link
JP (1) JP3631985B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2850301B1 (en) * 2003-01-23 2007-10-19 Commissariat Energie Atomique ORGANIC-INORGANIC HYBRID MATERIAL COMPRISING A MESOPOROUS MINERAL PHASE AND AN ORGANIC PHASE, MEMBRANE AND FUEL CELL
FR2850300B1 (en) * 2003-01-23 2006-06-02 Commissariat Energie Atomique CONDUCTIVE ORGANIC-INORGANIC HYBRID MATERIAL COMPRISING A MESOPOROUS PHASE, MEMBRANE, ELECTRODE, AND FUEL CELL
JP4324697B2 (en) * 2003-05-27 2009-09-02 国立大学法人東京工業大学 Ion conductive polymer composition
JP2006040853A (en) * 2004-06-25 2006-02-09 Tokyo Institute Of Technology Ion conductive filler and ion conductive polymer composition
TWI368347B (en) 2006-02-16 2012-07-11 Lg Chemical Ltd Electrode including organic/inorganic composite coating layer and electrochemical device prepared thereby
CN109768324A (en) * 2019-01-22 2019-05-17 广东天劲新能源科技股份有限公司 A method of enhancing composite solid electrolyte stability
RU2731364C1 (en) * 2019-06-27 2020-09-02 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Method of producing solid electrolyte

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08884B2 (en) * 1990-05-30 1996-01-10 松下電器産業株式会社 Solid electrolyte composition
JPH0794014A (en) * 1993-09-28 1995-04-07 Toppan Printing Co Ltd Lithium ion conductive solid electrolyte
JP3717092B2 (en) * 1997-03-27 2005-11-16 Tdk株式会社 Solid electrolyte, lithium secondary battery and electric double layer capacitor

Also Published As

Publication number Publication date
JP2003016834A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
Zhao et al. Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives
Mauger et al. Tribute to Michel Armand: from rocking chair–Li-ion to solid-state lithium batteries
Dirican et al. Composite solid electrolytes for all-solid-state lithium batteries
Qian et al. Designing ceramic/polymer composite as highly ionic conductive solid‐state electrolytes
He et al. A gel polymer electrolyte based on Polyacrylonitrile/organic montmorillonite membrane exhibiting dense structure for lithium ion battery
Tominaga et al. A novel composite polymer electrolyte: Effect of mesoporous SiO2 on ionic conduction in poly (ethylene oxide)–LiCF3SO3 complex
Jiang et al. A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries
KR100308690B1 (en) Microporous polymer electrolyte containing absorbent and its manufacturing method
Wang et al. Poly (vinylidene fluoride-hexafluoropropylene)/organo-montmorillonite clays nanocomposite lithium polymer electrolytes
KR20170124075A (en) Negative electrode for lithium metal battery and lithium metal battery comprising the same
Wright Recent trends in polymer electrolytes based on poly (ethylene oxide)
CN111313083B (en) Composite solid electrolyte film and preparation and application thereof
EP1134826A1 (en) New lithium insertion electrode materials based on orthosilicate derivatives
KR100441611B1 (en) Polymer electrolyte using absorbent and preparation method thereof
CA2269574A1 (en) Solid electrolytes containing toughening agents and electrolytic cells produced therefrom
Bakker et al. Polymer electrolytes based on triblock-copoly (oxyethylene/oxypropylene/oxyethylene) systems
JP3631985B2 (en) Ion conductive organic-inorganic composite electrolyte
Aravindan et al. A novel gel electrolyte with lithium difluoro (oxalato) borate salt and Sb2O3 nanoparticles for lithium ion batteries
Szczęsna-Chrzan et al. Lithium polymer electrolytes for novel batteries application: the review perspective
JP3623050B2 (en) Polymer electrolytes and electrochemical devices
Gowneni et al. Swapping conventional salts with an entrapped lithiated anionic polymer: fast single-ion conduction and electrolyte feasibility in LiFePO 4/Li batteries
US20100239916A1 (en) Non-aqueous electrolyte and a battery, a supercapacitor, an electrochromic device and a solar cell including such an electrolyte
Wang et al. Gel-based composite polymer electrolytes with novel hierarchical mesoporous silica network for lithium batteries
JP3717092B2 (en) Solid electrolyte, lithium secondary battery and electric double layer capacitor
Moskwiak et al. Physico-and electrochemistry of composite electrolytes based on PEODME–LiTFSI with TiO2

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees