JP3717092B2 - Solid electrolyte, lithium secondary battery and electric double layer capacitor - Google Patents

Solid electrolyte, lithium secondary battery and electric double layer capacitor Download PDF

Info

Publication number
JP3717092B2
JP3717092B2 JP07480997A JP7480997A JP3717092B2 JP 3717092 B2 JP3717092 B2 JP 3717092B2 JP 07480997 A JP07480997 A JP 07480997A JP 7480997 A JP7480997 A JP 7480997A JP 3717092 B2 JP3717092 B2 JP 3717092B2
Authority
JP
Japan
Prior art keywords
electrolyte
solid electrolyte
clay compound
layered clay
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07480997A
Other languages
Japanese (ja)
Other versions
JPH10269844A (en
Inventor
哲 丸山
長 鈴木
一英 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP07480997A priority Critical patent/JP3717092B2/en
Publication of JPH10269844A publication Critical patent/JPH10269844A/en
Application granted granted Critical
Publication of JP3717092B2 publication Critical patent/JP3717092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide solid state electrolyte indicating electric conductivity higher than current solid state electrolyte in the past, and provide a lithium secondary cell and an electric double layer capacitor incorporating the aforesaid solid state electrolyte. SOLUTION: Solid state electrolyte is formed out of electrolytic solution 2 where electrolyte is dissolved into organic compounds, high polymer material which is mixed with electrolytic solution 2 so as to be formed into gel, and of mixture with layer shaped clay compound grains (b), which indicates swelling properties. Besides, this solid state electrolyte uses layer shaped clay compound grains which exhibit swelling properties of a smectite series or a mica series, and the aforesaid layer shaped clay compound grains including lithium should be used.

Description

【0001】
【発明の属する技術分野】
本発明は、固体状電解質およびこれを用いたリチウム二次電池および電気二重層キャパシタに関する。
【0002】
【従来の技術】
現在様々な形の電池がエレクトロニクスの分野から自動車用途あるいは電力貯蔵を意図した大型電池まで広く利用されている。このような電池において、通常は電解液は液体が用いられてきたが、これを固体に置き換えることにより、液漏れの防止あるいはシート化が可能になり、次世代タイプの電池として注目を集めている。特に現在ノートブックパソコン等で急速に利用されているリチウムイオン二次電池等がシート化あるいは積層小型化できれば、さらに応用展開が加速されることが予想される。
【0003】
このような固体状の電解質を、リチウム電池等におけるセパレータとして用いた例として、特開平4−33949号公報には、ポリエーテル化合物と、イオン交換性の層状粘土化合物と、溶媒にリチウム塩等のイオン性物質を溶解させたものとの混合体からなるものがある。
【0004】
【発明が解決しようとする課題】
前記公報に記載のように、ポリエーテル化合物にイオン交換性の層状粘土化合物とリチウム塩等のイオン性物質とを加えて構成されたものは、水系の溶媒を用いてプロトンを伝導イオンとして作用する場合を除いて、電気伝導度がせいぜい10−4S/cm〜10 S/cm程度のオーダーしか得られない。この理由は、図1(A)に示すように、この電解質は、ポリエーテル化合物からなる高分子材料1に対してリチウム塩2が錯体を形成しており(3は層状粘土化合物である)、イオン伝導を示す高分子にリチウム塩が溶解しているものと考えられるからである。
【0005】
本発明の目的は、上記した従来の固体状電解質よりも高い電気伝導度が得られる固体状電解質とこれを用いたリチウム二次電池および電気二重層キャパシタを提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の固体状電解質は、電解質を有機化合物に溶解した電解液と、該電解液との混合によりゲルを形成する高分子材料と、雲母系の膨潤性を示す層状粘土化合物粒子との混合体によって構成したことを特徴とする。
【0007】
具体的には、例えば、LiClO、LiPF等のLi塩等の電解質を含み、プロピレンカーボネート、エチレンカーボネート等の有機化合物を溶媒とする電解液と、ポリフッカビニリデン(PVDF)等のように、電解質とゲル化可能な高分子材料と、リチウムテニオライト等の層状粘土化合物とを混合してドクターブレード法等、セラミック工程で用いられる一般的な手法を適用して成膜し、さらに適宜溶媒を除去して成膜したものである。
本発明の固体状電解質は、スメクタイト系または雲母系の膨潤性を示す粒子からなる層状粘土化合物と電解液との混合体とすることにより、高分子材料を含まないものとしても、電気伝導度の高い固体状電解質として、非成膜のペースト状固体状電解質として用いることができる。また、このような膨潤可能な粒子を含む高分子膜を作成後、電解液を含浸させてもよく、最終的に電解質を構成する要件を満足するならば、作成順によらない。
【0008】
本発明の固体状電解質は、PVDF等の高分子材料および電解液が高温では相溶しているが、図1(B)に示すように、室温では相分離を起こし、第1相aでは高分子材料1と電解液2とがゲルを形成し、実質的に液体の電気伝導と同等の電気伝導作用をなすと共に、第2相bは層状粘土化合物からなり、層状粘土化合物bは、図1(C)に示すように、膨潤して電解液2が層4、4の間に浸入することにより、層状粘土化合物においても電気伝導に寄与するから、電気伝導度を高めることができる。
【0009】
本発明において用いる層状粘土化合物は、フィロケイ酸塩であり、表1に示すように、Si2+およびO2−からなる四面体層と、Al3+、Mg2+、Fe2+と、これを囲んだ(OH)あるいはO2−、Fからなる八面体層が平行に積み重なって結合し、結晶構造を形成している化合物である。代表的な構造としては、四面体層と八面体層との2層構造と、2つの四面体層間に八面体層が挟まれた3重構造とがある。さらに、こうした典型的な構造と化学組成を持つものの他に、格子欠陥、あるいは不規則性の著しいものも非常に多いが、いずれのものも用いられる。
【0010】
この層状粘土化合物は、四面体層に含まれるアルカリ金属層に水等の極性溶媒が配位することにより膨潤するものである。層状粘土化合物としては、その平均粒子径が1μm〜50μm、好ましくは1μm〜5μmのものが用いられる。
【0011】
【表1】

Figure 0003717092
【0012】
また、層状粘土化合物として、好ましくは、雲母系の膨潤性を示す粒子からなる層状粘土化合物が電気伝導度を上げる意味において好ましい。雲母系の層状粘土化合物は、粒子が二次元方向に成長しているので、膜化に適している。また、雲母系層状粘土化合物の場合、親水性のSiOの様に表面電荷による吸水ではないため、特に比表面積を増大させたり、微粒子化する必要がない。そのため、粒子の凝集は抑えられる。雲母系層状粘土化合物は下記の構造式で示される。
【0013】
白雲母 (Muscovite) K(AlSi10)(OH)
ソーダ雲母(Paragonite) NaAl(AlSi10)(OH)
金雲母(Phlogopite) KMg(AlSi10)(OH)
黒雲母(Biotite) K(Mg,Fe)(AlSi10)(OH)
鱗雲母(Lepidolite) KLiAl(Si10)(OH)
特に、雲母化合物の中で、OH基をフッ素で置換した下記のものを用いることが好ましい。
フッ素金雲母(Fluoro-Phlogopite) KMg(AlSi10)F
フッソ4珪素雲母(Fluoro-Tetrasilicmica) KMg2.5(Si10)F
テニオライト(Teniolite) KMgLi(Si10)F
【0014】
さらに、雲母のOH基をフッ素で置換したもののうち、下記のように、アルカリ金属としてLiを含む化合物が電気伝導度を上げる意味で効果的である。
LiMgLi(Si10)F(リチウムテニオライト)
Li0.67Mg2.33Li0.67(Si10)F
Li0.33Mg2.67Li0.33(Si10)F
【0015】
層状粘土化合物の添加量を増大させた場合、相対的に電解液濃度が低下するので、電気伝導度は低下する。しかしながら、リチウム金属を含む上記層状粘土化合物の場合、層間のリチウムイオンがイオン伝導に寄与するため、電気伝導度の低下は小さい。すなわち、層状粘土化合物のイオン伝導度は、溶液系に比べれば1桁低いが、実用上可能な固体状電解質が提供できる。この場合、有機系電解質と異なり、層間のリチウムイオンの単独の伝導が支配的であると考えられる。
【0016】
この単一イオン伝導の場合、特にリチウム二次電池において、リチウムメタルを負極として用いる時、リチウム負極上へのリチウムデントライトの生成を抑制できる。したがって、リチウム金属二次電池用固体状電解質としても利用できる。
【0017】
本発明において、電解質としては、前記以外に、LiAsF、LiN(CFSO、LiBF、LiCFSO、LiSbF等を単独でまたは混合して用いることができる。
【0018】
また、溶媒としては、前記以外に、ジメチルカーボネート、ジエトキシエタン、ジエチルカーボネート、ジメトキシメタン、ジプロピルカーボネート等を用いることができる。
【0019】
また、高分子材料として、PVDF以外に、ポリアクリロニトリル(PAN)、ポリビニルブチラール(PVB)、ポリビニルフォルマール(PVF)、ポリビニルピロリドン(PVP)、スチレンブタジエンゴム(SBR)、ニトリルブタジエンゴム(NBR)等を単独または複合して用いることができる。
【0020】
前述のように、有機化合物を溶媒とした電解液と、該電解液との混合によりゲルを形成する高分子材料と、膨潤性を示す粒子からなる層状粘土化合物とにより構成する固体状電解質は、重量%として、電解液50〜80%、高分子材料20〜50%、層状粘土化合物5〜30%とすることが好ましい。
【0021】
本発明による固体状電解質は、例えばリチウム二次電池のセパレータとして、あるいは電気二重層キャパシタとして用いられる。
【0022】
【発明の実施の形態】
[実施例1]
固体状電解質を作製するため、以下の条件で電解質原料を作製した。
高分子材料:PVDF系(Kynar741、アトケム社製)。なお、この代わりに同社製Kynar2805や、ソルベ社製ソレフ、もしくはアウジモント社製PVDF系材料を使用することもできる。
【0023】
電解液:LiClO含有ポリカーボネート
溶媒:アセトン
層状粘土化合物:リチウムテニオライト:平均粒子径3μm
重量比 PVDF:電解液:リチウムテニオライト:アセトン=1:3:1:10
【0024】
上記重量比のものを秤量した後、ホモジナイザーを用いて溶解させた。この場合、室温下においても容易に溶解した。このようにしてできた溶液をシリコン基板(石英硝子基板でもよい)に滴下し、室温あるいは加温下で乾燥して溶媒を一部蒸発させることにより膜化した。
【0025】
参考例
前記実施例1において、層状粘土化合物として、スメクタイト系材料の1つであるサポナイト(平均粒子径3μm)を用い、他の材料、組成、製法は同様にして膜化した。
【0026】
実施例2
実施例1と同じ出発原料を用い、PVDFを添加せず、高分子マトリクスのない状態とした。
【0027】
[比較例1、2]
比較例1として、実施例1におけるリチウムテニオライトの代わりに親水性のSiO(平均粒子径2μm)を用い、他の組成、製法は実施例と同様にして作製した。また、比較例2として、実施例1におけるリチウムテニオライトの代わりに親水性のAl(平均粒子径2μm)を用い、他の組成、製法は実施例と同様にして作製した。
【0028】
上記実施例1、2、参考例、比較例1、2について電気伝導度を測定したその結果を表2に示す。
【0029】
【表2】
Figure 0003717092
【0030】
表2から分かるように、実施例1、2のようにフィラーとしてリチウムテニオライトやサポナイトを用いた場合には、特にこれらのフィラーの混入率が多い程、フィラーとして親水性SiOやAlを用いた場合に比較例に対し、電気伝導度が相対的に大となる。実施例2のように、PVDFを添加しない場合であっても、フィラーの濃度が0.33以下であればペースト化が可能であり、比較例よりも高い電気伝導度が得られる。
【0031】
実施例3
実施例1において作製した固体状電解質を用いて全固体型のシート状をなす4cm×3cmの矩形をなし、厚みが4mmのリチウム二次電池を作製した。電池の陽極にはLiMnを用い、リチウム金属合金を用いた。この二次電池の容量値として約100mAhが得られた。
【0032】
実施例4
実施例1において作製した固体状電解質を用い、電気二重層キャパシタを作製した。ただし、電解液中の塩としては、4級アンモニウム塩を用いた。また、電極は、電極は、活性炭繊維を導電助剤であるアセチレンブラックと任意の比で混合し、ペースト化した後、乾燥して作製した。前記電極および固体状電解質を4cm×4cmの広さに形成し、2枚の電極間にシート状の固体状電解質を挟んでキャパシタとした。そして、活性炭1g当たり25Fの容量が得られた。
【0033】
【発明の効果】
本発明によれば、有機化合物を溶媒とした電解液と、該電解液との混合によりゲルを形成する高分子材料と、雲母系の膨潤性を示す粒子からなる層状粘土化合物との混合体により固体状電解質を構成する(請求項1)か、あるいは有機化合物を溶媒とした電解液と、スメクタイト系または雲母系の膨潤性を示す粒子からなる層状粘土化合物との混合体により固体状電解質を構成した(請求項2)ので、従来より高い電気伝導度が得られる。
特に、雲母系の層状粘土化合物は、粒子が二次元方向に成長しているので、膜化に適している。また、雲母系層状粘土化合物の場合、親水性のSiO の様に表面電荷による吸水ではないため、特に比表面積を増大させたり、微粒子化する必要がない。そのため、粒 子の凝集は抑えられる
【0034】
さらに、層状粘土化合物がリチウムを含むものである(請求項3、4)ことにより、層状粘土化合物の混入率を増やしても電気伝導度の低下度合が少なくなる。
【0035】
また、前記固体状電解質をセパレータに用いてリチウム二次電池を構成する(請求項5)ことにより、内部抵抗の小さい電池が得られる。
また、この固体状電解質を電気二重層キャパシタに用いる(請求項6、7)ことにより、大容量のキャパシタが得られる。
【図面の簡単な説明】
【図1】 (A)は従来の固体状電解質の内部構造を説明する図、(B)は本発明による固体状電解質の内部構造を説明する図、(C)は本発明において用いる層状粘土化合物の内部構造を示す図である。
【符号の説明】
1:高分子材料、2:電解液、3:層状粘土化合物、a:第1相、b:第2相[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid electrolyte, a lithium secondary battery using the solid electrolyte, and an electric double layer capacitor.
[0002]
[Prior art]
Currently, various types of batteries are widely used, ranging from electronics to automobiles or large batteries intended for power storage. In such a battery, a liquid is usually used as the electrolytic solution. However, by replacing it with a solid, it is possible to prevent liquid leakage or form a sheet, which is attracting attention as a next-generation type battery. . In particular, if a lithium ion secondary battery or the like currently used rapidly in a notebook computer or the like can be made into a sheet or stacked and miniaturized, the application development is expected to be further accelerated.
[0003]
As an example of using such a solid electrolyte as a separator in a lithium battery or the like, JP-A-4-33949 discloses a polyether compound, an ion-exchangeable layered clay compound, a lithium salt or the like as a solvent. Some are composed of a mixture with a dissolved ionic substance.
[0004]
[Problems to be solved by the invention]
As described in the above-mentioned publication, the one formed by adding an ion-exchangeable layered clay compound and an ionic substance such as a lithium salt to a polyether compound acts as a conduction ion using an aqueous solvent. If the exception of the electric conductivity of at most 10 -4 S / cm~10 - 6 S / cm order of about only obtained. The reason for this is that, as shown in FIG. 1A, in this electrolyte, a lithium salt 2 forms a complex with a polymer material 1 made of a polyether compound (3 is a layered clay compound). This is because the lithium salt is considered to be dissolved in the polymer exhibiting ionic conduction.
[0005]
An object of the present invention is to provide a solid electrolyte capable of obtaining higher electric conductivity than the above-described conventional solid electrolyte, a lithium secondary battery and an electric double layer capacitor using the solid electrolyte.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the solid electrolyte of the present invention exhibits an mica-based swelling property, an electrolyte solution in which an electrolyte is dissolved in an organic compound, a polymer material that forms a gel by mixing with the electrolyte solution, and It is characterized by comprising a mixture with layered clay compound particles.
[0007]
Specifically, for example, an electrolyte including an Li salt such as LiClO 4 and LiPF 6 and using an organic compound such as propylene carbonate and ethylene carbonate as a solvent, and polyfucavinylidene (PVDF), A polymer material that can be gelled with an electrolyte and a layered clay compound such as lithium teniolite are mixed to form a film by applying a general technique used in the ceramic process such as a doctor blade method. It was removed and formed into a film.
The solid electrolyte of the present invention is a mixture of a lamellar clay compound composed of particles exhibiting smectite-based or mica-based swellability and an electrolyte solution. As a high solid electrolyte, it can be used as a non-film-form paste solid electrolyte. Moreover, after producing such a polymer film containing swellable particles, it may be impregnated with an electrolytic solution, and if the final requirements for the electrolyte are satisfied, it does not depend on the order of production.
[0008]
In the solid electrolyte of the present invention, the polymer material such as PVDF and the electrolytic solution are compatible with each other at a high temperature. However, as shown in FIG. The molecular material 1 and the electrolytic solution 2 form a gel and have an electric conduction action substantially equivalent to the electric conduction of the liquid, and the second phase b is composed of a layered clay compound. As shown in (C), since the electrolyte solution 2 swells and penetrates between the layers 4 and 4, the layered clay compound also contributes to electric conduction, so that the electric conductivity can be increased.
[0009]
The layered clay compound used in the present invention is a phyllosilicate, and as shown in Table 1, a tetrahedral layer composed of Si 2+ and O 2− , Al 3+ , Mg 2+ , Fe 2+ is surrounded by this ( OH) - or O 2-, F - octahedral layer is bonded stacked parallel consisting of a compound forming the crystal structure. Typical structures include a two-layer structure of a tetrahedral layer and an octahedral layer, and a triple structure in which an octahedral layer is sandwiched between two tetrahedral layers. Further, in addition to those having such typical structures and chemical compositions, there are a great many lattice defects or irregularities, and any of them is used.
[0010]
This layered clay compound swells when a polar solvent such as water is coordinated to the alkali metal layer contained in the tetrahedral layer. As the layered clay compound, those having an average particle diameter of 1 μm to 50 μm, preferably 1 μm to 5 μm are used.
[0011]
[Table 1]
Figure 0003717092
[0012]
In addition, as the layered clay compound, a layered clay compound composed of particles exhibiting mica-based swelling properties is preferable in terms of increasing electrical conductivity. Mica-based layered clay compounds are suitable for film formation because the particles grow in two-dimensional directions. Further, in the case of a mica-based layered clay compound, it is not necessary to increase the specific surface area or to make fine particles because it is not water absorption due to surface charge unlike hydrophilic SiO 2 . Therefore, the aggregation of particles can be suppressed. The mica-based layered clay compound is represented by the following structural formula.
[0013]
Muscovite K 4 (AlSi 3 O 10 ) (OH) 2
Soda mica (Paragonite) NaAl 2 (AlSi 3 O 10 ) (OH) 2
Phlogopite KMg 3 (AlSi 3 O 10 ) (OH) 2
Biotite K (Mg, Fe) 3 (AlSi 3 O 10 ) (OH) 2
Lepidolite KLi 2 Al (Si 4 O 10 ) (OH) 2
In particular, it is preferable to use the following mica compounds in which the OH group is substituted with fluorine.
Fluoro-Phlogopite KMg 3 (AlSi 3 O 10 ) F 2
Fluoro-Tetrasilicmica KMg 2.5 (Si 4 O 10 ) F 2
Teniolite KMg 2 Li (Si 4 O 10 ) F 2
[0014]
Furthermore, among the compounds in which the OH group of mica is substituted with fluorine, a compound containing Li as an alkali metal is effective in increasing the electrical conductivity as described below.
LiMg 2 Li (Si 4 O 10 ) F 2 (lithium teniolite)
Li 0.67 Mg 2.33 Li 0.67 (Si 4 O 10 ) F 2
Li 0.33 Mg 2.67 Li 0.33 (Si 4 O 10 ) F 2
[0015]
When the amount of the layered clay compound added is increased, the electric conductivity is lowered because the electrolyte concentration is relatively lowered. However, in the case of the layered clay compound containing lithium metal, the lithium ion between the layers contributes to ionic conduction, so the decrease in electrical conductivity is small. That is, the ionic conductivity of the layered clay compound is an order of magnitude lower than that of the solution system, but a practical solid electrolyte can be provided. In this case, unlike the organic electrolyte, it is considered that independent conduction of lithium ions between layers is dominant.
[0016]
In the case of this single ion conduction, particularly in a lithium secondary battery, when lithium metal is used as the negative electrode, the generation of lithium dentlite on the lithium negative electrode can be suppressed. Therefore, it can be used as a solid electrolyte for a lithium metal secondary battery.
[0017]
In the present invention, in addition to the above, LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , LiCF 3 SO 3 , LiSbF 6 and the like can be used alone or in combination as the electrolyte.
[0018]
In addition to the above, dimethyl carbonate, diethoxyethane, diethyl carbonate, dimethoxymethane, dipropyl carbonate, and the like can be used as the solvent.
[0019]
In addition to PVDF, polyacrylonitrile (PAN), polyvinyl butyral (PVB), polyvinyl formal (PVF), polyvinyl pyrrolidone (PVP), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR), and the like as polymer materials Can be used alone or in combination.
[0020]
As described above, a solid electrolyte composed of an electrolytic solution using an organic compound as a solvent, a polymer material that forms a gel by mixing with the electrolytic solution, and a layered clay compound composed of particles exhibiting swellability, As weight%, it is preferable to set it as 50-80% of electrolyte solution, 20-50% of polymeric materials, and 5-30% of layered clay compounds.
[0021]
The solid electrolyte according to the present invention is used, for example, as a separator for a lithium secondary battery or as an electric double layer capacitor.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
In order to produce a solid electrolyte, an electrolyte raw material was produced under the following conditions.
Polymer material: PVDF (Kynar 741, manufactured by Atochem). Instead of this, Kynar 2805 manufactured by the same company, Solef manufactured by Solvay, or PVDF material manufactured by Augmont can be used.
[0023]
Electrolyte: LiClO 4 containing polycarbonate Solvent: Acetone layered clay compound: Lithium teniolite: Average particle size 3 μm
Weight ratio PVDF: electrolyte: lithium teniolite: acetone = 1: 3: 1: 10
[0024]
After weighing the above weight ratio, it was dissolved using a homogenizer. In this case, it was easily dissolved even at room temperature. The solution thus formed was dropped onto a silicon substrate (or a quartz glass substrate) and dried at room temperature or under heating to form a film by partially evaporating the solvent.
[0025]
[ Reference example ]
In Example 1, saponite (average particle diameter: 3 μm), which is one of smectite materials, was used as the layered clay compound, and other materials, compositions, and production methods were formed into films.
[0026]
[ Example 2 ]
The same starting materials as in Example 1 were used, PVDF was not added, and no polymer matrix was present.
[0027]
[Comparative Examples 1 and 2]
As Comparative Example 1, hydrophilic SiO 2 (average particle diameter 2 μm) was used instead of lithium teniolite in Example 1, and other compositions and production methods were produced in the same manner as in Example. Further, as Comparative Example 2, hydrophilic Al 2 O 3 (average particle diameter 2 μm) was used in place of lithium teniolite in Example 1, and other compositions and production methods were produced in the same manner as in Example.
[0028]
Table 2 shows the results of measuring the electrical conductivity of Examples 1 and 2, Reference Example, and Comparative Examples 1 and 2.
[0029]
[Table 2]
Figure 0003717092
[0030]
As can be seen from Table 2, when lithium teniolite or saponite is used as the filler as in Examples 1 and 2 , the higher the mixing ratio of these fillers, the more hydrophilic SiO 2 or Al 2 O is used as the filler. When 3 is used, the electrical conductivity is relatively large compared to the comparative example. Even when PVDF is not added as in Example 2 , if the filler concentration is 0.33 or less, it can be made into a paste, and higher electrical conductivity can be obtained than in the comparative example.
[0031]
[ Example 3 ]
Using the solid electrolyte produced in Example 1, a 4 cm × 3 cm rectangular secondary battery having an all-solid sheet shape and a thickness of 4 mm was produced. LiMn 2 O 4 was used for the anode of the battery, and a lithium metal alloy was used. About 100 mAh was obtained as the capacity value of the secondary battery.
[0032]
[ Example 4 ]
An electric double layer capacitor was produced using the solid electrolyte produced in Example 1. However, a quaternary ammonium salt was used as the salt in the electrolytic solution. The electrode was prepared by mixing activated carbon fiber with acetylene black, which is a conductive additive, in an arbitrary ratio, forming a paste, and then drying. The electrode and the solid electrolyte were formed in a size of 4 cm × 4 cm, and a sheet-like solid electrolyte was sandwiched between the two electrodes to form a capacitor. A capacity of 25 F per gram of activated carbon was obtained.
[0033]
【The invention's effect】
According to the present invention, an electrolyte solution containing an organic compound as a solvent, a polymer material that forms a gel by mixing with the electrolyte solution, and a layered clay compound composed of particles exhibiting mica-based swelling properties are used. A solid electrolyte is constituted by a mixture of an electrolyte containing an organic compound as a solvent and a layered clay compound composed of smectite-based or mica-based swellable particles (Claim 1). (Claim 2), electrical conductivity higher than the conventional one can be obtained.
In particular, a mica-based layered clay compound is suitable for film formation because particles grow in a two-dimensional direction. Further, in the case of a mica-based layered clay compound, it is not necessary to increase the specific surface area or to make fine particles because it is not water absorption due to surface charge unlike hydrophilic SiO 2 . Therefore, agglomeration of particles child is suppressed.
[0034]
Furthermore , when the layered clay compound contains lithium ( Claims 3 and 4 ), the degree of decrease in electrical conductivity is reduced even if the mixing rate of the layered clay compound is increased.
[0035]
Moreover, a battery having a low internal resistance can be obtained by constituting a lithium secondary battery using the solid electrolyte as a separator ( Claim 5 ).
Further, by using this solid electrolyte in an electric double layer capacitor ( claims 6 and 7 ), a large-capacity capacitor can be obtained.
[Brief description of the drawings]
1A is a diagram for explaining the internal structure of a conventional solid electrolyte, FIG. 1B is a diagram for explaining the internal structure of a solid electrolyte according to the present invention, and FIG. 1C is a layered clay compound used in the present invention. It is a figure which shows the internal structure of.
[Explanation of symbols]
1: polymer material, 2: electrolyte solution, 3: layered clay compound, a: first phase, b: second phase

Claims (7)

電解質を有機化合物に溶解した電解液と、
該電解液との混合によりゲルを形成する高分子材料と、
雲母系の膨潤性を示す層状粘土化合物粒子との混合体でなる
ことを特徴とする固体状電解質。
An electrolytic solution in which an electrolyte is dissolved in an organic compound;
A polymeric material that forms a gel upon mixing with the electrolyte;
A solid electrolyte comprising a mixture of layered clay compound particles exhibiting mica-based swelling properties.
電解質を有機化合物に溶解した電解液と、
スメクタイト系または雲母系の膨潤性を示す層状粘土化合物粒子との混合体でなる
ことを特徴とする固体状電解質。
An electrolytic solution in which an electrolyte is dissolved in an organic compound;
A solid electrolyte comprising a mixture of layered clay compound particles exhibiting smectite-based or mica-based swelling properties.
請求項1または2において、
層状粘土化合物がリチウムを含む
ことを特徴とする固体状電解質。
In claim 1 or 2 ,
A solid electrolyte, wherein the layered clay compound contains lithium.
電解質を有機化合物に溶解した電解液と、An electrolytic solution in which an electrolyte is dissolved in an organic compound;
該電解液との混合によりゲルを形成する高分子材料と、A polymeric material that forms a gel upon mixing with the electrolyte;
膨潤性を示す層状粘土化合物粒子との混合体でなり、It consists of a mixture with layered clay compound particles showing swelling properties,
前記層状粘土化合物がリチウムを含むThe layered clay compound contains lithium
ことを特徴とする固体状電解質。A solid electrolyte characterized by that.
請求項1から4までのいずれかの固体状電解質からなるセパレータを有する
ことを特徴とするリチウム二次電池。
A lithium secondary battery comprising a separator made of any one of the solid electrolytes according to claim 1.
請求項1から4までのいずれかの固体状電解質を有する
ことを特徴とする電気二重層キャパシタ。
An electric double layer capacitor comprising the solid electrolyte according to any one of claims 1 to 4.
電解質を有機化合物に溶解した電解液と、An electrolytic solution in which an electrolyte is dissolved in an organic compound;
該電解液との混合によりゲルを形成する高分子材料と、A polymeric material that forms a gel upon mixing with the electrolyte;
膨潤性を示す層状粘土化合物粒子との混合体でなる固体状電解質を有するHaving a solid electrolyte composed of a mixture with layered clay compound particles exhibiting swelling properties
ことを特徴とする電気二重層キャパシタ。An electric double layer capacitor characterized by that.
JP07480997A 1997-03-27 1997-03-27 Solid electrolyte, lithium secondary battery and electric double layer capacitor Expired - Lifetime JP3717092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07480997A JP3717092B2 (en) 1997-03-27 1997-03-27 Solid electrolyte, lithium secondary battery and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07480997A JP3717092B2 (en) 1997-03-27 1997-03-27 Solid electrolyte, lithium secondary battery and electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH10269844A JPH10269844A (en) 1998-10-09
JP3717092B2 true JP3717092B2 (en) 2005-11-16

Family

ID=13558017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07480997A Expired - Lifetime JP3717092B2 (en) 1997-03-27 1997-03-27 Solid electrolyte, lithium secondary battery and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3717092B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544689B1 (en) * 1999-06-30 2003-04-08 North Carolina State University Composite electrolytes based on smectite clays and high dielectric organic liquids and electrodes
JP3631985B2 (en) * 2001-06-28 2005-03-23 財団法人かがわ産業支援財団 Ion conductive organic-inorganic composite electrolyte
CN100456552C (en) * 2005-01-28 2009-01-28 株式会社Lg化学 Paste electrolyte and rechargeable lithium battery containing the same
CA2656401C (en) * 2006-07-10 2012-11-27 Lg Chem, Ltd. Paste electrolyte and rechargeable lithium battery containing the same
JP5455136B2 (en) * 2010-03-10 2014-03-26 株式会社アルバック Active material-electrolyte complex using gelled electrolyte, method for producing the same, and all-solid-state lithium ion secondary battery using the electrolyte
JP5680241B2 (en) * 2014-03-14 2015-03-04 日東電工株式会社 Battery separator
JP6746549B2 (en) 2017-09-19 2020-08-26 株式会社東芝 Secondary battery, battery pack and vehicle
JP6889125B2 (en) 2018-03-16 2021-06-18 株式会社東芝 Separator, electrode group, secondary battery, battery pack, vehicle, and stationary power supply
JP7235292B2 (en) 2019-02-08 2023-03-08 クニミネ工業株式会社 storage device

Also Published As

Publication number Publication date
JPH10269844A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
Bae et al. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries
Su et al. Toward high performance lithium–sulfur batteries based on Li2S cathodes and beyond: status, challenges, and perspectives
KR100754421B1 (en) Paste electrolyte and rechargeable lithium battery containing the same
Jin et al. Metallically conductive TiB2 as a multi-functional separator modifier for improved lithium sulfur batteries
CN105470576B (en) A kind of high pressure lithium battery electric core and preparation method thereof, lithium ion battery
KR101670580B1 (en) Separator for secondary battery, method of fabricating the same, and lithium secondary battery comprising the same
KR101965201B1 (en) Producing method of silicon nanomaterial and silicon nanomaterial thereby
KR20100058579A (en) Separator for electrochemical cell and method for its manufacture
TWI758486B (en) Electrolyte composition, secondary battery, and method for producing electrolyte sheet
JP5372748B2 (en) Paste electrolyte and rechargeable lithium battery including the same
JP7442911B2 (en) Electrolyte composition, secondary battery, and method for producing electrolyte sheet
TWI785058B (en) Sulfur-carbon material composite, positive electrode material for lithium-sulfur secondary battery, and lithium-sulfur secondary battery
US9570744B2 (en) Lithium ion secondary battery
JP3717092B2 (en) Solid electrolyte, lithium secondary battery and electric double layer capacitor
US10770748B2 (en) Lithium-selenium battery containing an electrode-protecting layer and method for improving cycle-life
WO2024113407A1 (en) Positive electrode sheet, preparation method therefor, and sodium-ion battery
CN108615936A (en) A kind of nickelic ternary lithium battery gel polymer electrolyte and preparation method
KR20220096048A (en) Polymer-clay nanocomposite electrolyte for secondary battery and method for preparing the same
JP6613952B2 (en) Positive electrode active material, and positive electrode and lithium ion secondary battery using the same
JP2002042874A (en) Polymer secondary battery
KR102719030B1 (en) All-solid-state battery with high chemo-mechanical stability
CN111137902B (en) H-Si-O system material, negative electrode active material and preparation method thereof, electrochemical cell negative electrode material and electrochemical cell
KR102680032B1 (en) Solid electrolyte for lithium secondary battery, method for preparing the same and lithium secondary battery including the solid electrolyte
TWI794472B (en) Method for manufacturing battery member for secondary battery
JP2017152119A (en) Positive electrode active material, positive electrode using the same, and lithium ion secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

EXPY Cancellation because of completion of term