JP3631635B2 - Terminal for storage battery - Google Patents

Terminal for storage battery Download PDF

Info

Publication number
JP3631635B2
JP3631635B2 JP18038699A JP18038699A JP3631635B2 JP 3631635 B2 JP3631635 B2 JP 3631635B2 JP 18038699 A JP18038699 A JP 18038699A JP 18038699 A JP18038699 A JP 18038699A JP 3631635 B2 JP3631635 B2 JP 3631635B2
Authority
JP
Japan
Prior art keywords
terminal
stress relaxation
aluminum
storage battery
cylindrical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18038699A
Other languages
Japanese (ja)
Other versions
JP2001006656A (en
Inventor
孝義 栂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP18038699A priority Critical patent/JP3631635B2/en
Publication of JP2001006656A publication Critical patent/JP2001006656A/en
Application granted granted Critical
Publication of JP3631635B2 publication Critical patent/JP3631635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン電池等の蓄電池に用いられる蓄電池用端子に関するものである。
【0002】
【従来の技術】
従来、蓄電池用端子は、図3に断面図で示すように、アルミナセラミックスから成る略円筒状の絶縁基体21の内側にアルミニウムやアルミニウム合金・銅・銅合金等の良導電性材料から成る略円柱状の端子柱22をその両端が絶縁基体21から突出するようにして挿通固定するとともに、絶縁基体21の外周部にアルミニウムやアルミニウム合金・銅・銅合金等の良導電性材料から成る円環状のフランジ23を固定してなる。
【0003】
そして、端子柱22の下端部に蓄電池の一方の極板群Eを接続するとともにフランジ23を蓄電池の容器蓋Lに溶接によって接合することにより蓄電池の一方の端子として機能する。
【0004】
なお、絶縁基体21への端子柱22およびフランジ23の固定は、絶縁基体21の内周面の一部および外周面の一部にそれぞれ例えばモリブデン−マンガンから成るメタライズ層24・25を被着させるとともに、このメタライズ層24と端子柱22とを、およびメタライズ層25とフランジ23とをそれぞれアルミニウムろうや銀ろう等のろう材26・27を介してろう付けすることによって行なわれる。
【0005】
【発明が解決しようとする課題】
しかしながら、この従来の蓄電池用端子によると、絶縁基体21を構成するアルミナセラミックスの熱膨張係数が約7×10−6/℃程度(20〜800 ℃)であるのに対して端子柱22やフランジ23を構成するアルミニウムやアルミニウム合金・銅・銅合金等の熱膨張係数が約20×10−6〜30×10−6/℃程度(20〜800 ℃)であり、両者の熱膨張係数が大きく相違することから、絶縁基体21と端子柱22およびフランジ23とをアルミニウムろうや銀ろう等のろう材26・27を介して高温でろう付けし、これを常温まで冷却すると、端子柱22およびフランジ23が絶縁基体21よりも極めて大きく熱収縮しようとするので、絶縁基体21の内周面側には端子柱22により引っ張り応力が、また絶縁基体21の外周面側にはフランジ23により圧縮応力が印加されることとなる。このとき、セラミックスは圧縮応力に対しては堅牢な性質を有するものの、引っ張り応力に対しては比較的脆弱な性質を有することから、このように絶縁基体の内周面側に印加される引っ張り応力により、絶縁基体21にクラックが発生してしまうことがあるという問題点を有していた。
【0006】
本発明はかかる上述の問題点に鑑み案出されたものであり、その目的は、絶縁基体にクラックを発生させることなく、絶縁基体と端子柱とを強固に接合させることが可能な蓄電池用端子を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る本発明の蓄電池用端子は、セラミックスから成る筒状の絶縁基体の内側に端子柱を挿通するとともにろう付けしてなる蓄電池用端子であって、前記端子柱は、アルミニウム・アルミニウム合金・銅・銅合金のうちの一種から成る筒状部材と、この筒状部材の内側に装填され、この筒状部材より熱膨張係数が小さい棒状の応力緩和部材とから成ることを特徴とするものである。
【0008】
また、請求項2に係る本発明の蓄電池用端子は、セラミックスから成る筒状の絶縁基体の内側に端子柱を挿通するとともにろう付けしてなる蓄電池用端子であって、前記端子柱は、アルミニウム・アルミニウム合金・銅・銅合金のうちの一種から成る筒状部材と、この筒状部材の内側に装填され、この筒状部材より熱膨張係数が小さい筒状の応力緩和部材と、この応力緩和部材の内側に装填され、この応力緩和部材より導電率が高い棒状の芯部材とから成ることを特徴とするものである。
【0009】
請求項1に係る本発明の蓄電池用端子によれば、絶縁基体の内側にろう付けされた端子柱がアルミニウム・アルミニウム合金・銅・銅合金のうちの一種から成る筒状部材と、この筒状部材の内側に装填され、筒状部材の熱膨張係数より小さな熱膨張係数を有する棒状の応力緩和部材とから成ることから、絶縁基体と端子柱とをろう付けする高温から常温に冷却する際に筒状部材が絶縁基体よりも極めて大きく熱収縮しようとしてもその熱収縮は筒状部材の内側に装填された応力緩和部材により大きく低減され、その結果、絶縁基体の内周面側に大きな引っ張り応力が印加されることを有効に防止することができる。
【0010】
また、請求項2に係る本発明の蓄電池用端子によれば、絶縁基体の内側にろう付けされた端子柱がアルミニウム・アルミニウム合金・銅・銅合金のうちの一種から成る筒状部材と、この筒状部材の内側に装填され、筒状部材の熱膨張係数より小さな熱膨張係数を有する筒状の応力緩和部材と、この応力緩和部材の内側に装填され、応力緩和部材の導電率より高い導電率を有する棒状の芯部材とから成ることから、絶縁基体と端子柱とをろう付けする高温から常温に冷却する際に筒状部材が絶縁基体よりも極めて大きく熱収縮しようとしてもその熱収縮は筒状部材の内側に装填された応力緩和部材により大きく低減され、その結果、絶縁基体の内周面側に大きな引っ張り応力が印加されることを有効に防止することができるとともに、応力緩和部材の内部に装填された芯部材により端子柱の導電率を高いものとすることができる。
【0011】
【発明の実施の形態】
次に、本発明の蓄電池用端子を添付の図面を基に詳細に説明する。
【0012】
図1は請求項1に係る本発明の蓄電池用端子の実施の形態の一例を示す断面図であり、図1において、1は絶縁基体、2は端子柱、3はフランジである。
【0013】
絶縁基体1は、例えばアルミナセラミックスから成る略円筒体であり、端子柱2とフランジ3とを電気的に絶縁して保持する。そして、その内側には棒状の端子柱2が挿通固定されているとともに、その外周面には環状のフランジ3が固定されている。
【0014】
絶縁基体1は、例えばアルミナセラミックスから成る場合であれば、酸化アルミニウム・酸化珪素・酸化カルシウム・酸化マグネシウム等の原料粉末に適当な有機バインダを添加して調整した原料粉末を所定形状のプレス型内に充填するとともにこれを所定圧力でプレスして成形し、しかる後、得られた成形体を大気中にて約1600℃の温度で焼成することによって製作される。
【0015】
また、絶縁基体1には、その内周面と両端面との間に面取り部Cが形成されている。そして、それぞれ面取り部Cから両端面の近傍の内周面にかけては環状のメタライズ層4が被着形成されている。
【0016】
メタライズ層4は、例えばモリブデン−マンガンメタライズから成り、絶縁基体1の内側に挿通された端子柱2を絶縁基体1に固定するための下地金属として機能する。そして、このメタライズ層4には端子柱2がアルミニウムろうや銀ろう等のろう材6を介して接合されている。
【0017】
また、絶縁基体1の外周面の一部には、その全周にわたりメタライズ層5が被着形成されている。メタライズ層5は、メタライズ層4と同様にモリブデン−マンガンメタライズから成り、絶縁基体1にフランジ3を固定するための下地金属として機能する。そして、メタライズ層5にはフランジ3がアルミニウムろうや銀ろう等のろう材7を介して接合されている。
【0018】
メタライズ層4・5は、例えばモリブデン−マンガンメタライズから成る場合であれば、モリブデン粉末およびマンガン粉末ならびに酸化物粉末に適当な有機バインダおよび溶剤を添加混合して得た金属ペーストを絶縁基体1の面取り部Cおよび両端面近傍の内周面、ならびに外周面の一部にスクリーン印刷法により印刷し、これを還元雰囲気中にて約1400℃の温度で焼き付けることによって絶縁基体1の面取り部Cおよび両端面近傍の内周面ならびに外周面の一部に環状に被着形成される。
【0019】
また、これらのメタライズ層4・5にそれぞれ端子柱2・フランジ3をろう材6・7を介して接合するには、例えばろう材6・7がアルミニウムろうから成る場合であれば、端子柱2をその両端部が突出するようにして絶縁基体1の内側に挿通するとともに、この絶縁基体1をフランジ3の内側に挿通し、しかる後、ワイヤ状のアルミニウムろう材をそれぞれメタライズ層4・5上に絶縁基体1の内外周の略全周にわたり配置し、これを真空雰囲気中にて約600 ℃の温度で加熱してアルミニウムろう材を溶融させることによりメタライズ層4・5と端子柱2・フランジ3とをそれぞれろう付けする方法が採用される。
【0020】
なお、メタライズ層4・5の表面には、メタライズ層4・5の酸化腐食を防止するとともにろう材6・7との濡れ性を向上させる目的で、ニッケル等の耐食性に優れ、かつろう材6・7との濡れ性に優れる金属を1〜10μm程度の厚みに被着させておくことが好ましい。
【0021】
絶縁基体1の内側に挿通固定された端子柱2は、アルミニウムやアルミニウム合金・銅・銅合金のうちの一種から成る有底の略円筒状の筒状部材2aと、この筒状部材2aの内側に装填された略円柱状の応力緩和部材2bとから形成されており、その両端部を絶縁基体1から突出させた状態でメタライズ層4にアルミニウムろうや銀ろう等のろう材6を介して接合されている。そして、その下端側に蓄電池の極板群Eを接続することにより、極板群Eを外部に接続するための端子部として機能する。
【0022】
端子柱2を構成する筒状部材2aは、極板群Eへの電荷を出し入れを行なうための主な導電路として機能するとともに端子柱2を絶縁基体1に接合するための接合面を提供するものであり、アルミニウムやアルミニウム合金・銅・銅合金から成ることから、導電性に優れるとともにアルミニウムろうや銀ろう等のろう材6との接合性に優れる。
【0023】
また、筒状部材2aの内側に装填された応力緩和部材2bは、絶縁基体1に端子柱2をろう付けする際に、ろう付けの温度から常温まで冷却されるとき、アルミニウムやアルミニウム合金・銅・銅合金から成る筒状部材2aが絶縁基体1よりも極めて大きく熱収縮することにより絶縁基体1の内周面側に大きな引っ張り応力を印加することを有効に防止する作用をなし、その熱膨張係数が筒状部材2aの熱膨張係数より小さい材料、具体的にはアルミナセラミックスや窒化珪素セラミックス・ニオブ・タングステン・モリブデン・鉄−ニッケル−コバルト合金・鉄−ニッケル合金等から形成されている。
【0024】
応力緩和部材2bは、その熱膨張係数が筒状部材2bの熱膨張係数よりも小さいものとなっていることから、絶縁基体1に端子柱2をろう付けする際に、ろう付けの温度から常温まで冷却されるときに筒状部材2aよりもその熱収縮量が小さい。したがって、絶縁基体1に端子柱2をろう付けする際に筒状部材2aが絶縁基体1よりも極めて大きく熱収縮しようとしてもその熱収縮は筒状部材2aの内側に装填された応力緩和部材2bにより有効に低減され、その結果、端子柱2がろう付けされた絶縁基体1の内周面側に大きな引っ張り応力が印加されることを有効に防止し、絶縁基体1と端子柱2とを絶縁基体1にクラックを発生させることなく、強固に接合させることが可能となる。
【0025】
なお、応力緩和部材2bの熱膨張係数は3×10−6〜10×10−6/℃(20〜800 ℃)の範囲が好ましい。応力緩和部材2bの熱膨張係数が3×10−6/℃未満となると、応力緩和部材2bとして適当な材料を見つけることが困難となる傾向にある。他方、10×10−6/℃を超えると、絶縁基体1に端子柱2をろう付けする際に筒状部材2aが絶縁基体1よりも極めて大きく熱収縮するのを有効に低減することができずに絶縁基体1にクラックが発生し易いものとなる傾向にある。
【0026】
また、筒状部材2aの厚みに対する応力緩和部材2bの直径の比率は1:2〜1:5の範囲が好ましい。筒状部材2aの厚みに対する応力緩和部材2bの直径の比率が1:2未満であると、絶縁基体1に端子柱2をろう付けする際に筒状部材2aが絶縁基体1よりも極めて大きく熱収縮するのを応力緩和部材2bにより有効に低減することができずに絶縁基体1にクラックが発生し易いものとなる傾向にある。他方、1:5を超えると、端子柱2の電気抵抗が高いものとなり、端子柱2を流れる電流が大電流となった場合に極板群Eへの電荷の出し入れを良好に行なうことが困難となる傾向にある。
【0027】
なお、筒状部材2aへの応力緩和部材2bの装填は、ろう付けや圧入・鋳込み・溶射等により行なわれ、例えば、応力緩和部材2bがアルミナセラミックスからなり、これがろう付けにより筒状部材2aに装填される場合であれば、アルミナセラミックスから成る応力緩和部材2bの外周面に例えば表面にニッケルめっきが施されたモリブデン−マンガンから成るメタライズ層を被着させておき、この応力緩和部材2bを筒状部材2aの内部に挿入するとともにそのメタライズ層と筒状部材2aの内周面とをアルミニウムろうや銀ろう等のろう材を介してろう付けする方法が採用される。
【0028】
一方、絶縁基体1の外周面に固定されたフランジ3は、アルミニウムやアルミニウム合金・銅・銅合金・鉄−ニッケル合金・鉄−ニッケル−コバルト合金等から成る円環体であり、メタライズ層5にアルミニウムろうや銀ろう等のろう材7を介して接合されている。そして、このフランジ3を蓄電池の容器蓋Lに溶接することによって本発明の端子が蓄電池の容器に固定される。
【0029】
なお、フランジ3はろう付けの際には絶縁基体1に対して主に圧縮応力を印加することから、圧縮応力に対しては堅牢な性質を有するアルミナセラミックスから成る絶縁基体1にクラックが発生することはない。
【0030】
かくして、上述の請求項1に係る本発明の蓄電池用端子によれば、絶縁基体1にクラックを発生させることなく、絶縁基体1と端子柱2とを常に強固に接合させることが可能な蓄電池用端子を提供することができる。
【0031】
次に、請求項2に係る本発明の蓄電池用端子の実施の形態の一例を図2に断面図で示す。図2において、1は絶縁基体、12は端子柱、3はフランジである。
【0032】
なお、この例における絶縁基体1およびフランジ3は図1に示した例の絶縁基体1およびフランジ3と実質的に同一のものであり、同一の箇所には同一の符号を付してある。そして、これらについてはその説明を省略する。
【0033】
この例における端子柱12は、アルミニウムやアルミニウム合金・銅・銅合金のうちの一種から成る有底の略円筒状の筒状部材12aと、この筒状部材12aの内側に装填された略円筒状の応力緩和部材12bと、この応力緩和部材12bの内側に装填された円柱状の芯部材12cとから形成されており、絶縁基体1に被着されたメタライズ層4にアルミニウムろうや銀ろう等のろう材6を介して接合されている。
【0034】
端子柱12を構成する筒状部材12aは、極板群Eへの電荷を出し入れを行なうための主な導電路として機能するとともに端子柱12を絶縁基体1に接合するための接合面を提供するものであり、アルミニウムやアルミニウム合金・銅・銅合金から成ることから導電性に優れ、かつアルミニウムろうや銀ろう等のろう材6との接合性に優れる。
【0035】
また、筒状部材12aの内側に装填された応力緩和部材12bは、絶縁基体1に端子柱12をろう付けする際に、ろう付けの温度から常温まで冷却されるとき、アルミニウムやアルミニウム合金・銅・銅合金から成る筒状部材12aが絶縁基体1よりも極めて大きく熱収縮することにより絶縁基体1の内周面側に大きな引っ張り応力を印加することを有効に防止する作用をなし、その熱膨張係数が筒状部材12aの熱膨張係数より小さい材料、具体的にはアルミナセラミックスや窒化珪素セラミックス・ニオブ・タングステン・モリブデン・鉄−ニッケル−コバルト合金・鉄−ニッケル合金等から形成されている。
【0036】
応力緩和部材12bは、その熱膨張係数が筒状部材12aの熱膨張係数よりも小さいものとなっていることから、絶縁基体1に端子柱12をろう付けする際に、ろう付けの温度から常温まで冷却されるときに筒状部材12aよりもその熱収縮量が小さい。したがって、絶縁基体1に端子柱12をろう付けする際に筒状部材12aが絶縁基体1よりも極めて大きく熱収縮しようとしてもその熱収縮は筒状部材12bの内側に装填された応力緩和部材12bにより有効に低減され、その結果、端子柱12がろう付けされた絶縁基体1の内周面側に大きな引っ張り応力が印加されることを有効に防止し、絶縁基体1と端子柱12とを絶縁基体1にクラックを発生させることなく強固に接合させることが可能となる。
【0037】
なお、応力緩和部材12bの熱膨張係数は3×10−6〜10×10−6/℃(20〜800 ℃)の範囲が好ましい。応力緩和部材12bの熱膨張係数が3×10−6/℃未満となると、応力緩和部材12bとして適当な材料を見つけることが困難となる傾向にある。他方、10×10−6/℃を超えると、絶縁基体1に端子柱12をろう付けする際に筒状部材12aが絶縁基体1よりも極めて大きく熱収縮するのを有効に低減することができずに絶縁基体1にクラックが発生し易いものとなる傾向にある。
【0038】
また、筒状部材12aの厚みに対する応力緩和部材12bの厚みの比率は1:2〜1:4の範囲が好ましい。筒状部材12aの厚みに対する応力緩和部材12bの厚み比率が1:2未満であると、絶縁基体1に端子柱12をろう付けする際に筒状部材12aが絶縁基体1よりも極めて大きく熱収縮するのを応力緩和部材12bにより有効に低減することができずに絶縁基体1にクラックが発生し易いものとなる傾向にある。他方、1:4を超えると、端子柱12の電気抵抗が高いものとなり、端子柱12を流れる電流が大電流となった場合に極板群Eへの電荷の出し入れを良好に行なうことが困難となる傾向にある。
【0039】
なお、筒状部材12aへの応力緩和部材12bの装填は、図1に示した例の場合と同様に、ろう付けや圧入・鋳込み・溶射等により行なわれ、例えば、応力緩和部材12bがアルミナセラミックスからなり、これがろう付けにより筒状部材12aに装填される場合であれば、アルミナセラミックスから成る応力緩和部材12bの外周面に例えば表面にニッケルめっきが施されたモリブデン−マンガンから成るメタライズ層を被着させておき、この応力緩和部材12bを筒状部材12aの内部に挿入するとともにそのメタライズ層と筒状部材12aの内周面とをアルミニウムろうや銀ろう等のろう材を介してろう付けする方法が採用される。
【0040】
さらに、応力緩和部材12bの内側に装填された芯部材12cは、端子柱12の導電率を高めるためのものであり、応力緩和部材12bの導電率よりも高い導電率を有する材料、具体的にはアルミニウム・アルミニウム合金・銅・銅合金のうちの一つから形成されている。
【0041】
芯部材12cは、これを形成するアルミニウムやアルミニウム合金・銅・銅合金はその導電率が約0.3 〜0.5 μΩ−1/cmと導電率に優れることから、例えば応力緩和部材12bとして絶縁物であるアルミナセラミックスや窒化珪素セラミックスあるいは導電率が0.06〜0.2 μΩ−1/cmと低いタングステンやモリブデン・ニオブ・鉄−ニッケル−コバルト合金・鉄−ニッケル合金等を使用した場合であっても、芯部材12cにより端子柱12の実効的な導電率を高いものとして、極板群Eへの電荷の出し入れを極めて良好に行なうことを可能とする。
【0042】
なお、応力緩和部材12bの厚みに対する芯部材12cの直径の比率は1:2〜1:4の範囲が好ましい。応力緩和部材12bの厚みに対する芯部材12cの直径の比率が1:2未満であると、芯部材12cにより端子柱12の導電率を十分に高いものとすることが困難となる傾向にある。他方、1:4を超えると、絶縁基体1に端子柱12をろう付けする際に、応力緩和部材12bと芯部材12cとの熱膨張係数の相違に起因して発生する熱応力により応力緩和部材12bにクラックが発生し、その結果、応力緩和部材12bにより筒状部材12aが絶縁基体1よりも極めて大きく熱収縮するのを応力緩和部材12bにより有効に軽減することができずに絶縁基体1にクラックが発生し易いものとなる傾向にある。
【0043】
また、応力緩和部材12bへの芯部材12cの装填は、ろう付けや圧入・鋳込み・溶射等により行なわれる。例えば、応力緩和部材12bがアルミナセラミックスから成り、これに芯部材12cがろう付けにより装填される場合であれば、アルミナセラミックスから成る応力緩和部材12bの内周面に、例えば表面にニッケルめっきが施されたモリブデン−マンガンから成るメタライズ層を被着させておき、この応力緩和部材12bの内部に芯部材12cを挿入するとともに応力緩和部材12bの内周面のメタライズ層と芯部材12cとをアルミニウムろうや銀ろう等のろう材を介してろう付けする方法が採用される。
【0044】
かくして、上述の請求項2に係る本発明の蓄電池用端子によれば、絶縁基体1にクラックを発生させることなく、絶縁基体1と端子柱12とを常に強固に接合させることができるとともに、端子柱12の導電率を高いものとして極板群Eへの電荷の出し入れを良好に行なうことが可能な蓄電池用端子を提供することができる。
【0045】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更や改良を施すことは何ら差し支えない。
【0046】
【発明の効果】
請求項1に係る本発明の蓄電池用端子によれば、絶縁基体の内側にろう付けされた端子柱がアルミニウム・アルミニウム合金・銅・銅合金のうちの一種から成る筒状部材と、この筒状部材の内側に装填され、筒状部材より熱膨張係数が小さい棒状の応力緩和部材とから成ることから、絶縁基体と端子柱とをろう付けする高温から常温に冷却する際に筒状部材が絶縁基体よりも大きく熱収縮しようとしても、その熱収縮は筒状部材の内側に装填された応力緩和部材により大きく低減されて絶縁基体の内周面側に大きな引っ張り応力が印加されることを有効に防止することができ、その結果、絶縁基体にクラックを発生させることなく、絶縁基体と端子柱とを常に強固に接合させることができる。
【0047】
また、請求項2に係る本発明の蓄電池用端子によれば、絶縁基体の内側にろう付けされた端子柱がアルミニウム・アルミニウム合金・銅・銅合金のうちの一種から成る筒状部材と、この筒状部材の内側に装填され、筒状部材より熱膨張係数が小さい筒状の応力緩和部材と、この応力緩和部材の内側に装填され、応力緩和部材より導電率が高い棒状の芯部材とから成ることから、絶縁基体と端子柱とをろう付けする高温から常温に冷却する際に筒状部材が絶縁基体よりも大きく熱収縮しようとしてもその熱収縮は筒状部材の内側に装填された応力緩和部材により大きく低減されて絶縁基体の内周面側に大きな引っ張り応力が印加されることを有効に防止することができるとともに、応力緩和部材の内部に装填された芯部材により電極柱の導電率を高いものとすることができ、その結果、絶縁基体にクラックを発生させることなく、絶縁基体と端子柱とを常に強固に接合させることができるとともに端子柱の導電率を高いものとして極板群への電荷の出し入れを良好に行なうことが可能な蓄電池用端子を提供することができる。
【図面の簡単な説明】
【図1】請求項1に係る本発明の蓄電池用端子の実施の形態の一例を示す断面図である。
【図2】請求項2に係る本発明の蓄電池用端子の実施の形態の一例を示す断面図である。
【図3】従来の蓄電池用端子の例を示す断面図である。
【符号の説明】
1・・・・・・絶縁基体
2、12・・・・端子柱
2a、12a・・筒状部材
2b、12b・・応力緩和部材
12c・・・・・芯部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a storage battery terminal used in a storage battery such as a lithium ion battery.
[0002]
[Prior art]
Conventionally, as shown in a cross-sectional view in FIG. 3, the storage battery terminal has a substantially circular shape made of a highly conductive material such as aluminum, aluminum alloy, copper, or copper alloy inside a substantially cylindrical insulating base 21 made of alumina ceramics. The columnar terminal column 22 is inserted and fixed so that both ends thereof protrude from the insulating base 21, and an annular shape made of a highly conductive material such as aluminum, aluminum alloy, copper, or copper alloy is provided on the outer peripheral portion of the insulating base 21. The flange 23 is fixed.
[0003]
And the one electrode plate group E of a storage battery is connected to the lower end part of the terminal pillar 22, and it functions as one terminal of a storage battery by joining the flange 23 to the container lid L of a storage battery by welding.
[0004]
The terminal columns 22 and the flanges 23 are fixed to the insulating base 21 by depositing metallized layers 24 and 25 made of, for example, molybdenum-manganese on a part of the inner peripheral surface and a part of the outer peripheral surface of the insulating base 21, respectively. At the same time, the metallized layer 24 and the terminal column 22 and the metallized layer 25 and the flange 23 are brazed through brazing materials 26 and 27 such as aluminum brazing and silver brazing, respectively.
[0005]
[Problems to be solved by the invention]
However, according to this conventional storage battery terminal, the thermal expansion coefficient of the alumina ceramic constituting the insulating base 21 is about 7 × 10 −6 / ° C. (20 to 800 ° C.), whereas the terminal column 22 and the flange The thermal expansion coefficient of aluminum, aluminum alloy / copper / copper alloy, etc. that constitutes No. 23 is about 20 × 10 −6 to 30 × 10 −6 / ° C. (20 to 800 ° C.). Therefore, when the insulating base 21, the terminal column 22 and the flange 23 are brazed at a high temperature via a brazing material 26/27 such as aluminum brazing or silver brazing and cooled to room temperature, the terminal column 22 and the flange are separated. 23 tends to heat shrink much more than the insulating base 21, so that tensile stress is applied to the inner peripheral surface side of the insulating base 21 by the terminal columns 22, and The side so that the compressive stress is applied by the flanges 23. At this time, ceramics has a robust property against compressive stress, but has a relatively weak property against tensile stress. Thus, tensile stress applied to the inner peripheral surface side of the insulating substrate is thus obtained. Therefore, there is a problem that a crack may occur in the insulating base 21.
[0006]
The present invention has been devised in view of the above-described problems, and its purpose is to provide a storage battery terminal capable of firmly bonding an insulating substrate and a terminal column without generating cracks in the insulating substrate. Is to provide.
[0007]
[Means for Solving the Problems]
The storage battery terminal of the present invention according to claim 1 is a storage battery terminal that is inserted into a cylindrical insulating base made of ceramics and brazed, and is made of aluminum / aluminum. A cylindrical member made of one of an alloy, copper, and a copper alloy, and a rod-shaped stress relaxation member that is loaded inside the cylindrical member and has a smaller thermal expansion coefficient than the cylindrical member. Is.
[0008]
Further, the storage battery terminal of the present invention according to claim 2 is a storage battery terminal formed by inserting and brazing a terminal column inside a cylindrical insulating base made of ceramics, wherein the terminal column is made of aluminum. A cylindrical member made of one of aluminum alloy, copper, and copper alloy, a cylindrical stress relaxation member that is loaded inside the cylindrical member and has a smaller thermal expansion coefficient than the cylindrical member, and the stress relaxation It is characterized by comprising a rod-shaped core member that is loaded inside the member and has a higher conductivity than the stress relaxation member.
[0009]
According to the storage battery terminal of the present invention according to claim 1, the terminal member brazed to the inside of the insulating base is a cylindrical member made of one of aluminum, aluminum alloy, copper, and copper alloy, and the cylindrical member. Since it is composed of a rod-shaped stress relaxation member that is loaded inside the member and has a thermal expansion coefficient smaller than that of the cylindrical member, when cooling the insulating base and the terminal column from high temperature to room temperature Even if the cylindrical member tries to heat shrink much more than the insulating substrate, the thermal shrinkage is greatly reduced by the stress relaxation member loaded inside the cylindrical member, and as a result, a large tensile stress is applied to the inner peripheral surface side of the insulating substrate. Can be effectively prevented from being applied.
[0010]
According to the storage battery terminal of the present invention according to claim 2, the terminal member brazed to the inside of the insulating base is a cylindrical member made of one of aluminum, aluminum alloy, copper, and copper alloy, and A cylindrical stress relaxation member that is loaded inside the cylindrical member and has a thermal expansion coefficient smaller than that of the cylindrical member, and a conductive material that is loaded inside the stress relaxation member and has a conductivity higher than that of the stress relaxation member. Therefore, even when the tubular member attempts to heat shrink much more than the insulating substrate when it is cooled from the high temperature brazing the insulating substrate and the terminal column to room temperature, the thermal contraction is It is greatly reduced by the stress relaxation member loaded inside the cylindrical member, and as a result, it is possible to effectively prevent a large tensile stress from being applied to the inner peripheral surface side of the insulating base and to relieve the stress. It can have high conductivity of the terminal post by a core member loaded in the interior of the wood.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the storage battery terminal of the present invention will be described in detail with reference to the accompanying drawings.
[0012]
FIG. 1 is a sectional view showing an example of an embodiment of a storage battery terminal according to the first aspect of the present invention. In FIG. 1, 1 is an insulating substrate, 2 is a terminal column, and 3 is a flange.
[0013]
The insulating base 1 is a substantially cylindrical body made of alumina ceramics, for example, and electrically insulates and holds the terminal columns 2 and the flanges 3. A rod-like terminal column 2 is inserted and fixed inside thereof, and an annular flange 3 is fixed to the outer peripheral surface thereof.
[0014]
If the insulating substrate 1 is made of, for example, alumina ceramics, the raw material powder prepared by adding an appropriate organic binder to the raw material powder such as aluminum oxide, silicon oxide, calcium oxide, and magnesium oxide is placed in a press die having a predetermined shape. And is molded by pressing it at a predetermined pressure, and then the obtained molded body is fired at a temperature of about 1600 ° C. in the atmosphere.
[0015]
Further, the insulating base 1 is formed with a chamfered portion C between its inner peripheral surface and both end surfaces. An annular metallized layer 4 is deposited on the inner peripheral surface in the vicinity of both end faces from the chamfered portion C.
[0016]
The metallized layer 4 is made of, for example, molybdenum-manganese metallized, and functions as a base metal for fixing the terminal column 2 inserted inside the insulating base 1 to the insulating base 1. The terminal columns 2 are joined to the metallized layer 4 via a brazing material 6 such as aluminum brazing or silver brazing.
[0017]
Further, a metallized layer 5 is formed on a part of the outer peripheral surface of the insulating substrate 1 so as to cover the entire periphery. The metallized layer 5 is made of molybdenum-manganese metallized similarly to the metallized layer 4 and functions as a base metal for fixing the flange 3 to the insulating substrate 1. The flange 3 is joined to the metallized layer 5 via a brazing material 7 such as aluminum brazing or silver brazing.
[0018]
If the metallized layers 4 and 5 are made of, for example, molybdenum-manganese metallized, the insulating substrate 1 is chamfered with a metal paste obtained by adding and mixing an appropriate organic binder and solvent to molybdenum powder, manganese powder, and oxide powder. The chamfered portion C and both ends of the insulating substrate 1 are printed by printing the portion C and the inner peripheral surface in the vicinity of both end surfaces, and a part of the outer peripheral surface by a screen printing method, and baking this at a temperature of about 1400 ° C. A ring is deposited on the inner peripheral surface and a part of the outer peripheral surface in the vicinity of the surface.
[0019]
In order to join the terminal pillar 2 and the flange 3 to the metallized layers 4 and 5 via the brazing material 6 and 7, respectively, if the brazing material 6 and 7 are made of aluminum brazing, for example, the terminal pillar 2 Is inserted into the inside of the insulating base 1 so that both ends thereof protrude, and the insulating base 1 is inserted into the inside of the flange 3, and then the wire-like aluminum brazing material is placed on the metallized layers 4 and 5, respectively. The metallized layers 4 and 5 and the terminal pillars 2 and flanges are disposed over substantially the entire inner and outer circumferences of the insulating base 1 and heated in a vacuum atmosphere at a temperature of about 600 ° C. to melt the aluminum brazing material. 3 is used.
[0020]
The surface of the metallized layers 4 and 5 is excellent in corrosion resistance such as nickel and the brazing material 6 in order to prevent oxidative corrosion of the metallized layers 4 and 5 and improve wettability with the brazing materials 6 and 7. -It is preferable to deposit a metal excellent in wettability with 7 to a thickness of about 1 to 10 μm.
[0021]
A terminal column 2 inserted and fixed inside the insulating base 1 is a bottomed substantially cylindrical cylindrical member 2a made of aluminum, aluminum alloy, copper, or copper alloy, and an inner side of the cylindrical member 2a. Are joined to the metallized layer 4 with a brazing material 6 such as aluminum brazing or silver brazing in a state in which both end portions thereof are projected from the insulating base 1. Has been. And it connects as the electrode plate group E of a storage battery to the lower end side, and functions as a terminal part for connecting the electrode plate group E to the exterior.
[0022]
The cylindrical member 2a constituting the terminal column 2 functions as a main conductive path for taking charge into and out of the electrode plate group E and provides a bonding surface for bonding the terminal column 2 to the insulating substrate 1. Since it is made of aluminum or an aluminum alloy / copper / copper alloy, it is excellent in electrical conductivity and excellent in bondability with a brazing material 6 such as aluminum brazing or silver brazing.
[0023]
In addition, when the stress relieving member 2b loaded inside the cylindrical member 2a is cooled from the brazing temperature to room temperature when the terminal column 2 is brazed to the insulating base 1, aluminum, aluminum alloy, copper The tubular member 2a made of a copper alloy has a function of effectively preventing a large tensile stress from being applied to the inner peripheral surface side of the insulating substrate 1 due to the thermal contraction of the cylindrical member 2a much larger than that of the insulating substrate 1, and its thermal expansion. It is made of a material whose coefficient is smaller than the thermal expansion coefficient of the cylindrical member 2a, specifically, alumina ceramics, silicon nitride ceramics, niobium, tungsten, molybdenum, iron-nickel-cobalt alloy, iron-nickel alloy, or the like.
[0024]
Since the thermal expansion coefficient of the stress relaxation member 2b is smaller than the thermal expansion coefficient of the cylindrical member 2b, when the terminal column 2 is brazed to the insulating base 1, the temperature from the brazing temperature to the normal temperature. The amount of thermal shrinkage is smaller than that of the cylindrical member 2a when cooled to a low level. Therefore, even when the cylindrical member 2a is subjected to heat contraction much larger than the insulating base 1 when the terminal column 2 is brazed to the insulating base 1, the thermal contraction is caused by the stress relaxation member 2b loaded inside the cylindrical member 2a. As a result, it is possible to effectively prevent a large tensile stress from being applied to the inner peripheral surface side of the insulating substrate 1 to which the terminal column 2 is brazed, and to insulate the insulating substrate 1 and the terminal column 2 from each other. It is possible to firmly bond the base 1 without causing cracks.
[0025]
The thermal expansion coefficient of the stress relaxation member 2b is preferably in the range of 3 × 10 −6 to 10 × 10 −6 / ° C. (20 to 800 ° C.). When the thermal expansion coefficient of the stress relaxation member 2b is less than 3 × 10 −6 / ° C., it tends to be difficult to find a suitable material for the stress relaxation member 2b. On the other hand, when it exceeds 10 × 10 −6 / ° C., it is possible to effectively reduce the thermal contraction of the cylindrical member 2 a much larger than that of the insulating substrate 1 when the terminal column 2 is brazed to the insulating substrate 1. Therefore, the insulating substrate 1 tends to be easily cracked.
[0026]
The ratio of the diameter of the stress relaxation member 2b to the thickness of the cylindrical member 2a is preferably in the range of 1: 2 to 1: 5. When the ratio of the diameter of the stress relaxation member 2b to the thickness of the tubular member 2a is less than 1: 2, the tubular member 2a is much larger than the insulating substrate 1 when the terminal column 2 is brazed to the insulating substrate 1. The shrinkage cannot be effectively reduced by the stress relaxation member 2b, and the insulating substrate 1 tends to be easily cracked. On the other hand, if the ratio exceeds 1: 5, the electrical resistance of the terminal column 2 becomes high, and it is difficult to satisfactorily put in and out charges to the electrode plate group E when the current flowing through the terminal column 2 becomes a large current. It tends to be.
[0027]
The stress relaxation member 2b is loaded into the cylindrical member 2a by brazing, press-fitting, casting, thermal spraying, or the like. For example, the stress relaxation member 2b is made of alumina ceramic, and this is brazed to the cylindrical member 2a. In the case of loading, for example, a metallized layer made of molybdenum-manganese whose surface is plated with nickel is deposited on the outer peripheral surface of the stress relaxing member 2b made of alumina ceramic, and the stress relaxing member 2b is formed into a cylinder. A method of inserting the metallized layer and the inner peripheral surface of the cylindrical member 2a through a brazing material such as an aluminum brazing or a silver brazing while being inserted into the inside of the shaped member 2a is employed.
[0028]
On the other hand, the flange 3 fixed to the outer peripheral surface of the insulating substrate 1 is a torus made of aluminum, aluminum alloy, copper, copper alloy, iron-nickel alloy, iron-nickel-cobalt alloy, etc. They are joined via a brazing material 7 such as aluminum brazing or silver brazing. And the terminal of this invention is fixed to the container of a storage battery by welding this flange 3 to the container lid L of a storage battery.
[0029]
Since the flange 3 mainly applies compressive stress to the insulating base 1 during brazing, cracks are generated in the insulating base 1 made of alumina ceramics having a robust property against compressive stress. There is nothing.
[0030]
Thus, according to the storage battery terminal of the present invention according to claim 1 described above, it is possible for the storage battery to always firmly bond the insulating base 1 and the terminal column 2 without generating cracks in the insulating base 1. A terminal can be provided.
[0031]
Next, an example of an embodiment of the storage battery terminal of the present invention according to claim 2 is shown in a sectional view in FIG. In FIG. 2, 1 is an insulating substrate, 12 is a terminal column, and 3 is a flange.
[0032]
The insulating base 1 and the flange 3 in this example are substantially the same as the insulating base 1 and the flange 3 in the example shown in FIG. 1, and the same portions are denoted by the same reference numerals. The description of these will be omitted.
[0033]
The terminal column 12 in this example is a bottomed substantially cylindrical tubular member 12a made of aluminum, a kind of aluminum alloy, copper, or copper alloy, and a substantially cylindrical shape loaded inside the tubular member 12a. The stress relaxation member 12b and a cylindrical core member 12c loaded inside the stress relaxation member 12b are formed on the metallized layer 4 attached to the insulating base 1, such as aluminum brazing or silver brazing. It is joined via the brazing material 6.
[0034]
The cylindrical member 12a constituting the terminal column 12 functions as a main conductive path for taking charge into and out of the electrode plate group E and provides a bonding surface for bonding the terminal column 12 to the insulating substrate 1. Since it is made of aluminum, an aluminum alloy, copper, or a copper alloy, it has excellent electrical conductivity and is excellent in jointability with a brazing material 6 such as aluminum brazing or silver brazing.
[0035]
Further, the stress relaxation member 12b loaded inside the cylindrical member 12a is made of aluminum, aluminum alloy, or copper when cooled from the brazing temperature to room temperature when the terminal column 12 is brazed to the insulating substrate 1. The tubular member 12a made of a copper alloy has a function of effectively preventing large tensile stress from being applied to the inner peripheral surface side of the insulating base 1 by being extremely heat-shrinkable than the insulating base 1, and its thermal expansion. It is made of a material whose coefficient is smaller than the thermal expansion coefficient of the cylindrical member 12a, specifically, alumina ceramics, silicon nitride ceramics, niobium, tungsten, molybdenum, iron-nickel-cobalt alloy, iron-nickel alloy, or the like.
[0036]
Since the thermal expansion coefficient of the stress relaxation member 12b is smaller than the thermal expansion coefficient of the cylindrical member 12a, when the terminal column 12 is brazed to the insulating base 1, the temperature from the brazing temperature to the normal temperature. The amount of thermal contraction is smaller than that of the cylindrical member 12a when cooled to a low level. Therefore, even when the tubular member 12a is subjected to extremely large thermal contraction than the insulating base 1 when the terminal column 12 is brazed to the insulating base 1, the thermal contraction is caused by the stress relaxation member 12b loaded inside the cylindrical member 12b. As a result, it is possible to effectively prevent a large tensile stress from being applied to the inner peripheral surface side of the insulating substrate 1 to which the terminal column 12 is brazed, and to insulate the insulating substrate 1 and the terminal column 12 from each other. It is possible to firmly bond the base body 1 without generating cracks.
[0037]
The thermal expansion coefficient of the stress relaxation member 12b is preferably in the range of 3 × 10 −6 to 10 × 10 −6 / ° C. (20 to 800 ° C.). When the thermal expansion coefficient of the stress relaxation member 12b is less than 3 × 10 −6 / ° C., it tends to be difficult to find a suitable material for the stress relaxation member 12b. On the other hand, when it exceeds 10 × 10 −6 / ° C., it is possible to effectively reduce the thermal contraction of the cylindrical member 12 a much larger than that of the insulating substrate 1 when the terminal column 12 is brazed to the insulating substrate 1. Therefore, the insulating substrate 1 tends to be easily cracked.
[0038]
The ratio of the thickness of the stress relaxation member 12b to the thickness of the cylindrical member 12a is preferably in the range of 1: 2 to 1: 4. When the thickness ratio of the stress relaxation member 12b to the thickness of the tubular member 12a is less than 1: 2, the tubular member 12a is much larger than the insulating substrate 1 in heat shrinkage when the terminal column 12 is brazed to the insulating substrate 1. However, the stress relaxation member 12b cannot effectively reduce this, and the insulating substrate 1 tends to crack. On the other hand, when the ratio exceeds 1: 4, the electric resistance of the terminal column 12 becomes high, and it is difficult to satisfactorily put in and out charges to the electrode plate group E when the current flowing through the terminal column 12 becomes a large current. It tends to be.
[0039]
The stress relaxation member 12b is loaded into the cylindrical member 12a by brazing, press-fitting, casting, thermal spraying, etc., as in the example shown in FIG. 1, for example, the stress relaxation member 12b is made of alumina ceramics. If this is to be loaded into the cylindrical member 12a by brazing, the outer peripheral surface of the stress relaxation member 12b made of alumina ceramic is coated with a metallized layer made of molybdenum-manganese, for example, nickel-plated on the surface. The stress relaxation member 12b is inserted into the cylindrical member 12a and the metallized layer and the inner peripheral surface of the cylindrical member 12a are brazed via a brazing material such as aluminum brazing or silver brazing. The method is adopted.
[0040]
Furthermore, the core member 12c loaded inside the stress relaxation member 12b is for increasing the conductivity of the terminal column 12, and is a material having a conductivity higher than that of the stress relaxation member 12b, specifically, Is formed from one of aluminum, aluminum alloy, copper and copper alloy.
[0041]
The core member 12c is made of aluminum or aluminum alloy / copper / copper alloy which has excellent conductivity of about 0.3 to 0.5 μΩ −1 / cm. When using alumina ceramics or silicon nitride ceramics, which are insulators, or tungsten, molybdenum, niobium, iron-nickel-cobalt alloy, iron-nickel alloy, etc. whose conductivity is as low as 0.06 to 0.2 μΩ -1 / cm Even so, the core member 12c can increase the effective conductivity of the terminal column 12 so that charges can be taken into and out of the electrode plate group E very well.
[0042]
The ratio of the diameter of the core member 12c to the thickness of the stress relaxation member 12b is preferably in the range of 1: 2 to 1: 4. When the ratio of the diameter of the core member 12c to the thickness of the stress relaxation member 12b is less than 1: 2, it tends to be difficult to make the conductivity of the terminal column 12 sufficiently high by the core member 12c. On the other hand, when exceeding 1: 4, when the terminal column 12 is brazed to the insulating substrate 1, the stress relaxation member is caused by the thermal stress generated due to the difference in thermal expansion coefficient between the stress relaxation member 12b and the core member 12c. As a result, a crack is generated in 12b, and as a result, the stress relieving member 12b causes the cylindrical member 12a to thermally contract more greatly than the insulating base 1, and the stress relieving member 12b cannot effectively reduce the heat shrinkage. There is a tendency that cracks are likely to occur.
[0043]
The core member 12c is loaded into the stress relaxation member 12b by brazing, press-fitting, casting, thermal spraying, or the like. For example, if the stress relaxation member 12b is made of alumina ceramic and the core member 12c is loaded by brazing, the inner peripheral surface of the stress relaxation member 12b made of alumina ceramic, for example, is plated with nickel. The metallized layer made of molybdenum-manganese is applied, and the core member 12c is inserted into the stress relieving member 12b, and the metallized layer on the inner peripheral surface of the stress relieving member 12b and the core member 12c are bonded to aluminum brazing. A method of brazing using a brazing material such as silver brazing is adopted.
[0044]
Thus, according to the storage battery terminal of the present invention according to claim 2 described above, the insulating base 1 and the terminal column 12 can always be firmly joined without causing cracks in the insulating base 1, and the terminal It is possible to provide a storage battery terminal capable of satisfactorily putting in and taking out electric charges to and from the electrode plate group E with the column 12 having a high conductivity.
[0045]
In addition, this invention is not limited to the example of the above embodiment, A various change and improvement can be performed in the range which does not deviate from the summary of this invention.
[0046]
【The invention's effect】
According to the storage battery terminal of the present invention according to claim 1, the terminal member brazed to the inside of the insulating base is a cylindrical member made of one of aluminum, aluminum alloy, copper, and copper alloy, and the cylindrical member. Because it consists of a rod-shaped stress relaxation member that is loaded inside the member and has a smaller coefficient of thermal expansion than the cylindrical member, the cylindrical member is insulated when it is cooled from high temperature to brazing the insulating base and the terminal column. Even if the thermal contraction is larger than that of the base, the thermal contraction is greatly reduced by the stress relaxation member loaded inside the cylindrical member, so that a large tensile stress is applied to the inner peripheral surface side of the insulating base. As a result, the insulating substrate and the terminal column can always be firmly bonded without causing cracks in the insulating substrate.
[0047]
According to the storage battery terminal of the present invention according to claim 2, the terminal member brazed to the inside of the insulating base is a cylindrical member made of one of aluminum, aluminum alloy, copper, and copper alloy, and A cylindrical stress relaxation member that is loaded inside the cylindrical member and has a smaller thermal expansion coefficient than the cylindrical member, and a rod-shaped core member that is loaded inside the stress relaxation member and has a higher conductivity than the stress relaxation member. Therefore, even when the tubular member attempts to heat shrink more than the insulating substrate when the insulating substrate and the terminal pillar are cooled from the high temperature to the normal temperature, the thermal shrinkage is the stress loaded inside the tubular member. It is possible to effectively prevent a large tensile stress from being applied to the inner peripheral surface side of the insulating substrate by being greatly reduced by the relaxation member, and the conductivity of the electrode column by the core member loaded inside the stress relaxation member. As a result, it is possible to always firmly bond the insulating substrate and the terminal column without causing cracks in the insulating substrate and to increase the conductivity of the terminal column to the electrode plate group. It is possible to provide a storage battery terminal capable of satisfactorily taking in and out the electric charge.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a storage battery terminal according to the present invention according to claim 1;
FIG. 2 is a cross-sectional view showing an example of an embodiment of a storage battery terminal of the present invention according to claim 2;
FIG. 3 is a cross-sectional view showing an example of a conventional storage battery terminal.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulation base | substrate 2, 12 ... Terminal pillar 2a, 12a ... Cylindrical member 2b, 12b ... Stress relaxation member 12c ... Core member

Claims (2)

セラミックスから成る筒状の絶縁基体の内側に端子柱を挿通するとともにろう付けしてなる蓄電池用端子であって、前記端子柱は、アルミニウム・アルミニウム合金・銅・銅合金のうちの一種から成る筒状部材と、該筒状部材の内側に装填され、該筒状部材より熱膨張係数が小さい棒状の応力緩和部材とから成ることを特徴とする蓄電池用端子。A terminal for a storage battery in which a terminal pillar is inserted and brazed inside a cylindrical insulating base made of ceramic, the terminal pillar being a cylinder made of one of aluminum, aluminum alloy, copper and copper alloy A storage battery terminal comprising: a cylindrical member; and a rod-shaped stress relieving member that is loaded inside the cylindrical member and has a smaller thermal expansion coefficient than the cylindrical member. セラミックスから成る筒状の絶縁基体の内側に端子柱を挿通するとともにろう付けしてなる蓄電池用端子であって、前記端子柱は、アルミニウム・アルミニウム合金・銅・銅合金のうちの一種から成る筒状部材と、該筒状部材の内側に装填され、該筒状部材より熱膨張係数が小さい筒状の応力緩和部材と、該応力緩和部材の内側に装填され、該応力緩和部材より導電率が高い棒状の芯部材とから成ることを特徴とする蓄電池用端子。A terminal for a storage battery in which a terminal pillar is inserted and brazed inside a cylindrical insulating base made of ceramic, the terminal pillar being a cylinder made of one of aluminum, aluminum alloy, copper and copper alloy A cylindrical member, a cylindrical stress relaxation member having a smaller coefficient of thermal expansion than that of the cylindrical member, and an inner surface of the stress relaxation member, and having a conductivity higher than that of the stress relaxation member. A storage battery terminal comprising a high rod-shaped core member.
JP18038699A 1999-06-25 1999-06-25 Terminal for storage battery Expired - Fee Related JP3631635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18038699A JP3631635B2 (en) 1999-06-25 1999-06-25 Terminal for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18038699A JP3631635B2 (en) 1999-06-25 1999-06-25 Terminal for storage battery

Publications (2)

Publication Number Publication Date
JP2001006656A JP2001006656A (en) 2001-01-12
JP3631635B2 true JP3631635B2 (en) 2005-03-23

Family

ID=16082334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18038699A Expired - Fee Related JP3631635B2 (en) 1999-06-25 1999-06-25 Terminal for storage battery

Country Status (1)

Country Link
JP (1) JP3631635B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102842688A (en) * 2011-06-23 2012-12-26 比亚迪股份有限公司 Battery sealing assembly and manufacturing method thereof, and lithium ion battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022388B (en) * 2011-09-26 2015-09-02 比亚迪股份有限公司 Black box of a kind of battery and preparation method thereof and a kind of lithium ion battery
CN103187544B (en) 2011-12-28 2015-07-22 比亚迪股份有限公司 Negative electrode seal assembly of battery and manufacturing method thereof, and lithium ion battery
CN109923691B (en) * 2016-09-07 2022-05-17 安保瑞公司 Seal for high temperature reactive material device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102842688A (en) * 2011-06-23 2012-12-26 比亚迪股份有限公司 Battery sealing assembly and manufacturing method thereof, and lithium ion battery

Also Published As

Publication number Publication date
JP2001006656A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
CA2004241C (en) Ceramic case capacitor
KR101554441B1 (en) Cover assembly and battery comprising the same
JP3958913B2 (en) Solid electrolytic capacitor
US8450010B2 (en) Sealing assembly of battery, method of fabricating the same, and lithium battery
JP3631635B2 (en) Terminal for storage battery
JP3384513B2 (en) Electron tube sealing structure using functionally graded material
JPH0766798B2 (en) Airtight method for battery terminal
JPH0766799B2 (en) Airtight method for battery terminal
JP6341686B2 (en) Electrochemical cell and method for producing the same
JP2003288867A (en) Ceramic terminal
JP3659470B2 (en) Storage battery terminal and storage battery
JP3878854B2 (en) Terminal for storage battery
JPS5855112B2 (en) Brazed structure of ceramics and Al
JP3659490B2 (en) Terminal for storage battery
JP4099025B2 (en) Ceramic terminal
JPH0243096Y2 (en)
JP3659475B2 (en) Battery terminals and batteries
JP2690666B2 (en) Manufacturing method of semiconductor device storage package
JP2838154B2 (en) Heat radiator manufacturing method
JP3659477B2 (en) Battery terminal
JP2908932B2 (en) Electronic component storage package
JPS62281218A (en) Sealing of vacuum breaker
JP4360567B2 (en) Package for storing semiconductor elements
JPH05275608A (en) Semiconductor element housing package
JPS58210341A (en) Ceramic cylinder head

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees