JP3630968B2 - Oxide superconducting cable - Google Patents

Oxide superconducting cable Download PDF

Info

Publication number
JP3630968B2
JP3630968B2 JP00806598A JP806598A JP3630968B2 JP 3630968 B2 JP3630968 B2 JP 3630968B2 JP 00806598 A JP00806598 A JP 00806598A JP 806598 A JP806598 A JP 806598A JP 3630968 B2 JP3630968 B2 JP 3630968B2
Authority
JP
Japan
Prior art keywords
superconducting
tape
dislocation
composite
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00806598A
Other languages
Japanese (ja)
Other versions
JPH11203960A (en
Inventor
直洋 二木
篤 久米
伸行 定方
隆 斉藤
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP00806598A priority Critical patent/JP3630968B2/en
Publication of JPH11203960A publication Critical patent/JPH11203960A/en
Application granted granted Critical
Publication of JP3630968B2 publication Critical patent/JP3630968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機械強度を向上させ交流損失を低減した酸化物超電導ケーブルに関するものである。
【0002】
【従来の技術】
従来、酸化物超電導ケーブルの一例として、図6(a)に示すように、超電導導体3を銅などからなるパイプ状のフォーマ2の周囲にスパイラル状に巻回してなる酸化物超電導ケーブル1が知られている。
この超電導導体3は、図7(a)に示すように、複数の超電導コア6の集合体であるコア4が銀などからなるシース7により覆われて形成され、該超電導導体3をパイプ状のフォーマ2に対して複数層巻回することにより図6(a)に示す超電導積層体8が形成されている。
【0003】
超電導コア4に利用される酸化物超電導物質としては、BiSrCaCu(Bi系2212相),BiSrCaCu(Bi系2223相),
Bi1.6Pb0.4SrCaCu,TlBaCaCu等の組成を持つものが利用されている。そのうち、Bi系、特に、Bi系2223相の酸化物超電導物質が、高い臨界温度を有し安定な物質として超電導コア4に広く適用されている。
次に、酸化物超電導ケーブルの他の構造例として、図6(b)に示すように、超電導線材を塑性加工してセグメント化し、このセグメント化した構成の超電導導体6をフォーマ2に対して巻き付けて構成した超電導ケーブル7が知られている。
【0004】
図6(a)と(b)に示す従来のいずれの構造の超電導ケーブル1、7にあっても、交流通電時の損失を低減するために絶縁構造をとることが好ましいと思われるので、これらの超電導ケーブル1、7にあっては、スパイラル状の超電導導体3に層間絶縁を施すか、セグメント状の超電導導体に層間絶縁を施し、超電導ケーブルとしての交流損失を低減させることがなされている。そして、従来、この層間絶縁を施すためには、絶縁紙やポリイミドテープを超電導導体3、6の外面に巻き付けてからフォーマ2に巻回することで行っていた。
【0005】
【発明が解決しようとする課題】
しかしながら、超電導導体間の絶縁に紙絶縁やポリイミドテープによる絶縁を施したのでは、フォーマ2に超電導導体を巻回する際のケーブル作製時にケーブルの長手方向に作用する力、例えば、巻き付け力による応力等が超電導導体3、6自体に直接負荷されてしまうことになる問題があった。この場合、超電導導体3、6には機械的な引張歪が作用することになるので、例えば、30MPa程度の引張応力の負荷により超電導導体の臨界電流密度が負荷前の80%程度に減少してしまうという問題を有していた。
【0006】
また、前記のような酸化物超電導ケーブル1において、超電導導体3に交流電流を通電した場合に、各々の超電導導体3において図7(b)における紙面に垂直方向に流れる交流電流による自己磁場の影響によって渦電流Fが発生する。このとき、シース5が電気抵抗率の低いAg(Agは20℃において1.63μΩcmの電気抵抗率)等からなるために、図7(c)に示すように、渦電流F1が隣接する超電導導体3のシース5に導通してしまう問題がある。その結果、図8に示すように、超電導積層体8の全体を渦電流F2が横断して導通するために、酸化物超電導ケーブル1の全体として渦電流F2が支配的となり、交流損失が大きくなるという問題があった。
【0007】
本発明は、前記の事情に鑑みてなされたもので、機械強度を高めることで応力に強く、超電導特性の劣化を生じないようにできるとともに、交流通電時の渦電流損失を少なくして交流損失を少なくすることができる酸化物超電導ケーブルの提供を目的とする。
【0008】
【課題を解決するための手段】
本発明に係る酸化物超電導線材にあっては、酸化物超電導コアを金属シースの内部に複数配して形成したテープ状の超電導導体に金属テープを添設してなる複合超電導導体を複数本、転位撚りして転位超電導テープユニットが構成され、前記転位超電導テープユニットが複数本、パイプ状のフォーマの周囲に巻回されてなり、
前記転位超電導テープユニットが、複数の前記複合超電導導体を2列に横並びに、かつ、それらの厚さ方向に複数積層してそれらの長さ方向において前記複数の複合超電導導体を転位超電導テープユニットの表面側に位置する場合と底面側に位置する場合を繰り返すように、しかも、2列に横並びとした前記複数の複合超電導導体をそれらの厚さ方向に積層する場合に前記複数の複合超電導導体をそれらの長さ方向の途中において2列横並びの左右の列と上下の層間で2列横並びの複合超電導導体の幅内で入れ替えることで転位超電導テープユニットの幅方向両端部に位置する前記複数の複合超電導導体の端部どうしを上下の層間で揃えるように配列構成され、
前記各転位超電導テープユニットが、複数、前記フォーマの外周部に、前記転位超電導テープユニットの幅方向端部どうしを接触させた状態で巻回されてなり、
前記金属テープが、前記金属シースよりも高電気抵抗で高強度の金属材料から構成されることを特徴とする。
前記酸化物超電導導体の超電導コアは、BiSrCaCu(Bi2212相),BiSrCaCu(Bi2223相),Bi1.6Pb0.4SrCaCu,TlBaCaCu,などで示される組成を持つものとされ、特に、Bi系2223相またはBi系2212相のBi系酸化物超電導材料が選択されることが好ましい。
前記金属シースは、Ag,Pt,Au等の貴金属とされることが好ましい。
【0009】
次に本発明において、前記金属テープが、前記転位超電導テープユニットにおいて厚さ方向に積層されたテープ状の超電導導体の積層方向上側に配置されてなる構成が好ましい。
前記金属テープがハステロイ等の耐熱性高強度Ni合金からなることが好ましい。ハステロイであればハステロイを介して隣接するシース間の抵抗値を5.9Ωcmとすることができ、例えばAgシースどうしを直接接触させた場合の約10000倍の高抵抗にすることができるので、渦電流を抑制できる。
【0010】
【発明の実施の形態】
以下、本発明に係る超電導ケーブルおよびその製造方法の一実施形態について図面に基づいて説明する。
図1は、本発明の超電導ケーブルの一実施形態を示す斜視図である。この形態の超電導ケーブル10は、転位超電導テープユニット15がパイプ状のフォーマ(管体)17の周囲に螺旋状に巻回されてなるものである。
【0011】
前記転位超電導テープユニット15は、図2、図3に示すようにテープ状の複合超電導導体(複合超電導テープ)18を複数本(図面では5本)転位撚り合わせしてなる長尺の帯状のものである。この形態の転位超電導テープユニット15は、テープ状の超電導導体19に同じ幅の金属テープ20を添設してなる複合超電導導体18の複数本を集合して撚り合わせる際に、各テープ状の複合超電導導体18をその長尺方向において図2と図3に示すように順次その位置を代えて変位するように撚り合わされたものである。即ち複合超電導導体18は、その長さ方向において転位超電導テープユニット15の表面側に位置する場合と底面側に位置する場合が交互に繰り返されるように配置されている。
また、転位超電導テープユニット15は、図2、図3に示すように、2列に横並びとした前記複数の複合超電導導体18をそれらの厚さ方向に積層する場合に前記複数の複合超電導導体18をそれらの長さ方向の途中において2列横並びの左右の列と上下の層間で2列横並びの複合超電導導体の幅内で入れ替えることで転位超電導テープユニット15の幅方向両端部に位置する前記複数の複合超電導導体18の端部どうしを上下の層間で揃えるように配列構成され、前記各転位超電導テープユニット15が、図1に示すように複数、前記フォーマ17の外周部に、前記転位超電導テープユニット15の幅方向端部どうしを接触させた状態で巻回されてなる。
このような転位超電導テープユニット15の巻回方向は、S巻(右巻)の方向またはZ巻(左巻)の方向となっている。
前記フォーマ17は、ステンレス鋼、銅パイプなどの金属材料からなるものである。このようなフォーマ17の表面は、該フォーマ17と転位超電導テープユニット15間の通電を抑制するために絶縁処理が施されている。
【0012】
前記テープ状の超電導導体18は、図4に示す構造の超電導多心素線(超電導素線)25を矩形状に塑性加工してテープ状に平坦化されてなるものである。なお、超電導多心素線25を捻って得られるツイスト超電導素線を平坦化してなるものでも良い。この超電導導体18は、幅1.0mm〜5.0mm程度、厚さ0.1mm〜1.0mm程度の範囲のものとされる。なお、図4中、矢印の方向は、超電導多心素線25を捻る際の捻り方向の一例を示すものである。
前記超電導多心素線25は、超電導フィラメントなどの超電導体からなるコア部28または熱処理により超電導体となる材料を有するコア部28がシース材からなる金属シース29の内部に複数備えられてなるものである。
【0013】
コア部28の超電導体あるいは熱処理により超電導体となる材料としては、
BiSrCaCu(Bi2212相),
BiSrCaCu(Bi2223相),
Bi1.6Pb0.4SrCaCu,TlBaCaCuなどで示される組成を持つものが用いられ、例えば、Bi系2223相のBi系酸化物超電導材料が用いられる。
金属シース29を構成する材料としては、Ag,Pt,Au等の貴金属あるいはそれらの合金からなるものが用いられる。
従ってこのような超電導多心素線25から構成された超電導導体19は、Ag,Pt,Au等の貴金属あるいはそれらの合金からなる基地の内部に複数の超電導フィラメント21が分散された構造とされている。
このような構成の酸化物超電導ケーブル10の外側には、図示を略した半導体層、絶縁層、保護層、断熱層、防食層などが必要に応じて形成されて実用の超電導ケーブルとして使用される。
【0014】
前記金属テープ20は、耐熱性に富み、基地29を構成するシース材よりも高強度で高耐熱性あるものが好ましい。具体的にはハステロイ(米国 Haynes Stellite 社の特許に係るものが好ましく、組成例としてハステロイA(Ni58%、Mo20%、Mn2%、)、ハステロイC(Mo15〜17%、W3〜5%、Cr14〜16.5%、Co2.5%、SiとMn1%、残部Ni)、ハステロイD(Ni85%、Si10%、Al2%)、ハステロイB(Mo26〜30%、Fe4〜7%、Co2.5%、Cr1%、Si1%、C0.05%、残部Ni)、ハステロイX(Cr20〜23%、Mo8〜10%、Fe17〜20%、Co0.5〜2.5%、SiとMn1%))などの組成のものを例示することができる。
【0015】
次に、図1に示した実施形態の超電導ケーブル10の製造方法の一例を工程順に説明する。
〔原料粉末処理工程〕
酸化物超電導物質の原料粉末、例えばBi,PbO,SrCO,CaCO,CuO、からなるものを、Bi:Pb:Sr:Ca:Cuの混合比が1.8:0.4:2.2:3.0となるように混合し、750℃〜820℃の範囲の温度条件においておこなう熱処理(仮焼き)と該仮焼きした後における粉砕とを複数回繰り返す。
ここで、混合する原料粉末は、前記の他にBi,Pb,Sr,Ca,Cuの各元素の酸化物、炭酸塩のいずれでもよい。
〔充填工程〕
前記粉砕した原料粉末をCIP(冷間静水圧プレス)成形等により例えば円柱体とし、ついでこの円柱体をAg等のシース材からなる第一のパイプ内部に充填して封入し、シース材複合体(Agシース複合体)を形成する。
【0016】
〔単心線の伸線(引き抜き)加工工程〕
前記シース材複合体(Agシース複合体)を、ダイス等によって所定の線径にまで伸線加工し、超電導単心素線(単心線)を形成する。
〔多心化工程〕
Ag等のシース材からなる第二のパイプの内部にAg等からなるロッドを配設するとともにこのロッドの周囲に前記単心線を所定数(例えば6本)配置し、封入を行った後、ダイス等により所定の線径にまで伸線加工して、
図4に示すような超電導多心素線(超電導素線)25を形成する。
【0017】
〔圧延熱処理反復工程〕
前記超電導素線25をロール圧延等の圧延加工により、所定の厚さまで圧延して平坦化する。ここでの圧延加工に用いる装置としては、例えば、上下一対のロールを備えた2重圧延機と、このロール間に超電導素線25を送り出す送出ドラムと前記ロール間で圧延された超電導素線25を巻き取る巻取ドラムとからなる搬送機からなる圧延装置(図示略)が好適に用いられる。このような圧延装置を用いて超電導素線25を圧延するには、前記送出ドラムから超電導素線25を前記ロール間に送り出して圧延するとともに圧延された超電導素線25を巻取ドラムで巻き取ることにより行われる。
ついで、この平坦化した超電導素線25を、例えば熱処理ドラムに巻回状態として電気炉等の内部に収容し、温度条件を820℃〜850℃の範囲とし、処理時間を10時間〜200時間の範囲に設定して熱処理を行う。
更に、前記圧延加工(またはプレス処理)および熱処理を複数回繰り返して、所定の厚みのテープ状の超電導導体1を形成する。
【0018】
〔転位撚り合せ工程〕
前記テープ状の超電導導体19の一面にハステロイテープなどの高強度、高耐熱性のNi合金などの金属テープ20を添設して複合超電導導体18としてこれを複数本転位撚り合せ機に供給する。
転位撚り合せ機を用いて前記テープ状の複合超電導導体18の複数本(図面では5本)を所定の転位ピッチで転位撚り合わせて図2、図3に示すような転位超電導テープユニット15を形成する。ここでの転位ピッチとしては、20mm〜500mm程度の範囲内とされる。
〔巻回工程〕
前記転位超電導テープユニット15の複数組(例えば、24組)を表面に絶縁処理が施されたフォーマ17の周囲に所定のスパイラルピッチでZ巻あるいはS巻で巻回することにより、図1に示すような超電導ケーブル10が得られる。ここでのスパイラルピッチとしては、100〜200mm程度の範囲内とされる。
【0019】
本発明の超電導ケーブル10にあっては、ツイスト超電導素線26を平坦化したテープ状の複合超電導導体18を複数本転位撚り合わせた転位超電導テープユニット15を用いたことにより、内層側と外層側での層間電流勾配を抑制することができる。即ち、超電導導体19をそのままフォーマ2の外周に多層巻回した場合に、自己磁場の影響から、ケーブル最外層の超電導導体19に多くの電流が流れ、ケーブル内層側に向かって実際に流れる電流が少なくなる層間電流勾配を生じる傾向があり、臨界電流密度が低下するので、転位撚り合せすることで1本の超電導導体19を内層側と外層側を行き来するようにすることで層間電流勾配の発生を抑制できる。これにより、交流通電時の偏流を防止して臨界電流密度の劣化を防止できる。
【0020】
次に本発明の超電導ケーブル10にあっては、ハステロイの金属テープ20で補強した超電導導体19が多数フォーマ17の外周に巻回されているので、超電導ケーブル10に引張応力などが作用してもこの引張応力は金属テープ20が負担するので、超電導導体19に歪が作用されるおそれは少なくなり、臨界電流密度の低下などの超電導特性の劣化は起こりにくくなる。
【0021】
【実施例】
以下、本発明を、実施例および比較例により、具体的に説明するが、本発明はこの実施例のみに限定されるものではない。
Bi,PbO,SrCO,CaCO,CuOをBi:Pb:Sr:Ca:Cuの混合比が1.8:0.4:2.2:3.0となるように混合し、800℃の温度条件においておこなう熱処理(仮焼き)と該仮焼きした後における粉砕とを複数回繰り返して、原料粉末を得た。
この原料粉末をCIP(冷間静水圧プレス)成形により円筒状として、外径40mm、内径20mmのAgパイプ(第一のパイプ)内部に充填して封入し、Agシース複合体を得た。このAgシース複合体をダイス等によって線径3.0mmにまで伸線加工して単心線を形成した。ついで、外径15mm、内径10mmのAgパイプ(第二のパイプ)の内部に径3.5mmのAgロッドを配設するとともにこのAgロッドの周囲に前記単心線を6本配置し、封入を行った後、ダイス等により線径0.9mmにまで伸線加工して、超電導多心素線を形成した。
【0022】
この超電導多心素線をツイストピッチ50cmで捻ってツイスト超電導素線を形成した。ついで、ツイスト超電導素線を、上述の2重圧延機と搬送機からなる圧延装置を用いて厚さ0.30mmまで圧延加工を施し、平坦化した。
更に、前記圧延加工(またはプレス処理)および熱処理を複数回繰り返して、幅1mm、厚さ0.20mmの横断面形状が矩形状のテープ状の超電導素線を形成した。
形成したテープ状の超電導素線の表面に幅1mm、厚さ0.05mmのハステロイCテープを添わせて複合超電導導体とした上で転位撚り合せ機に送った。
【0023】
転位撚り合せ機を用いて前記テープ状の複合超電導導体の5本を転位の渡りピッチ80mmで転位撚り合わせて転位超電導テープユニットを得た。
このようにして得られた転位超電導テープユニットを、表面にカプトンテープを貼ることにより絶縁を施した外径25mm,長さ2mのステンレス鋼製のコルゲート管(管体)に、50cmのピッチで(24組)スパイラル状(4巻)に巻回し、酸化物超電導ケーブルを得た。
【0024】
(比較例)
前記実施例と同様にして超電導導体を形成し、この超電導導体にポリイミドテープを巻き付けて絶縁した後、前記実施例と同様に処理して酸化物超電導ケーブルを得た。また、転位撚りを施すことなくフォーマの周囲に複合超電導導体を巻回した超電導ケーブルも試作した。
【0025】
前記実施例で得られた酸化物超電導ケーブルと、比較例で得られた酸化物超電導ケーブルにおいて、以下の条件で測定実験を行ない、臨界電流を求め、交流損失とピーク電流の関係を求め、図5に示した。
外部磁場:0T、温度:77K、交流周期:60Hz
超電導導体1本の臨界電流:10A
超電導ケーブルの臨界電流:1.2kA
更に、ハステロイテープを添設したAgのシース材どうしの間の抵抗値を液体窒素温度77K中で測定したところ、5.9Ωcmとなり、Agシースどうしを直接接触させた構造の約10000倍の高抵抗となったので、渦電流を抑制するための構造として好適になっていることが把握できた。
【0026】
図5に示すように本発明に係る超電導ケーブルの交流損失はポリイミドテープを用いて絶縁した構造の比較例の超電導ケーブルと同等であることが判明した。また、各超電導ケーブルに30MPaの引張張力を印加する引張試験を行ってみたが、ハステロイテープを複合化したものは臨界電流密度の低下は生じなかったが、ポリイミドテープを複合化したものは臨界電流密度が20%低下した。
次に、前記の複合超電導導体に転位撚りを施すことなく直に多層スパイラル巻きした場合に得られた超電導ケーブルの試作も行ったが、前述の転位撚りを施した試料に比べて交流損失が35%増加してしまった。
この結果、ハステロイテープを複合化して転位撚りすることで転位撚りしないものに比べて交流損失を少なくでき、ポリイミド絶縁のものと同等の交流損失値とした上で、更に機械強度を向上させて臨界電流値の劣化を防止できる超電導ケーブルを提供できることが判明した。
【0027】
【発明の効果】
以上説明したように本発明の超電導ケーブルにあっては、特に、テープ状の超電導導体に金属テープを添設してなる複合超電導導体を複数本、転位撚りしてなる転位超電導テープユニットをパイプ状のフォーマの周囲に巻回するともに、前記転位超電導テープユニットとして、複数の前記複合超電導導体を2列に横並びに、かつ、それらの厚さ方向に複数積層してそれらの長さ方向において前記複数の複合超電導導体を転位超電導テープユニットの表面側に位置する場合と底面側に位置する場合を繰り返すように、しかも、2列に横並びとした前記複数の複合超電導導体をそれらの厚さ方向に積層する場合に前記複数の複合超電導導体をそれらの長さ方向の途中において2列横並びの左右の列と上下の層間で2列横並びの複合超電導導体の幅内で入れ替えることで転位超電導テープユニットの幅方向両端部に位置する前記複数の複合超電導導体の端部どうしを上下の層間で揃えるように配列構成し、前記各転位超電導テープユニットを、複数、前記フォーマの外周部に前記転位超電導テープユニットの幅方向端部どうしを接触させた状態で巻回したので、超電導導体に付加されようとする張力等の荷重を金属テープが負担し、ケーブルとしての機械強度が向上する。また、金属テープが荷重を負担するので超電導導体に作用する歪は少なくなり、超電導導体の臨界電流密度が劣化するおそれはなくなる。
更に、超電導導体をそのままフォーマの外周に多層巻回した場合に、自己磁場の影響から、ケーブル最外層の超電導導体に多くの電流が流れ、ケーブル内層側に向かって実際に流れる電流が少なくなる層間電流勾配を生じる傾向があり、臨界電流密度が低下するが、前記構成により、転位撚り合せすることで超電導導体を内層側と外層側を行き来するようにすることで層間電流勾配の発生を抑制できる。これにより、交流通電時の偏流を防止して臨界電流密度の劣化を防止できる超電導ケーブルを提供できる。
【0028】
また、前記金属テープが、前記超電導導体の金属シースよりも高電気抵抗で高強度の金属材料から構成され、前記転位超電導テープユニットにおいて厚さ方向に積層されたテープ状の超電導導体の積層方向上側に配置されてなることで、超電導導体に付加されようとする張力等の荷重を超電導導体の金属シースよりも高強度の金属テープが負担するので超電導ケーブルとしての機械強度が向上する。また、前記金属テープが荷重を負担するので超電導導体に作用する歪は少なくなり、超電導導体の臨界電流密度が劣化するおそれはなくなる。
【図面の簡単な説明】
【図1】図1は本発明に係る超電導ケーブルの一実施形態を示す斜視図。
【図2】図2は本発明に係る超電導ケーブルに用いられる転位超電導テープユニット示す斜視図。
【図3】図3は同ユニットの横断面図。
【図4】図4は本発明に係る超電導ケーブルの一実施形態における捻り加工前の超電導素線を示す斜視図。
【図5】実施例で得られた超電導ケーブルの交流損失試験結果を示す図。
【図6】図6(a)は従来の酸化物超電導ケーブルの一例の一部を断面とした斜視図、図6(b)は従来の酸化物超電導ケーブルの他の例の一部を断面とした斜視図。
【図7】図7(a)は従来の超電導導体の模式断面図、図7(b)は従来の超電導導体における渦電流発生状態を示す模式断面図、図7(c)は従来の超電導導体の交流通電時等の渦電流が結合した状態を示す模式断面図。
【図8】従来の超電導ケーブルの超電導導体層において発生した渦電流を示す断面図である。
【符号の説明】
10・・・超電導ケーブル,15・・・転位超電導テープユニット、17・・・フォーマ (管体)、18・・・テープ状の超電導導体(超電導テープ)、19・・・テープ状の超電導素線、20・・・金属テープ、25・・・超電導多心素線(超電導素線)、29・・・金属シース。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxide superconducting cable having improved mechanical strength and reduced AC loss.
[0002]
[Prior art]
Conventionally, as an example of an oxide superconducting cable, an oxide superconducting cable 1 in which a superconducting conductor 3 is spirally wound around a pipe-shaped former 2 made of copper or the like is known as shown in FIG. It has been.
As shown in FIG. 7A, the superconducting conductor 3 is formed by covering a core 4 which is an aggregate of a plurality of superconducting cores 6 with a sheath 7 made of silver or the like. A superconducting laminate 8 shown in FIG. 6A is formed by winding a plurality of layers around the former 2.
[0003]
Examples of the oxide superconducting material used for the superconducting core 4 include Bi 2 Sr 2 Ca 1 Cu 2 O x (Bi-based 2212 phase), Bi 2 Sr 2 Ca 2 Cu 3 O y (Bi-based 2223 phase),
Those having a composition such as Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3 O y are used. Among them, Bi-based, particularly Bi-based 2223 phase oxide superconducting materials are widely applied to the superconducting core 4 as a stable material having a high critical temperature.
Next, as another structural example of the oxide superconducting cable, as shown in FIG. 6 (b), the superconducting wire is plastically processed into segments, and the segmented superconducting conductor 6 is wound around the former 2. A superconducting cable 7 configured as described above is known.
[0004]
In any of the conventional superconducting cables 1 and 7 shown in FIGS. 6 (a) and 6 (b), it is considered preferable to adopt an insulating structure in order to reduce loss during AC energization. In the superconducting cables 1 and 7, interlayer insulation is applied to the spiral superconducting conductor 3 or interlayer insulation is applied to the segmented superconducting conductor 6 to reduce AC loss as a superconducting cable. . Conventionally, in order to perform this interlayer insulation, an insulating paper or polyimide tape is wound around the outer surface of the superconducting conductors 3 and 6 and then wound around the former 2.
[0005]
[Problems to be solved by the invention]
However, if the insulation between the superconducting conductors is made by paper insulation or polyimide tape insulation, the force acting in the longitudinal direction of the cable when the superconducting conductor is wound around the former 2, for example, the stress due to the winding force And the like are directly loaded onto the superconductors 3 and 6 themselves. In this case, since the mechanical tensile strain acts on the superconductors 3 and 6, for example, the load of a tensile stress of about 30 MPa reduces the critical current density of the superconductor to about 80% before the load. It had the problem of end.
[0006]
Further, in the oxide superconducting cable 1 as described above, when an alternating current is passed through the superconducting conductor 3, the influence of the self-magnetic field due to the alternating current flowing in the direction perpendicular to the paper surface in FIG. As a result, an eddy current F is generated. At this time, since the sheath 5 is made of Ag having a low electrical resistivity (Ag is an electrical resistivity of 1.63 μΩcm at 20 ° C.) or the like, as shown in FIG. 7C, the eddy current F1 is adjacent to the superconducting conductor. 3 has a problem of conducting to the sheath 5. As a result, as shown in FIG. 8, since the eddy current F2 is conducted across the entire superconducting laminate 8, the eddy current F2 becomes dominant as a whole of the oxide superconducting cable 1, and the AC loss increases. There was a problem.
[0007]
The present invention has been made in view of the above circumstances, and is capable of being strong against stress by increasing mechanical strength and preventing deterioration of superconducting characteristics, and reducing eddy current loss during AC energization to reduce AC loss. An object of the present invention is to provide an oxide superconducting cable that can reduce the number of wires.
[0008]
[Means for Solving the Problems]
In the oxide superconducting wire according to the present invention, a plurality of composite superconducting conductors formed by attaching a metal tape to a tape-shaped superconducting conductor formed by arranging a plurality of oxide superconducting cores inside a metal sheath, A dislocation superconducting tape unit is configured by twisting dislocations, and a plurality of the dislocation superconducting tape units are wound around a pipe-shaped former,
The dislocation superconducting tape unit includes a plurality of the composite superconducting conductors arranged side by side in two rows and stacked in the thickness direction, and the plurality of composite superconducting conductors are disposed in the length direction of the dislocation superconducting tape unit. When the plurality of composite superconducting conductors arranged in two rows are stacked in the thickness direction so as to repeat the case of being located on the front side and the case of being located on the bottom side, the plurality of composite superconducting conductors are The plurality of composites positioned at both ends in the width direction of the dislocation superconducting tape unit by switching within the width of the composite superconducting conductors arranged in two rows between the left and right rows and the upper and lower layers in the middle of their length direction It is arranged and arranged so that the ends of the superconducting conductor are aligned between the upper and lower layers,
Each of the dislocation superconducting tape units is wound in a state where a plurality of dislocation superconducting tape units are in contact with widthwise ends of the dislocation superconducting tape unit on the outer periphery of the former,
It said metal tape is formed of a metallic material having a high strength at high electrical resistivity than the metal sheath, characterized in Rukoto.
The superconducting core of the oxide superconducting conductor is composed of Bi 2 Sr 2 Ca 1 Cu 2 O x (Bi 2212 phase), Bi 2 Sr 2 Ca 2 Cu 3 O y (Bi 2223 phase), Bi 1.6 Pb 0.4 Sr 2. It is assumed to have a composition represented by Ca 2 Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3 O y , etc., and in particular, a Bi-based oxide superconducting material of Bi-based 2223 phase or Bi-based 2212 phase is selected. It is preferable.
The metal sheath is preferably a noble metal such as Ag, Pt, or Au.
[0009]
Next, in the present invention, the metal tape, are arranged in a stacking direction above the front Symbol dislocation superconducting tape unit thickness direction layered tape-like superconducting conductor in the configuration are preferred.
The metal tape is preferably made of a heat resistant high strength Ni alloy such as Hastelloy. In the case of Hastelloy, the resistance value between adjacent sheaths can be set to 5.9 Ωcm 2 through Hastelloy, and for example, the resistance can be increased to about 10,000 times higher than when Ag sheaths are brought into direct contact with each other. Eddy current can be suppressed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a superconducting cable and a method for manufacturing the same according to the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing an embodiment of the superconducting cable of the present invention. The superconducting cable 10 of this form is one in which a dislocation superconducting tape unit 15 is spirally wound around a pipe-shaped former (tubing body) 17.
[0011]
As shown in FIGS. 2 and 3, the dislocation superconducting tape unit 15 is a long belt-shaped unit formed by twisting a plurality of (5 in the drawing) dislocation twists of a tape-shaped composite superconducting conductor (composite superconducting tape) 18. It is. The dislocation superconducting tape unit 15 in this form is configured such that when a plurality of composite superconducting conductors 18 formed by attaching a metal tape 20 of the same width to a tape-like superconducting conductor 19 are assembled and twisted together, each tape-like composite As shown in FIGS. 2 and 3, the superconducting conductor 18 is twisted so that the position of the superconducting conductor 18 is sequentially changed as shown in FIGS. That is, the composite superconducting conductor 18 is arranged so that the case where it is located on the surface side of the dislocation superconducting tape unit 15 and the case where it is located on the bottom side are alternately repeated in the length direction.
In addition, as shown in FIGS. 2 and 3, the dislocation superconducting tape unit 15 includes the plurality of composite superconducting conductors 18 when the plurality of composite superconducting conductors 18 arranged in two rows are stacked in the thickness direction thereof. Are replaced at the both ends of the dislocation superconducting tape unit 15 in the width direction of the dislocation superconducting tape unit 15 by exchanging them within the width of the composite superconducting conductors arranged in two rows between the left and right rows and the upper and lower layers. 1 are arranged so that the end portions of the composite superconducting conductors 18 are aligned between the upper and lower layers, and a plurality of dislocation superconducting tape units 15 are arranged on the outer periphery of the former 17 as shown in FIG. The unit 15 is wound while the end portions in the width direction are in contact with each other.
The winding direction of such a dislocation superconducting tape unit 15 is the direction of S winding (right winding) or Z winding (left winding).
The former 17 is made of a metal material such as stainless steel or copper pipe. The surface of the former 17 is subjected to an insulation treatment in order to suppress energization between the former 17 and the dislocation superconducting tape unit 15.
[0012]
The tape-shaped superconducting conductor 18 is obtained by plastically processing a superconducting multi-core strand (superconducting strand) 25 having a structure shown in FIG. 4 into a rectangular shape and flattening it into a tape shape. A twisted superconducting element wire obtained by twisting the superconducting multi-core element wire 25 may be flattened. The superconducting conductor 18 has a width of about 1.0 mm to 5.0 mm and a thickness of about 0.1 mm to 1.0 mm. In FIG. 4, the direction of the arrow indicates an example of the twisting direction when the superconducting multi-core strand 25 is twisted.
The superconducting multi-core wire 25 includes a core portion 28 made of a superconductor such as a superconducting filament or a core portion 28 made of a material that becomes a superconductor by heat treatment provided inside a metal sheath 29 made of a sheath material. It is.
[0013]
As a superconductor of the core portion 28 or a material that becomes a superconductor by heat treatment,
Bi 2 Sr 2 Ca 1 Cu 2 O x (Bi 2212 phase),
Bi 2 Sr 2 Ca 2 Cu 3 O y (Bi2223 phase),
A material having a composition represented by Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3 O y or the like is used. For example, a Bi-based oxide of a Bi-based 2223 phase A superconducting material is used.
As a material constituting the metal sheath 29, a material made of a noble metal such as Ag, Pt, Au or an alloy thereof is used.
Therefore, the superconducting conductor 19 composed of such a superconducting multi-core wire 25 has a structure in which a plurality of superconducting filaments 21 are dispersed inside a base made of a noble metal such as Ag, Pt, Au, or an alloy thereof. Yes.
Outside the oxide superconducting cable 10 having such a configuration, a semiconductor layer, an insulating layer, a protective layer, a heat insulating layer, an anticorrosive layer, etc. (not shown) are formed as necessary, and used as a practical superconducting cable. .
[0014]
The metal tape 20 is preferably heat-resistant, and has a higher strength and higher heat resistance than the sheath material constituting the base 29. Specifically, those related to Hastelloy (patented by Haynes Stellite, USA) are preferred, and examples of compositions include Hastelloy A (Ni 58%, Mo 20%, Mn 2%), Hastelloy C (Mo 15 to 17%, W 3 to 5%, Cr 14 to 16.5%, Co 2.5%, Si and Mn 1%, balance Ni), Hastelloy D (Ni 85%, Si 10%, Al 2%), Hastelloy B (Mo 26-30%, Fe 4-7%, Co 2.5%, Cr 1%, Si 1%, C 0.05%, balance Ni), Hastelloy X (Cr 20-23%, Mo 8-10%, Fe 17-20%, Co 0.5-2.5%, Si and Mn 1%)) The composition can be exemplified.
[0015]
Next, an example of the manufacturing method of the superconducting cable 10 of the embodiment shown in FIG.
[Raw material processing process]
A raw material powder of an oxide superconducting material, for example, Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO, is used, and a mixing ratio of Bi: Pb: Sr: Ca: Cu is 1.8: 0.4: It mixes so that it may become 2.2: 3.0, The heat processing (calcination) performed on the temperature conditions of the range of 750 to 820 degreeC and the grinding | pulverization after this calcination are repeated several times.
Here, the raw material powder to be mixed may be any of oxides and carbonates of each element of Bi, Pb, Sr, Ca, and Cu in addition to the above.
[Filling process]
The pulverized raw material powder is formed into, for example, a cylindrical body by CIP (cold isostatic pressing) molding or the like, and then the cylindrical body is filled and sealed inside a first pipe made of a sheath material such as Ag. (Ag sheath composite) is formed.
[0016]
[Single wire drawing (drawing) process]
The sheath material composite (Ag sheath composite) is drawn to a predetermined wire diameter with a die or the like to form a superconducting single core wire (single core wire).
[Multi-center process]
After disposing a rod made of Ag or the like inside a second pipe made of a sheath material such as Ag and arranging a predetermined number (for example, 6) of the single core wires around the rod, sealing, Drawing to a predetermined wire diameter with a die, etc.
A superconducting multi-core strand (superconducting strand) 25 as shown in FIG. 4 is formed.
[0017]
[Rolling heat treatment repeat process]
The superconducting element wire 25 is rolled and flattened to a predetermined thickness by a rolling process such as roll rolling. As an apparatus used for the rolling process here, for example, a double rolling mill having a pair of upper and lower rolls, a delivery drum for feeding the superconducting element wire 25 between the rolls, and a superconducting element wire 25 rolled between the rolls. A rolling device (not shown) composed of a conveying machine composed of a take-up drum for winding up is preferably used. In order to roll the superconducting element wire 25 using such a rolling device, the superconducting element wire 25 is fed between the rolls from the delivery drum and rolled, and the rolled superconducting element wire 25 is taken up by a take-up drum. Is done.
Subsequently, the flattened superconducting element wire 25 is housed in an electric furnace or the like, for example, wound around a heat treatment drum, the temperature condition is set to a range of 820 ° C. to 850 ° C., and the treatment time is set to 10 hours to 200 hours. Heat treatment is performed at a range.
Furthermore, the rolling process (or press process) and the heat treatment are repeated a plurality of times to form a tape-shaped superconducting conductor 19 having a predetermined thickness.
[0018]
[Dislocation twisting process]
A metal tape 20 such as a high-strength and high heat-resistant Ni alloy such as Hastelloy tape is attached to one surface of the tape-shaped superconducting conductor 19 and supplied as a composite superconducting conductor 18 to a plurality of dislocation twisting machines.
A dislocation superconducting tape unit 15 as shown in FIGS. 2 and 3 is formed by twisting a plurality of the tape-shaped composite superconducting conductors 18 (five in the drawing) at a predetermined dislocation pitch using a dislocation twisting machine. To do. The dislocation pitch here is in the range of about 20 mm to 500 mm.
[Winding process]
FIG. 1 shows a plurality of sets (for example, 24 sets) of dislocation superconducting tape units 15 wound around a former 17 whose surface is subjected to an insulation treatment with a Z or S winding at a predetermined spiral pitch. Such a superconducting cable 10 is obtained. The spiral pitch here is in the range of about 100 to 200 mm.
[0019]
In the superconducting cable 10 of the present invention, the use of the dislocation superconducting tape unit 15 in which a plurality of tape-like composite superconducting conductors 18 obtained by flattening the twisted superconducting wires 26 are twisted together to form an inner layer side and an outer layer side. The interlayer current gradient can be suppressed. That is, when the superconducting conductor 19 is wound around the outer periphery of the former 2 as it is, a large amount of current flows through the superconducting conductor 19 on the outermost layer of the cable due to the influence of the self-magnetic field, and the current that actually flows toward the inner layer side of the cable. Since there is a tendency to generate an interlayer current gradient that decreases, the critical current density decreases, so that a single superconducting conductor 19 moves back and forth between the inner layer side and the outer layer side by twisting dislocations. Can be suppressed. Thereby, the drift at the time of alternating current supply can be prevented, and deterioration of critical current density can be prevented.
[0020]
Next, in the superconducting cable 10 of the present invention, a number of superconducting conductors 19 reinforced with Hastelloy metal tape 20 are wound around the outer periphery of the former 17, so that even if tensile stress or the like acts on the superconducting cable 10. Since this tensile stress is borne by the metal tape 20, there is less risk of distortion acting on the superconducting conductor 19, and superconducting characteristics such as a decrease in critical current density are less likely to occur.
[0021]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited only to this Example.
Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO are mixed so that the mixing ratio of Bi: Pb: Sr: Ca: Cu is 1.8: 0.4: 2.2: 3.0, A heat treatment (calcination) performed under a temperature condition of 800 ° C. and pulverization after the calcination were repeated a plurality of times to obtain a raw material powder.
This raw material powder was formed into a cylindrical shape by CIP (cold isostatic pressing), filled and sealed inside an Ag pipe (first pipe) having an outer diameter of 40 mm and an inner diameter of 20 mm, and an Ag sheath composite was obtained. This Ag sheath composite was drawn to a wire diameter of 3.0 mm with a die or the like to form a single core wire. Next, an Ag rod having a diameter of 3.5 mm is arranged inside an Ag pipe (second pipe) having an outer diameter of 15 mm and an inner diameter of 10 mm, and six single-core wires are arranged around the Ag rod, and sealed. Then, the wire was drawn to a diameter of 0.9 mm with a die or the like to form a superconducting multi-core wire.
[0022]
This superconducting multi-core wire was twisted at a twist pitch of 50 cm to form a twisted superconducting wire. Next, the twisted superconducting wire was rolled to a thickness of 0.30 mm using the above-described rolling apparatus including the double rolling mill and the transfer machine, and was flattened.
Further, the rolling process (or press process) and the heat treatment were repeated a plurality of times to form a tape-shaped superconducting wire having a width of 1 mm and a thickness of 0.20 mm and a rectangular cross-sectional shape.
A 1 mm wide and 0.05 mm thick Hastelloy C tape was added to the surface of the formed tape-shaped superconducting wire to form a composite superconducting conductor, which was then sent to a dislocation twisting machine.
[0023]
A dislocation superconducting tape unit was obtained by using a dislocation twisting machine to dispose and twist five of the tape-shaped composite superconducting conductors at a transition pitch of 80 mm.
The dislocation superconducting tape unit obtained in this manner was applied to a stainless steel corrugated tube (tube) having an outer diameter of 25 mm and a length of 2 m, which had been insulated by applying Kapton tape on the surface, at a pitch of 50 cm ( 24 sets) A spiral shape (4 rolls) was wound to obtain an oxide superconducting cable.
[0024]
(Comparative example)
A superconducting conductor was formed in the same manner as in the above example, and a polyimide tape was wrapped around the superconducting conductor to insulate it, and then treated in the same manner as in the above example to obtain an oxide superconducting cable. We also prototyped a superconducting cable with a composite superconducting conductor wound around the former without dislocation twisting.
[0025]
In the oxide superconducting cable obtained in the above example and the oxide superconducting cable obtained in the comparative example, a measurement experiment is performed under the following conditions, a critical current is obtained, a relationship between AC loss and peak current is obtained, This is shown in FIG.
External magnetic field: 0T, temperature: 77K, AC cycle: 60Hz
Critical current of one superconducting conductor: 10A
Critical current of superconducting cable: 1.2 kA
Furthermore, when the resistance value between the Ag sheath materials provided with the Hastelloy tape was measured at a liquid nitrogen temperature of 77K, it was 5.9 Ωcm 2 , which was about 10,000 times higher than the structure in which the Ag sheaths were in direct contact with each other. Since it became resistance, it was grasped that it was suitable as a structure for suppressing eddy current.
[0026]
As shown in FIG. 5, it has been found that the AC loss of the superconducting cable according to the present invention is equivalent to that of the comparative superconducting cable having a structure insulated with polyimide tape. In addition, a tensile test in which a tensile tension of 30 MPa was applied to each superconducting cable was performed. However, the composite of the Hastelloy tape did not cause a decrease in the critical current density, but the composite of the polyimide tape was the critical current. The density was reduced by 20%.
Next, a prototype of a superconducting cable obtained when the composite superconducting conductor was directly wound in a multi-layer spiral without being subjected to dislocation twist was also made. However, the AC loss was 35 compared with the sample subjected to the dislocation twist described above. % Has increased.
As a result, by combining and twisting dislocation twisted hastelloy tape, AC loss can be reduced compared to those without dislocation twisting, and the AC loss value is equivalent to that of polyimide insulation, and the mechanical strength is further improved to make it critical. It has been found that it is possible to provide a superconducting cable that can prevent deterioration of the current value.
[0027]
【The invention's effect】
As described above, in the superconducting cable of the present invention, in particular, a plurality of composite superconducting conductors in which a metal tape is attached to a tape-like superconducting conductor, a dislocation superconducting tape unit formed by dislocation twisting is formed in a pipe shape. As the dislocation superconducting tape unit, a plurality of the composite superconducting conductors are stacked side by side in two rows and stacked in the thickness direction, and the plurality of the superconducting conductors are wound in the length direction. The composite superconducting conductors of the dislocation superconducting tape unit are laminated on the surface side and the bottom side, and the plurality of composite superconducting conductors arranged in two rows are laminated in the thickness direction. When the plurality of composite superconducting conductors are arranged, the width of the composite superconducting conductors arranged in two rows between the left and right rows and the upper and lower layers in the middle of their length direction. Are arranged so that ends of the plurality of composite superconducting conductors positioned at both ends in the width direction of the dislocation superconducting tape unit are aligned between upper and lower layers, and a plurality of the dislocation superconducting tape units are formed in the former. since wound in a state contacting the widthwise end portions to each other of the dislocation superconducting tape unit to the outer circumferential portion of the load of the tension or the like about to be added to the superconducting conductor metal tape is borne, mechanical strength of the cable Will improve. Further, since the metal tape bears a load, the strain acting on the superconducting conductor is reduced, and there is no possibility that the critical current density of the superconducting conductor is deteriorated.
Furthermore, when the superconducting conductor is wound around the former as it is in multiple layers, a large amount of current flows through the superconducting conductor on the outermost layer of the cable due to the influence of the self-magnetic field, and the current that actually flows toward the inner layer of the cable decreases. There is a tendency to generate a current gradient, and the critical current density decreases. With the above configuration, the generation of an interlayer current gradient can be suppressed by moving the superconducting conductor back and forth between the inner layer side and the outer layer side by twisting dislocations. . As a result, it is possible to provide a superconducting cable that can prevent drift during alternating current conduction and prevent deterioration of critical current density.
[0028]
The metal tape is made of a metal material having a higher electrical resistance and strength than the metal sheath of the superconducting conductor, and is laminated in the stacking direction of the tape-shaped superconducting conductor laminated in the thickness direction in the dislocation superconducting tape unit. As a result, a higher-strength metal tape than the metal sheath of the superconducting conductor bears a load such as tension to be applied to the superconducting conductor, so that the mechanical strength of the superconducting cable is improved. Further, since the metal tape bears a load, the strain acting on the superconducting conductor is reduced, and there is no possibility that the critical current density of the superconducting conductor is deteriorated.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a superconducting cable according to the present invention.
FIG. 2 is a perspective view showing a dislocation superconducting tape unit used in a superconducting cable according to the present invention.
FIG. 3 is a cross-sectional view of the unit.
FIG. 4 is a perspective view showing a superconducting element wire before twisting in an embodiment of a superconducting cable according to the present invention.
FIG. 5 is a diagram showing an AC loss test result of a superconducting cable obtained in an example.
FIG. 6 (a) is a perspective view showing a cross section of a part of an example of a conventional oxide superconducting cable, and FIG. 6 (b) is a cross section of a part of another example of a conventional oxide superconducting cable. FIG.
7A is a schematic cross-sectional view of a conventional superconducting conductor, FIG. 7B is a schematic cross-sectional view showing an eddy current generation state in the conventional superconducting conductor, and FIG. 7C is a conventional superconducting conductor. FIG. 3 is a schematic cross-sectional view showing a state in which eddy currents are coupled when AC current is applied.
FIG. 8 is a cross-sectional view showing an eddy current generated in a superconducting conductor layer of a conventional superconducting cable.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Superconducting cable, 15 ... Dislocation superconducting tape unit, 17 ... Former (tube), 18 ... Tape-like superconducting conductor (superconducting tape), 19 ... Tape-like superconducting wire 20 ... metal tape, 25 ... superconducting multi-core wire (superconducting wire), 29 ... metal sheath.

Claims (3)

酸化物超電導コアを金属シースの内部に複数配して形成したテープ状の超電導導体に金属テープを添設してなる複合超電導導体を複数本、転位撚りして転位超電導テープユニットが構成され、前記転位超電導テープユニットが複数本、パイプ状のフォーマの周囲に巻回されてなり、
前記転位超電導テープユニットが、複数の前記複合超電導導体を2列に横並びに、かつ、それらの厚さ方向に複数積層してそれらの長さ方向において前記複数の複合超電導導体を転位超電導テープユニットの表面側に位置する場合と底面側に位置する場合を繰り返すように、しかも、2列に横並びとした前記複数の複合超電導導体をそれらの厚さ方向に積層する場合に前記複数の複合超電導導体をそれらの長さ方向の途中において2列横並びの左右の列と上下の層間で2列横並びの複合超電導導体の幅内で入れ替えることで転位超電導テープユニットの幅方向両端部に位置する前記複数の複合超電導導体の端部どうしを上下の層間で揃えるように配列構成され、
前記各転位超電導テープユニットが、複数、前記フォーマの外周部に、前記転位超電導テープユニットの幅方向端部どうしを接触させた状態で巻回されてなり、
前記金属テープが、前記金属シースよりも高電気抵抗で高強度の金属材料から構成されることを特徴とする酸化物超電導ケーブル。
A plurality of composite superconducting conductors obtained by attaching a metal tape to a tape-shaped superconducting conductor formed by arranging a plurality of oxide superconducting cores inside a metal sheath, dislocation twisting to constitute a dislocation superconducting tape unit, A number of dislocation superconducting tape units are wound around a pipe-shaped former.
The dislocation superconducting tape unit includes a plurality of the composite superconducting conductors arranged side by side in two rows and stacked in the thickness direction, and the plurality of composite superconducting conductors are disposed in the length direction of the dislocation superconducting tape unit. When the plurality of composite superconducting conductors arranged in two rows are stacked in the thickness direction so as to repeat the case of being located on the front side and the case of being located on the bottom side, the plurality of composite superconducting conductors are The plurality of composites positioned at both ends in the width direction of the dislocation superconducting tape unit by switching within the width of the composite superconducting conductors arranged in two rows between the left and right rows and the upper and lower layers in the middle of their length direction It is arranged and arranged so that the ends of the superconducting conductor are aligned between the upper and lower layers,
Each of the dislocation superconducting tape units is wound in a state where a plurality of dislocation superconducting tape units are in contact with each other in the widthwise ends of the dislocation superconducting tape unit on the outer periphery of the former.
It said metal tape is formed of the metallic metal material having a high strength at high electrical resistance than the sheath oxide superconducting cable according to claim Rukoto.
前記金属テープが、前記転位超電導テープユニットにおいて厚さ方向に積層されたテープ状の超電導導体の積層方向上側に配置されてなることを特徴とする請求項1記載の酸化物超電導ケーブル。It said metal tape is an oxide superconducting cable according to claim 1, characterized by being arranged in the laminating direction above the front Symbol dislocation superconducting tape unit thickness direction layered tape-like superconducting conductor in. 前記金属テープがハステロイ等の耐熱性高強度Ni合金からなることを特徴とする請求項2記載の酸化物超電導ケーブル。3. The oxide superconducting cable according to claim 2, wherein the metal tape is made of a heat-resistant high-strength Ni alloy such as Hastelloy.
JP00806598A 1998-01-19 1998-01-19 Oxide superconducting cable Expired - Fee Related JP3630968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00806598A JP3630968B2 (en) 1998-01-19 1998-01-19 Oxide superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00806598A JP3630968B2 (en) 1998-01-19 1998-01-19 Oxide superconducting cable

Publications (2)

Publication Number Publication Date
JPH11203960A JPH11203960A (en) 1999-07-30
JP3630968B2 true JP3630968B2 (en) 2005-03-23

Family

ID=11682955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00806598A Expired - Fee Related JP3630968B2 (en) 1998-01-19 1998-01-19 Oxide superconducting cable

Country Status (1)

Country Link
JP (1) JP3630968B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270422A (en) * 2001-03-08 2002-09-20 Toshiba Corp Superconducting device and its cooling system
JP2003092034A (en) * 2001-09-17 2003-03-28 Fujikura Ltd Transposition superconductive tape unit and superconductive application equipment using the same
JP5122047B2 (en) * 2001-09-17 2013-01-16 株式会社フジクラ Dislocation superconducting tape unit and superconducting application equipment using the same

Also Published As

Publication number Publication date
JPH11203960A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
JP3658844B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
US5932523A (en) Superconducting cable conductor
JP4174824B2 (en) Superconducting cable
KR100641714B1 (en) Method for joining high temperature superconducting components with negligible critical current degradation and articles of manufacture in accordance therewith
JP3630968B2 (en) Oxide superconducting cable
Leghissa et al. Bi-2223 multifilament tapes and multistrand conductors for HTS power transmission cables
EP1188167B1 (en) Methods for joining high temperature superconducting components in a superconducting cable with negligible critical current degradation and articles of manufacture in accordance therewith
WO2008065781A1 (en) Oxide superconducting wire rod, superconducting structure, method for manufacturing oxide superconducting wire rod, superconducting cable, superconducting magnet, and product comprising superconducting magnet
JP3885358B2 (en) Oxide high-temperature superconducting wire and method for producing the same
JP3568767B2 (en) Superconducting cable and manufacturing method thereof
JP3585719B2 (en) Oxide superconducting cable unit and oxide superconducting cable including the same
JP5122047B2 (en) Dislocation superconducting tape unit and superconducting application equipment using the same
JP3657367B2 (en) Bismuth-based oxide multicore superconducting wire and method for producing the same
JP3724128B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JP4737094B2 (en) Oxide superconducting wire, superconducting structure, manufacturing method of oxide superconducting wire, superconducting cable, superconducting magnet, and product including superconducting magnet
JP3701606B2 (en) Dislocation superconducting tape unit and superconducting application equipment using the same
JP3568766B2 (en) Superconducting cable and method for manufacturing the same
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
JP3657397B2 (en) Oxide superconducting wire and method for producing the same
JP4202173B2 (en) Dislocation segment, manufacturing method thereof, manufacturing apparatus thereof, and superconducting application equipment
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications
JP3568745B2 (en) Oxide superconducting cable
WO1999007003A1 (en) A high temperature superconductor and method of making and using same
JP4096406B2 (en) Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method
JP2003092034A (en) Transposition superconductive tape unit and superconductive application equipment using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees