JP3630542B2 - Thermal storage superheater - Google Patents

Thermal storage superheater Download PDF

Info

Publication number
JP3630542B2
JP3630542B2 JP00733198A JP733198A JP3630542B2 JP 3630542 B2 JP3630542 B2 JP 3630542B2 JP 00733198 A JP00733198 A JP 00733198A JP 733198 A JP733198 A JP 733198A JP 3630542 B2 JP3630542 B2 JP 3630542B2
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion exhaust
heat storage
superheater
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00733198A
Other languages
Japanese (ja)
Other versions
JPH11201407A (en
Inventor
琢磨 戸井
秀雄 五嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP00733198A priority Critical patent/JP3630542B2/en
Publication of JPH11201407A publication Critical patent/JPH11201407A/en
Application granted granted Critical
Publication of JP3630542B2 publication Critical patent/JP3630542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみや産業廃棄物等のごみを処理する焼却炉からの燃焼排ガスを焼却炉に付設したボイラへ導いてボイラ蒸気を発生させ、このボイラ蒸気により蒸気タービンを駆動して発電を行うようにしたごみ焼却発電プラントに設置される蓄熱式過熱装置であって、特に、燃焼排ガスを処理する集塵装置の下流側に設置され、発電効率を高める為に集塵装置から排出された燃焼排ガスを蓄熱槽及びバーナを利用して加熱し、この加熱された燃焼排ガス及びバーナ燃焼によりボイラ蒸気を過熱すると共に、燃焼排ガス中のダイオキシン類を熱分解するようにした蓄熱式過熱装置に関するものである。
【0002】
【従来の技術】
一般に、都市ごみや産業廃棄物等のごみを焼却処理し、その焼却廃熱を発電に利用するようにしたごみ焼却発電プラントとしては、都市ごみや産業廃棄物等のごみをごみ焼却炉により燃焼させると共に、燃焼により発生した燃焼排ガスをボイラへ導いてボイラ蒸気を発生させ、更に燃焼排ガスをエコノマイザーへ導いて熱回収すると共に、ボイラ蒸気を過熱器により過熱し、この過熱蒸気を蒸気タービンへ供給して発電させるようにしたものが知られている。
【0003】
このごみ焼却発電プラントに於いては、蒸気タービン発電装置の発電効率を高める為、ごみ焼却炉から排出される燃焼排ガスの排出経路の高温部(ごみ焼却炉の燃焼室の出口側部分)に過熱器の過熱管を設置し、過熱管内を流れるボイラ蒸気を高温の燃焼排ガスにより過熱するようにしている。
【0004】
【発明が解決しようとする課題】
ところで、燃焼排ガス中には、HClやCl等の腐食性ガスや低融点のダスト等が含まれている。その為、上述したように過熱器の過熱管を燃焼排ガスの排出経路の高温部に設置した場合、過熱管が燃焼排ガス中の腐食性ガスやダスト等の影響を諸に受け、過熱管の腐食が急激に進行することになる。即ち、過熱管に高温腐食現象が生じることになる。この高温腐食現象は、過熱管の管壁の温度が320℃を越えた場合に著しく生じる。
【0005】
従って、従来のごみ焼却発電プラントに於いては、過熱管の高温腐食を避ける為、過熱管の表面温度が320℃以下になるように、過熱蒸気温度を300℃程度に低く抑えておかざるを得なかった。その結果、どうしても発電効率を大幅に向上させることができなかった。
【0006】
一方、上述した方法以外にボイラ蒸気を300℃以上に過熱する方法として、過熱炉をごみ焼却炉から独立して設け、この過熱炉に設けたバーナでボイラ蒸気を過熱したり、或いはガスタービンから排出される高温の排ガスでボイラ蒸気を過熱したりする方法等があるが、何れも燃料消費量が多かったり、設備費が高価であったりして、採用された実績が極めて少ない。
【0007】
本発明は、このような問題点に鑑みて為されたものであり、過熱管に腐食を生じさせることなく、少量のバーナ燃焼量でボイラ蒸気を過熱することができ、然も、燃焼排ガスに含まれているダイオキシン類を分解除去できるようにした蓄熱式過熱装置を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記目的を達成する為に、本発明の蓄熱式過熱装置は、焼却炉からの燃焼排ガスを処理する集塵装置の下流側に設置される蓄熱式過熱炉と、蓄熱式過熱炉へ外気と集塵装置を経た燃焼排ガスとを夫々単独で供給し得る気体供給機構とから構成されて居り、前記蓄熱式過熱炉は、固体蓄熱体により形成され、外気若しくは燃焼排ガスが通過し得る複数の蓄熱槽と、各蓄熱槽を通過した外気若しくは燃焼排ガスが導入される燃焼室と、燃焼室に配設され、ボイラ蒸気が導入される過熱管と、燃焼室に配設され、過熱管及び燃焼排ガスを加熱するバーナとから成り、又、前記気体供給機構は、外気若しくは燃焼排ガスを蓄熱式過熱炉の一部の蓄熱槽と残りの蓄熱槽とへ夫々交互に供給し得ると共に、燃焼室内へ導入された外気若しくは燃焼排ガスを外気若しくは燃焼排ガスが供給されていない蓄熱槽から排出し得るように構成したことに特徴がある。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は本発明の実施の形態に係る蓄熱式過熱装置の一例を示すものであって、当該蓄熱式過熱装置は、蓄熱式過熱炉1及び気体供給機構2から成り、都市ごみや産業廃棄物等のごみを処理する焼却炉からの燃焼排ガスGを焼却炉に付設したボイラへ導いてボイラ蒸気Sを発生させ、このボイラ蒸気Sにより蒸気タービンを駆動して発電を行うようにしたごみ焼却発電プラントに設置されている。
【0010】
即ち、この蓄熱式過熱装置は、焼却炉からの燃焼排ガスGを処理する集塵装置3の下流側に設置され、集塵装置3からの低温(180℃)の燃焼排ガスGを約750℃〜1000℃に昇温する蓄熱式過熱炉1と、蓄熱式過熱炉1へ外気A(空気)と集塵装置3を経た燃焼排ガスGとを夫々単独で供給し得る気体供給機構2とから構成されて居り、集塵装置3を通過した燃焼排ガスGを蓄熱式過熱炉1の蓄熱槽5,5及びバーナ8により加熱し、この加熱された燃焼排ガス及びバーナ8の燃焼によりボイラ蒸気Sを過熱すると共に、燃焼排ガスG中のダイオキシン類を熱分解するようにしたものである。
【0011】
尚、ごみ焼却発電プラントは、図示していないが、ごみ焼却炉(ストーカ式焼却炉若しくは流動床式焼却炉等)、ボイラ、蒸気タービン発電装置(蒸気タービン及び発電機等から成る)、エコノマイザ、水噴射急冷反応塔、集塵装置3及び煙突等から構成されている。
【0012】
又、集塵装置3には、塩化水素、硫黄酸化物、ダスト、重金属等を効率良く除去できる半乾式の集塵装置3が使用されている。この集塵装置3は、反応塔とバグフィルターを組み合わせたものであり、反応塔内へ石灰スラリを吹き込むことによりバグフィルターの表面に石灰層を形成し、ここを塩化水素やダスト等が通過する際に石灰層に塩化水素等を吸収させるようにしたものである。
【0013】
前記蓄熱式過熱炉1は、鋼板等により形成され、外表面が断熱材(図示省略)で覆われたケーシング本体4と、ケーシング本体4内の下部位置に隣接して形成され、外気A若しくは燃焼排ガスGが通過し得る二つの蓄熱槽5,5と、ケーシング本体4内の上部位置に形成され、蓄熱槽5,5を通過した外気A若しくは燃焼排ガスGが導入される燃焼室6と、燃焼室6内に配設され、ボイラ蒸気Sが流れる過熱管7と、燃焼室6に配設され、過熱管7及び燃焼排ガスGを加熱するバーナ8(オイルバーナ若しくはガスバーナ)とから構成されて居り、集塵装置3の下流側に設置されている。尚、この蓄熱式過熱炉1の温度効率は、95%である。
【0014】
又、蓄熱式過熱炉1の両蓄熱槽5,5は、ケーシング本体4内の下部位置にセラミックや石、金属等の固体蓄熱体を充填することにより形成されている。この実施の形態では、固体蓄熱体には、アルミナやコーディエライト等のセラミック製で且つハニカム構造の固体蓄熱体が使用されている。
【0015】
更に、燃焼室6に配設された過熱管7の一端部は、ヘッダー9a及びボイラ蒸気供給管10を介してボイラに接続され、又、過熱管7の他端部は、ヘッダー9b及び過熱蒸気供給管11を介して蒸気タービン発電装置の蒸気タービンに接続されている。
【0016】
一方、前記気体供給機構2は、蓄熱式過熱炉1及び集塵装置3等に夫々接続されて居り、外気A若しくは燃焼排ガスGを蓄熱式過熱炉1の二つの蓄熱槽5,5へ夫々交互に供給し得ると共に、燃焼室6内へ導入された外気A若しくは燃焼排ガスGを外気A若しくは燃焼排ガスGが供給されていない蓄熱槽5,5から排出し得るように構成されている。
【0017】
具体的には、気体供給機構2は、一端部が集塵装置3に接続されると共に他端部が蓄熱式過熱炉1の一方(左側)の蓄熱槽5(以下第1の蓄熱槽5と云う)に接続される第1導管12と、一端部が蓄熱式過熱炉1の他方(右側)の蓄熱槽5(以下第2の蓄熱槽5と云う)に接続される第2導管13と、第2導管13の他端部に接続されて煙突に接続される排気ファン14と、第1導管12に介設される第1ダンパ15と、第2導管13に介設される第2ダンパ16と、一端部が第1導管12の第1ダンパ15よりも上流側部分に分岐状に接続されると共に他端部が第2導管13の第2ダンパ16よりも上流側部分に分岐状に接続される第3導管17と、一端部が第1導管12の第1ダンパ15よりも下流側部分に分岐状に接続されると共に他端部が第2導管13の第2ダンパ16よりも下流側部分に分岐状に接続される第4導管18と、第3導管17に介設される第3ダンパ19と、第4導管18に介設される第4ダンパ20と、一端部が第1導管12の第3導管17が接続された部分よりも上流側部分に接続されると共に他端部が外気Aに開放された外気用導管21と、第1導管12の外気用導管21が接続された部分よりも上流側に介設される外気切換え用第1ダンパ22と、外気用導管21に介設される外気切換え用第2ダンパ23とから構成されている。
【0018】
そして、気体供給機構2の各ダンパ(第1ダンパ15〜第4ダンパ20、外気切換え用第1ダンパ22、外気切換え用第2ダンパ23)は、モータやシリンダ等から成る駆動装置(図示省略)を制御装置(図示省略)で駆動制御することによって開閉制御されている。この実施の形態では、各ダンパ15,16,19,20,22,23は、外気A若しくは集塵装置3からの燃焼排ガスGを第1の蓄熱槽5と第2の蓄熱槽5とへ夫々交互に供給できると共に、燃焼室6内へ導入された外気A若しくは燃焼排ガスGを外気A若しくは燃焼排ガスGが供給されていない蓄熱槽5,5から排出できるように、駆動装置及び制御装置によって夫々開閉制御されている。
【0019】
次に、前記蓄熱式過熱装置を運転する場合について説明する。
先ず、蓄熱式過熱装置の起動準備として、ボイラで発生したボイラ蒸気Sを過熱管7を通しながら蓄熱式過熱炉1の両蓄熱槽5,5の固体蓄熱体をバーナ8により加熱し、固体蓄熱体へ蓄熱する。
【0020】
即ち、第1ダンパ15、第2ダンパ16及び外気切換え用第2ダンパ23を夫々開くと共に、第3ダンパ19、第4ダンパ20及び外気切換え用第1ダンパ22を夫々閉じ、この状態で排気ファン14を運転してバーナ8を作動させる。
そうすると、外気A(空気)は、外気用導管21及び第1導管12の一部分を経て第1の蓄熱槽5へ流入し、この蓄熱槽5を通過する間に固体蓄熱体により予熱されて燃焼室6内に流入し、ここでバーナ8により加熱された後、第2の蓄熱槽5へ流入してここを通過する間に固体蓄熱体へ熱を与え、冷却された状態で第2導管13及び排気ファン14を経て煙突から大気中へ放出される。
【0021】
そして、約2分後に第1ダンパ15〜第4ダンパ20を夫々切り換え、外気Aが導入される蓄熱槽を第1の蓄熱槽5から第2の蓄熱槽5へ切り換える。
【0022】
即ち、第1ダンパ15及び第2ダンパ16夫々閉じると共に、第3ダンパ19及び第4ダンパ20を夫々開く。
そうすると、外気Aは、外気用導管21、第1導管12の一部分、第3導管17及び第2導管13の一部分を経て第2の蓄熱槽5へ流入し、この蓄熱槽5を通過する間に固体蓄熱体により予熱されて燃焼室6内に流入し、ここでバーナ8により加熱された後、第1の蓄熱槽5へ流入してここを通過する間に固体蓄熱体へ熱を与え、冷却された状態で第1導管12の一部分、第4導管18、第2導管13の一部分及び排気ファン14を経て煙突から大気中へ放出される。
【0023】
以下同様にして、上記の動作を約2時間程繰り返して行い、各蓄熱槽5,5の固体蓄熱体の上部の温度が約800℃になるまで固体蓄熱体を加熱する。
【0024】
このようにして、両蓄熱槽5,5の固体蓄熱体の上部の温度が所定の温度にまで加熱されたら、外気切換え用第1ダンパ22を開くと共に、外気切換え用第2ダンパ23を閉じ、各導管12,13,17,18内を流れている外気Aを集塵装置3からの燃焼排ガスGに切り換え、集塵装置3から排出された燃焼排ガスGを蓄熱式過熱炉1へ導き、蓄熱式加熱装置を通常の運転に切り換える。
【0025】
即ち、第1ダンパ15及び第2ダンパ16を夫々開くと共に、第3ダンパ19及び第4ダンパ20を夫々閉じる。
そうすると、集塵装置3から排出された約180℃の燃焼排ガスGは、第1導管12を経て第1の蓄熱槽5へ流入し、ここを通過する間に高温になっている固体蓄熱体により予熱されて燃焼室6内へ流入する。
【0026】
燃焼室6へ流入した燃焼排ガスGは、引き続きバーナ8により加熱されて約850℃の高温の燃焼排ガスGとなり、過熱管7を加熱して過熱管7内を流れているボイラ蒸気Sを過熱する。このとき、燃焼室6に流入した燃焼排ガスGは、集塵装置3を経て塩化水素、硫黄酸化物、ダスト等が除去されている為、過熱管7に直接接触しても過熱管7に高温腐食を生じさせることがない。又、燃焼室6へ流入した燃焼排ガスGは、バーナ8により約850℃に加熱される為、燃焼排ガスG中のダイオキシン類は熱分解されることになる。
【0027】
燃焼室6で浄化された燃焼排ガスGは、引き続き第2の蓄熱槽5へ流入し、ここを通過する間に固体蓄熱体へ熱を与えて約220℃に急冷された後、第2導管13及び排気ファン14を経て煙突から大気中へ放出される。このとき、燃焼排ガスGは、第2の蓄熱槽5を通過する間に約220℃に急冷されてダイオキシンの生成温度以下になる為、ダイオキシン類の再合成は防止されることになる。
【0028】
そして、上述した状態で蓄熱式過熱装置を約2分間運転したら、その後第1ダンパ15〜第4ダンパ20を夫々切り換え、燃焼排ガスGが導入される蓄熱槽を第1の蓄熱槽5から第2の蓄熱槽5へ切り換える。
【0029】
即ち、第1ダンパ15及び第2ダンパ16を夫々閉じる共に、第3ダンパ19及び第4ダンパ20を夫々開く。
そうすると、集塵装置3から排出された約180℃の燃焼排ガスGは、第1導管12の一部分、第3導管17及び第2導管13の一部分を経て第2の蓄熱槽5へ流入し、ここを通過する間に高温になっている固体蓄熱体により予熱されて燃焼室6内へ流入する。
【0030】
燃焼室6へ流入した燃焼排ガスGは、引き続きバーナ8により加熱されて約850℃の高温の燃焼排ガスGとなり、過熱管7を加熱して過熱管7内を流れているボイラ蒸気Sを過熱する。このとき、燃焼室6に流入した燃焼排ガスGは、集塵装置3を経て塩化水素、硫黄酸化物、ダスト等が除去されている為、過熱管7に直接接触しても過熱管7に高温腐食を生じさせることがない。又、燃焼室6へ流入した燃焼排ガスGは、バーナ8により約850℃に加熱される為、燃焼排ガスG中のダイオキシン類は熱分解されることになる。
【0031】
燃焼室6で浄化された燃焼排ガスGは、引き続き第1の蓄熱槽5へ流入し、ここを通過する間に固体蓄熱体へ熱を与えて約220℃に急冷された後、第1導管12の一部分、第4導管18、第2導管13の一部分及び排気ファン14を経て煙突から大気中へ放出される。このとき、燃焼排ガスGは、第1の蓄熱槽5を通過する間に約220℃に急冷されてダイオキシンの生成温度以下になる為、ダイオキシン類の再合成は防止されることになる。
【0032】
一方、ボイラ蒸気供給管10から過熱管7へ供給されている約270℃のボイラ蒸気Sは、バーナ8の燃焼及び塩化水素、硫黄酸化物、ダスト等が除去された燃焼排ガスGにより過熱されて450℃の過熱蒸気Sとなった後、過熱蒸気供給管11から蒸気タービンへ供給されて発電を行うようになっている。従って、過熱管7に高温腐食の問題を生じることがなく、高温・高圧蒸気を得ることができ、発電効率を大幅に向上させることができる。
【0033】
以下同様にして、一定時間毎(約2分間毎)に第1ダンパ15及び第2ダンパ16と、第3ダンパ19及び第4ダンパ20とを交互に切り換え操作し、集塵装置3からの燃焼排ガスGを第1の蓄熱槽5と第2の蓄熱槽5へ交互に供給して行き、蓄熱式過熱装置の運転を継続する。
【0034】
上記蓄熱式過熱装置の燃料消費量は、過熱管7を加熱して270℃のボイラ蒸気Sを450℃の過熱蒸気Sにする為に必要な燃料量と燃焼排ガスGを850℃−800℃=50℃加熱するのに必要な燃料量の合計である。
又、この蓄熱式過熱装置を用いると、ダイオキシン類濃度は、約0.5ng−TEQ/Nm(O=12%換算)を0.1ng−TEQ/Nm以下に低減することができた。
更に、この蓄熱式過熱装置は、蓄熱槽がない直燃式の蒸気過熱炉と比較した場合、270℃のボイラ蒸気Sを450℃の過熱蒸気Sにする為に必要な燃料量は同じであるが、燃焼排ガスGを加熱するのに必要な燃料量は蓄熱槽がない直燃式の蒸気過熱炉の約13分の1となる。即ち、この蓄熱式過熱装置は、燃料使用量が大幅に少ない。
その上、この蓄熱式過熱装置は、蓄熱式過熱炉1から排出される燃焼排ガスGを約220℃にし、集塵装置3から排出される燃焼排ガスGの温度(約180℃)よりも約40℃高くしている為、煙突からの白煙を防止することができた。
【0035】
上記実施の形態に於いては、蓄熱式過熱炉1に蓄熱槽5,5を二つ形成するようにしたが、他の実施の形態に於いては、蓄熱式過熱炉1に三つ以上の蓄熱槽を形成するようにしても良い。
【0036】
上記実施の形態に於いては、両蓄熱槽5,5を形成する固体蓄熱体にセラミック製で且つハニカム構造のものを使用したが、固体蓄熱体は熱容量の大きな材質のものであれば如何なるものであっても良い。例えば、固体蓄熱体に金属製のものや石製のものを使用しても良く、又、材質の異なるものを組み合わせて使用するようにしても良い。
【0037】
上記実施の形態に於いては、気体供給機構2の各導管12,13,17,18,21にダンパ15,16,19,20,22,23を介設するようにしたが、他の実施の形態に於いては、各ダンパ15,16,19,20,22,23に替えて回転式の切換え弁(図示省略)を気体供給機構2の各導管12,13,17,18,21に介設するようにしても良い。
【0038】
上記実施の形態に於いては、排気ファン14により外気Aや燃焼排ガスGを吸引し、これらを蓄熱式過熱炉1へ供給するようにしたが、他の実施の形態に於いては、蓄熱式過熱炉1の上流側に押込ファン(図示省略)を設け、外気Aや燃焼排ガスGを押込ファンにより蓄熱式過熱炉1へ供給するようにしても良い。
【0039】
上記実施の形態に於いては、外気Aの供給・排出ラインと燃焼排ガスGの供給・排出ラインとを一部共用させたが、他の実施の形態に於いては、外気Aの供給・排出ラインと燃焼排ガスGの供給・排出ラインとを夫々独立して設けるようにしても良い。
【0040】
【発明の効果】
上述の通り、本発明の蓄熱式過熱装置は、集塵装置から排出された塩化水素、ダスト等を除去済みの燃焼排ガスを、蓄熱槽、燃焼室、過熱管及びバーナを備えた蓄熱式過熱炉へ導いて蓄熱槽及びバーナにより加熱し、この加熱された燃焼排ガスとバーナにより過熱管を加熱する構成としている。
即ち、この蓄熱過熱装置は、塩化水素やダスト等が除去された高温の燃焼排ガスで過熱管を過熱するようにしている為、過熱管に高温腐食を生じさせることなく、高温・高圧の過熱蒸気を得ることができ、発電効率を大幅に向上させることができる。
又、燃焼排ガスを蓄熱槽により予熱してからバーナにより加熱するようにしている為、バーナの燃料消費量を大幅に低減させることができ、少量のバーナ燃焼量で過熱蒸気を得ることができる。
更に、燃焼室で燃焼排ガスを加熱している為、燃焼排ガス中のダイオキシン類を熱分解することができ、ダイオキシン類を大幅に低減させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る蓄熱式過熱装置の概略系統図である。
【符号の説明】
1は蓄熱式過熱装置、2は蓄熱式過熱炉、3は集塵装置、5,5は蓄熱槽、6は燃焼室、7は過熱管、8はバーナ、Aは外気、Gは燃焼排ガス、8はボイラ蒸気。
[0001]
BACKGROUND OF THE INVENTION
The present invention introduces combustion exhaust gas from an incinerator that treats municipal waste and industrial waste to a boiler attached to the incinerator to generate boiler steam, which drives the steam turbine to generate power. It is a regenerative type superheater installed in a waste incineration power plant that is designed to be installed, especially on the downstream side of a dust collector that treats combustion exhaust gas, and discharged from the dust collector to increase power generation efficiency Relating to a regenerative heating system that heats combustion exhaust gas using a heat storage tank and burner, superheats boiler steam by the heated combustion exhaust gas and burner combustion, and thermally decomposes dioxins in the combustion exhaust gas It is.
[0002]
[Prior art]
In general, as a waste incineration power plant that incinerates municipal waste and industrial waste, etc., and uses the incineration waste heat for power generation, municipal waste and industrial waste are burned in a waste incinerator. In addition, the combustion exhaust gas generated by combustion is guided to the boiler to generate boiler steam, and further, the combustion exhaust gas is guided to the economizer to recover heat, and the boiler steam is superheated by the superheater, and this superheated steam is sent to the steam turbine. What is supplied and generated is known.
[0003]
In this waste incineration power plant, in order to increase the power generation efficiency of the steam turbine power generator, the high temperature part (the exit side part of the combustion chamber of the waste incinerator) of the exhaust path of the combustion exhaust gas discharged from the waste incinerator is overheated. A superheater pipe is installed to superheat boiler steam flowing in the superheater pipe with high-temperature combustion exhaust gas.
[0004]
[Problems to be solved by the invention]
By the way, the combustion exhaust gas contains corrosive gas such as HCl and Cl 2 and low melting point dust. Therefore, when the superheater tube of the superheater is installed in the high temperature part of the exhaust gas exhaust path as described above, the superheater tube is affected by various factors such as corrosive gas and dust in the flue gas and corrodes the superheater tube. Will progress rapidly. That is, a high temperature corrosion phenomenon occurs in the superheated tube. This high temperature corrosion phenomenon occurs remarkably when the temperature of the tube wall of the superheated tube exceeds 320 ° C.
[0005]
Therefore, in the conventional waste incineration power plant, in order to avoid high temperature corrosion of the superheated tube, the superheated steam temperature may be kept low to about 300 ° C so that the surface temperature of the superheated tube is 320 ° C or less. I didn't get it. As a result, the power generation efficiency could not be greatly improved.
[0006]
On the other hand, in addition to the above-described method, as a method of superheating boiler steam to 300 ° C. or higher, a superheat furnace is provided independently from a waste incinerator, and the boiler steam is superheated with a burner provided in the superheat furnace, or from a gas turbine. There are methods such as overheating boiler steam with high-temperature exhaust gas that is discharged, but all of them have a very small track record of adoption due to high fuel consumption and high equipment costs.
[0007]
The present invention has been made in view of such problems, and can cause boiler steam to be superheated with a small amount of burner combustion without causing corrosion in the superheated tube. An object of the present invention is to provide a heat storage type superheater capable of decomposing and removing dioxins contained therein.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a regenerative superheater according to the present invention includes a regenerative superheater installed on the downstream side of a dust collector for treating combustion exhaust gas from an incinerator, and a collection of outside air to the regenerative superheater. It is composed of a gas supply mechanism that can individually supply combustion exhaust gas that has passed through a dust device, and the regenerative heating furnace is formed of a solid heat storage body, and a plurality of heat storage tanks through which external air or combustion exhaust gas can pass A combustion chamber into which external air or combustion exhaust gas that has passed through each heat storage tank is introduced, a superheat pipe that is disposed in the combustion chamber and into which boiler steam is introduced, and is disposed in the combustion chamber. The gas supply mechanism can alternately supply outside air or combustion exhaust gas to some heat storage tanks and the remaining heat storage tanks of the regenerative superheat furnace, and is introduced into the combustion chamber. Outside air or combustion exhaust gas It is characterized in that the gas or combustion exhaust gas is constructed so as to discharge from the heat storage tank is not supplied.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an example of a regenerative superheater according to an embodiment of the present invention. The regenerative superheater comprises a regenerative superheater 1 and a gas supply mechanism 2, and is composed of municipal waste and industrial waste. Waste incineration power generation in which combustion exhaust gas G from an incinerator that treats waste, etc., is guided to a boiler attached to the incinerator to generate boiler steam S, and a steam turbine is driven by the boiler steam S to generate power Installed in the plant.
[0010]
That is, this heat storage type superheater is installed on the downstream side of the dust collector 3 for processing the combustion exhaust gas G from the incinerator, and the low temperature (180 ° C.) combustion exhaust gas G from the dust collector 3 is about 750 ° C. The regenerative heating furnace 1 is heated up to 1000 ° C., and the gas supply mechanism 2 is capable of supplying outside air A (air) and the combustion exhaust gas G having passed through the dust collector 3 to the regenerative heating furnace 1, respectively. Te cage, the combustion exhaust gas G that has passed through the dust collector 3 is heated by the heat storage tank 5 1, 5 2 and the burner 8 regenerative heating furnace 1, the boiler steam S by the combustion of the combustion gas and the burner 8 the heated In addition to overheating, the dioxins in the combustion exhaust gas G are thermally decomposed.
[0011]
Although not shown, the waste incineration power plant is not shown in the figure, but is a waste incinerator (stoker type incinerator or fluidized bed type incinerator), boiler, steam turbine power generator (consisting of a steam turbine and a generator, etc.), economizer, It consists of a water jet quenching reaction tower, a dust collector 3 and a chimney.
[0012]
The dust collector 3 uses a semi-dry dust collector 3 that can efficiently remove hydrogen chloride, sulfur oxides, dust, heavy metals, and the like. This dust collector 3 is a combination of a reaction tower and a bag filter, and a lime layer is formed on the surface of the bag filter by blowing lime slurry into the reaction tower, through which hydrogen chloride, dust, etc. pass. At this time, hydrogen chloride or the like is absorbed by the lime layer.
[0013]
The regenerative heating furnace 1 is formed of a steel plate or the like, and is formed adjacent to a casing body 4 whose outer surface is covered with a heat insulating material (not shown), and a lower position in the casing body 4, and is used for the outside air A or combustion. Two heat storage tanks 5 1 and 5 2 through which the exhaust gas G can pass, and a combustion chamber that is formed at an upper position in the casing body 4 and into which the outside air A or the combustion exhaust gas G that has passed through the heat storage tanks 5 1 and 5 2 is introduced 6, an overheat pipe 7 disposed in the combustion chamber 6 through which the boiler steam S flows, and a burner 8 (oil burner or gas burner) disposed in the combustion chamber 6 for heating the overheat pipe 7 and the combustion exhaust gas G. It is comprised, and is installed in the downstream of the dust collector 3. The temperature efficiency of the regenerative heating furnace 1 is 95%.
[0014]
Further, both the heat storage tanks 5 1 and 5 2 of the regenerative superheat furnace 1 are formed by filling a lower position in the casing body 4 with a solid heat storage body such as ceramic, stone, or metal. In this embodiment, a solid heat storage body made of ceramic such as alumina or cordierite and having a honeycomb structure is used as the solid heat storage body.
[0015]
Furthermore, one end of the superheat pipe 7 disposed in the combustion chamber 6 is connected to the boiler via the header 9a and the boiler steam supply pipe 10, and the other end of the superheat pipe 7 is connected to the header 9b and the superheated steam. It is connected to the steam turbine of the steam turbine power generator via the supply pipe 11.
[0016]
On the other hand, the gas supply mechanism 2 is connected to the regenerative superheater 1 and the dust collector 3 respectively, and the outside air A or the combustion exhaust gas G is transferred to the two regenerator tanks 5 1 and 5 2 of the regenerative superheater 1. together may supply respectively alternately, it is configured so as to discharge the outside air a or the combustion exhaust gas G is introduced into the combustion chamber 6 from the outside air a or the combustion exhaust gas G thermal storage tank 5 1 is not supplied, 5 2 Yes.
[0017]
Specifically, the gas supply mechanism 2 has one end connected to the dust collector 3 and the other end connected to one (left side) heat storage tank 5 1 (hereinafter referred to as the first heat storage tank 5) of the regenerative superheater 1. a first conduit 12 which is connected to a called), the first end is connected to the other regenerative heating furnace 1 (referred to as thermal storage tank 5 2 (hereinafter the second thermal storage tank 5 2 right)) 2 A conduit 13, an exhaust fan 14 connected to the other end of the second conduit 13 and connected to the chimney, a first damper 15 interposed in the first conduit 12, and a second conduit 13. The second damper 16 and one end thereof are connected to the upstream portion of the first conduit 12 upstream of the first damper 15 and the other end thereof is connected to the upstream portion of the second conduit 13 upstream of the second damper 16. The third conduit 17 connected in a branched manner and one end of the third conduit 17 are connected in a branched manner to a portion downstream of the first damper 15 of the first conduit 12. And the other end portion of the second conduit 13 is connected to the downstream side of the second damper 16 in a branched manner, the fourth conduit 18 is interposed in the third conduit 17, and the fourth The fourth damper 20 interposed in the conduit 18 and one end of the first damper 12 are connected to the upstream portion of the portion to which the third conduit 17 of the first conduit 12 is connected, and the other end is opened to the outside air A. The outside air conduit 21, the first outside air switching damper 22 interposed upstream from the portion of the first conduit 12 to which the outside air conduit 21 is connected, and the outside air switching 21 interposed in the outside air conduit 21. The second damper 23 is configured.
[0018]
Each of the dampers of the gas supply mechanism 2 (the first damper 15 to the fourth damper 20, the outside air switching first damper 22 and the outside air switching second damper 23) is a driving device (not shown) including a motor and a cylinder. Is controlled to open and close by controlling the drive with a control device (not shown). In this embodiment, the dampers 15,16,19,20,22,23 is the combustion exhaust gas G from the outside air A or the dust collector 3 a first thermal storage tank 5 1 second and the heat storage tank 5 2 to together it is supplied to each alternately, so that it can discharge the outside air a or the combustion exhaust gas G is introduced into the combustion chamber 6 from the outside air a or the combustion exhaust gas G thermal storage tank 5 1 is not supplied, 5 2, drive device and Open / close control is performed by the control device.
[0019]
Next, the case where the said thermal storage type | mold superheater is drive | operated is demonstrated.
First, as starting preparations for regenerative heating apparatus, both the thermal storage tank 5 1, 5 2 of the solid heat accumulator regenerative heating furnace 1 while passing the superheated tube 7 the boiler steam S generated in a boiler heated by a burner 8, Stores heat in solid heat storage.
[0020]
That is, the first damper 15, the second damper 16, and the outside air switching second damper 23 are opened, and the third damper 19, the fourth damper 20, and the outside air switching first damper 22 are closed, and the exhaust fan in this state. 14 is operated to operate the burner 8.
Then, the outside air A (air), first flows into the heat storage tank 5 1 through a portion of the outside air conduit 21 and first conduit 12, it is preheated by solids regenerator while passing through the heat storage tank 5 1 flows into the combustion chamber 6, wherein after being heated by the burner 8, applying heat to the solid heat storage body while it flows second to the thermal storage tank 5 2 passing therethrough, the second in cooled state It is discharged from the chimney through the conduit 13 and the exhaust fan 14 into the atmosphere.
[0021]
Then, switching the first damper 15 fourth damper 20 after about 2 minutes each switching, the heat storage tank outside air A is introduced from the first thermal storage tank 5 1 of the second to the thermal storage tank 5 2.
[0022]
That is, the first damper 15 and the second damper 16 are closed, and the third damper 19 and the fourth damper 20 are opened.
Then, the outside air A is the ambient air conduit 21, a portion of the first conduit 12, flows through a portion of the third conduit 17 and second conduit 13 to the second thermal storage tank 5 2, passes through the heat storage tank 5 2 is preheated into the combustion chamber 6 by a solid regenerator during, wherein after being heated by the burner 8, a heat to the solid heat storage material during and flows first to the thermal storage tank 5 1 passing therethrough Then, in a cooled state, the air is discharged from the chimney to the atmosphere through a part of the first conduit 12, the fourth conduit 18, the part of the second conduit 13, and the exhaust fan 14.
[0023]
In the same manner, it performed by repeating the above operation for about 2 hours, heating the solid heat storage member to a temperature of the top of each thermal storage tank 5 1, 5 2 of the solid heat accumulator is about 800 ° C..
[0024]
In this way, when the temperature of the top of both the thermal storage tank 5 1, 5 2 of the solid heat accumulator is heated to a predetermined temperature, opens the first damper 22 for outside air switching, a second damper 23 for outside air switching The outside air A flowing in the respective conduits 12, 13, 17, 18 is switched to the combustion exhaust gas G from the dust collector 3, and the combustion exhaust gas G discharged from the dust collector 3 is guided to the regenerative superheated furnace 1. Switch the regenerative heating device to normal operation.
[0025]
That is, the first damper 15 and the second damper 16 are opened, and the third damper 19 and the fourth damper 20 are closed.
Then, the combustion exhaust gas G of about 180 ° C. discharged from the dust collector 3, the solid heat storage material is hot while the first flow into the heat storage tank 5 1 via the first conduit 12, passing therethrough Is preheated and flows into the combustion chamber 6.
[0026]
The combustion exhaust gas G flowing into the combustion chamber 6 is continuously heated by the burner 8 to become a high-temperature combustion exhaust gas G of about 850 ° C., and the superheated tube 7 is heated to superheat the boiler steam S flowing in the superheated tube 7. . At this time, since the combustion exhaust gas G flowing into the combustion chamber 6 is removed of hydrogen chloride, sulfur oxide, dust, and the like through the dust collector 3, even if it directly contacts the superheater tube 7, Does not cause corrosion. Further, since the combustion exhaust gas G flowing into the combustion chamber 6 is heated to about 850 ° C. by the burner 8, the dioxins in the combustion exhaust gas G are thermally decomposed.
[0027]
Combustion exhaust gas G that has been purified in the combustion chamber 6 is subsequently second flows into the heat storage tank 5 2, after being chilled to about 220 ° C. by applying heat to the solid heat storage material while passing therethrough, the second conduit 13 and the exhaust fan 14 are discharged from the chimney into the atmosphere. At this time, the combustion exhaust gas G is rapidly cooled to about 220 ° C. while passing through the second heat storage tank 52 and becomes below the production temperature of dioxins, so that resynthesis of dioxins is prevented.
[0028]
Then, when driving a regenerative superheater about 2 minutes with the above, the subsequent first damper 15 fourth damper 20 respectively switched, the heat storage tank combustion exhaust gas G is introduced from the first thermal storage tank 5 1 It switches 2 to the thermal storage tank 5 2.
[0029]
That is, the first damper 15 and the second damper 16 are closed, and the third damper 19 and the fourth damper 20 are opened.
Then, the combustion exhaust gas G of about 180 ° C. discharged from the dust collector 3, a portion of the first conduit 12, flows through a portion of the third conduit 17 and second conduit 13 to the second thermal storage tank 5 2, While passing through this, it is preheated by the solid heat accumulator that is at a high temperature and flows into the combustion chamber 6.
[0030]
The combustion exhaust gas G flowing into the combustion chamber 6 is continuously heated by the burner 8 to become a high-temperature combustion exhaust gas G of about 850 ° C., and the superheated tube 7 is heated to superheat the boiler steam S flowing in the superheated tube 7. . At this time, since the combustion exhaust gas G flowing into the combustion chamber 6 is removed of hydrogen chloride, sulfur oxide, dust, and the like through the dust collector 3, even if it directly contacts the superheater tube 7, Does not cause corrosion. Further, since the combustion exhaust gas G flowing into the combustion chamber 6 is heated to about 850 ° C. by the burner 8, the dioxins in the combustion exhaust gas G are thermally decomposed.
[0031]
Combustion exhaust gas G that has been purified in the combustion chamber 6 will continue first flows into the heat storage tank 5 1, after being chilled to about 220 ° C. by applying heat to the solid heat storage material while passing therethrough, the first conduit 12, the fourth conduit 18, the second conduit 13, and the exhaust fan 14, and then discharged from the chimney to the atmosphere. At this time, the combustion exhaust gas G is rapidly cooled to about 220 ° C. while passing through the first heat storage tank 51 and becomes below the production temperature of dioxins, so that resynthesis of dioxins is prevented.
[0032]
On the other hand, the boiler steam S of about 270 ° C. supplied from the boiler steam supply pipe 10 to the superheat pipe 7 is overheated by the combustion exhaust gas G from which the burner 8 is burned and from which hydrogen chloride, sulfur oxide, dust, and the like are removed. after a superheated steam S 1 of 450 ° C., thereby performing the power generation is supplied from the superheated steam feed pipe 11 to the steam turbine. Accordingly, high temperature / high pressure steam can be obtained without causing the problem of high temperature corrosion in the superheated tube 7, and the power generation efficiency can be greatly improved.
[0033]
Similarly, the first damper 15 and the second damper 16 and the third damper 19 and the fourth damper 20 are alternately switched at regular intervals (approximately every 2 minutes) to burn from the dust collector 3. the exhaust gas G to the first thermal storage tank 5 1 and the second thermal storage tank 5 2 continue to supply alternately to continue the operation of the regenerative superheater.
[0034]
The amount of fuel consumed by the heat storage type superheater is such that the amount of fuel and the combustion exhaust gas G required to heat the superheater tube 7 to change the boiler steam S at 270 ° C. to superheated steam S 1 at 450 ° C. are 850 ° C.-800 ° C. = Total amount of fuel required to heat at 50 ° C.
Moreover, when this heat storage type superheater was used, the concentration of dioxins could be reduced from about 0.5 ng-TEQ / Nm 3 (O 2 = 12% conversion) to 0.1 ng-TEQ / Nm 3 or less. .
Furthermore, this heat storage type superheater has the same amount of fuel required to change the boiler steam S at 270 ° C. to superheated steam S 1 at 450 ° C. when compared with a direct combustion type steam superheat furnace without a heat storage tank. However, the amount of fuel required to heat the combustion exhaust gas G is about one-third that of a direct combustion steam superheated furnace without a heat storage tank. In other words, this heat storage type superheater uses significantly less fuel.
In addition, this regenerative superheater sets the combustion exhaust gas G discharged from the regenerative superheater 1 to about 220 ° C., and is about 40 ° C. higher than the temperature of the combustion exhaust gas G discharged from the dust collector 3 (about 180 ° C.). Since the temperature was raised, the white smoke from the chimney could be prevented.
[0035]
In the above embodiment, two heat storage tanks 5 1 and 5 2 are formed in the regenerative superheated furnace 1, but in the other embodiments, three regenerative superheated furnaces 1 are provided. You may make it form the above heat storage tank.
[0036]
In the above embodiment, the solid heat storage body forming both the heat storage tanks 5 1 and 5 2 is made of ceramic and has a honeycomb structure, but the solid heat storage body is made of a material having a large heat capacity. It can be anything. For example, the solid heat accumulator may be made of metal or stone, or may be used in combination with different materials.
[0037]
In the above embodiment, the dampers 15, 16, 19, 20, 22, and 23 are provided in the respective conduits 12, 13, 17, 18, and 21 of the gas supply mechanism 2. In this embodiment, instead of the dampers 15, 16, 19, 20, 22, 23, rotary switching valves (not shown) are provided in the respective conduits 12, 13, 17, 18, 21 of the gas supply mechanism 2. You may make it interpose.
[0038]
In the above embodiment, the outside air A and the combustion exhaust gas G are sucked by the exhaust fan 14 and supplied to the regenerative superheated furnace 1, but in the other embodiments, the regenerative type is used. A pushing fan (not shown) may be provided on the upstream side of the superheating furnace 1 so that the outside air A and the combustion exhaust gas G are supplied to the regenerative superheating furnace 1 by the pushing fan.
[0039]
In the above-described embodiment, the supply / discharge line for the outside air A and the supply / discharge line for the combustion exhaust gas G are partially shared. However, in the other embodiments, the supply / discharge of the outside air A is performed. A line and a supply / discharge line for the combustion exhaust gas G may be provided independently.
[0040]
【The invention's effect】
As described above, the regenerative superheater of the present invention is a regenerative superheater equipped with a heat accumulator, a combustion chamber, a superheater tube, and a burner, from which hydrogen chloride, dust, etc. discharged from the dust collector have been removed. And heated by a heat storage tank and a burner, and the superheated tube is heated by the heated combustion exhaust gas and the burner.
In other words, this thermal storage superheater is designed to superheat the superheater tube with high-temperature combustion exhaust gas from which hydrogen chloride, dust, etc. have been removed, so that high-temperature and high-pressure superheated steam can be produced without causing high-temperature corrosion in the superheater tube. The power generation efficiency can be greatly improved.
Further, since the combustion exhaust gas is preheated by the heat storage tank and then heated by the burner, the fuel consumption of the burner can be greatly reduced, and superheated steam can be obtained with a small amount of burner combustion.
Furthermore, since the combustion exhaust gas is heated in the combustion chamber, dioxins in the combustion exhaust gas can be thermally decomposed, and the dioxins can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram of a heat storage type superheater according to an embodiment of the present invention.
[Explanation of symbols]
1 is a regenerative superheater, 2 is a regenerative superheater, 3 is a dust collector, 5 1 and 5 2 are heat storage tanks, 6 is a combustion chamber, 7 is a superheat pipe, 8 is a burner, A is outside air, and G is combusting Exhaust gas, 8 is boiler steam.

Claims (1)

焼却炉からの燃焼排ガス(G)を処理する集塵装置(3)の下流側に設置される蓄熱式過熱炉(1)と、蓄熱式過熱炉(1)へ外気(A)と集塵装置(3)を経た燃焼排ガス(G)とを夫々単独で供給し得る気体供給機構(2)とから構成した蓄熱式過熱装置であって、前記蓄熱式過熱炉(1)は、固体蓄熱体により形成され、外気(A)若しくは燃焼排ガス(G)が通過し得る複数の蓄熱槽(5),…と、各蓄熱槽(5),…を通過した外気(A)若しくは燃焼排ガス(G)が導入される燃焼室(6)と、燃焼室(6)に配設され、ボイラ蒸気(S)が導入される過熱管(7)と、燃焼室(6)に配設され、過熱管(7)及び燃焼排ガス(G)を加熱するバーナ(8)とから成り、又、前記気体供給機構(2)は、外気(A)若しくは燃焼排ガス(G)を蓄熱式過熱炉(1)の一部の蓄熱槽と残りの蓄熱槽とへ夫々交互に供給し得ると共に、燃焼室(6)内へ導入された外気(A)若しくは燃焼排ガス(G)を外気(A)若しくは燃焼排ガス(G)が供給されていない蓄熱槽から排出し得るように構成されていることを特徴とする蓄熱式過熱装置。A regenerator superheater (1) installed downstream of the dust collector (3) that processes the combustion exhaust gas (G) from the incinerator, and the outside air (A) and the dust collector to the regenerator superheater (1) A regenerative superheater comprising a gas supply mechanism (2) capable of independently supplying combustion exhaust gas (G) having passed through (3), wherein the regenerative superheater (1) is a solid regenerator. A plurality of heat storage tanks (5 1 ), through which the outside air (A) or combustion exhaust gas (G) is formed, and the outside air (A) or combustion exhaust gas (G) that has passed through each of the heat storage tanks (5 1 ),. ) Are introduced into the combustion chamber (6), the combustion chamber (6), the superheat pipe (7) into which the boiler steam (S) is introduced, and the combustion chamber (6). (7) and a burner (8) that heats the combustion exhaust gas (G), and the gas supply mechanism (2) Can alternately supply the combustion exhaust gas (G) to a part of the heat storage tanks and the remaining heat storage tanks of the regenerative heating furnace (1), and the outside air (A) introduced into the combustion chamber (6) or A heat storage type superheater configured to be able to discharge combustion exhaust gas (G) from a heat storage tank not supplied with outside air (A) or combustion exhaust gas (G).
JP00733198A 1998-01-19 1998-01-19 Thermal storage superheater Expired - Fee Related JP3630542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00733198A JP3630542B2 (en) 1998-01-19 1998-01-19 Thermal storage superheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00733198A JP3630542B2 (en) 1998-01-19 1998-01-19 Thermal storage superheater

Publications (2)

Publication Number Publication Date
JPH11201407A JPH11201407A (en) 1999-07-30
JP3630542B2 true JP3630542B2 (en) 2005-03-16

Family

ID=11662984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00733198A Expired - Fee Related JP3630542B2 (en) 1998-01-19 1998-01-19 Thermal storage superheater

Country Status (1)

Country Link
JP (1) JP3630542B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733612B2 (en) * 2006-10-19 2011-07-27 新日鉄エンジニアリング株式会社 Boiler superheater for waste treatment equipment
CN110822928A (en) * 2019-12-02 2020-02-21 中南大学 Heat accumulating type waste heat utilization device and system for carbon single furnace and control method

Also Published As

Publication number Publication date
JPH11201407A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
JP5150500B2 (en) Steam generating boiler from flue gas under optimum conditions
ES2433687T3 (en) Method and arrangement to produce electricity in a pulp mill
JP6958489B2 (en) Energy storage and supply equipment by waste incinerator
JP5053279B2 (en) Boiler generating steam from flue gas with high electrical efficiency and improved slag quality
JP3042394B2 (en) Power generation system utilizing waste incineration heat
JP3782334B2 (en) Exhaust gas treatment equipment for gasifier
US5297959A (en) High temperature furnace
JP3630542B2 (en) Thermal storage superheater
KR100689106B1 (en) The apparatus and method of reducing nox in fluidized-bed combustor
WO2020174730A1 (en) Apparatus and method for treating combustion exhaust gas
JP2001342476A (en) Method and facility for producing carbonized waste
JP4332768B2 (en) Waste combustion equipment
US5207972A (en) High temperature furnace
JP4295653B2 (en) High temperature exhaust gas treatment method and cooling device used in high temperature exhaust gas treatment process
JP2004002552A (en) Waste gasification method, waste gasification device, and waste treatment apparatus using the same
WO2001090645A1 (en) Wastes treating method and device
JP2003254516A (en) Garbage burning power generation equipment
JP5421567B2 (en) Waste treatment facilities and methods of using recovered heat in waste treatment facilities
JP4449704B2 (en) Combustion method and apparatus
JP2719309B2 (en) Garbage incineration plant
JP3015266B2 (en) Waste melting equipment
JPH11201427A (en) Method and device for thermal recycling of combustible wastes
JP2005164117A (en) Combustion air preheating method for melting furnace and its device
JP3573609B2 (en) Heat recovery method and apparatus in incineration equipment
KR200301896Y1 (en) Device for lowering temperature of hot exhaust fumes for incinerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees