JP3629573B2 - A new artificial bone grafting method combining biocompatibility control of biomaterial surface by surface polishing treatment and adhesion of cultured osteoblasts - Google Patents

A new artificial bone grafting method combining biocompatibility control of biomaterial surface by surface polishing treatment and adhesion of cultured osteoblasts Download PDF

Info

Publication number
JP3629573B2
JP3629573B2 JP2000155116A JP2000155116A JP3629573B2 JP 3629573 B2 JP3629573 B2 JP 3629573B2 JP 2000155116 A JP2000155116 A JP 2000155116A JP 2000155116 A JP2000155116 A JP 2000155116A JP 3629573 B2 JP3629573 B2 JP 3629573B2
Authority
JP
Japan
Prior art keywords
artificial bone
osteoblasts
calcium phosphate
bone
bone material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000155116A
Other languages
Japanese (ja)
Other versions
JP2001333974A (en
Inventor
芳伸 藤代
正瑞 大山
正一 国分
光司 鍛冶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000155116A priority Critical patent/JP3629573B2/en
Publication of JP2001333974A publication Critical patent/JP2001333974A/en
Application granted granted Critical
Publication of JP3629573B2 publication Critical patent/JP3629573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面に骨芽細胞を付着させた生体適合性の高い人工骨材料に関するものであり、さらに詳しくは、培養した骨芽細胞を材料表面に生着、増殖、分化させた材料に係るものであり、既存の生体材料の表面を機械的研摩により骨芽細胞が付着し、成長しやすい状態に制御し、その生体適合性を向上させた材料、及びそれを利用した新しい人工骨移植技術に関するものである。
本発明は、整形治療において人工骨を移植する際に、免疫拒絶性や吸収による合併症を最小にするための、自家組織を付着させた新しい人工骨材料を提供する。
【0002】
【従来の技術】
生体における高度な外傷や骨腫瘍による骨摘出にともなう広範囲での骨欠損に対し、その整形外科治療として骨移植が行われている。現在、骨を移植する方法として、自家骨、同種骨、異種骨及び人工骨を移植することが行われている。さらに、人工骨として、生体内で安全なリン酸カルシウム系のセラミックス、高分子、金属等の人工骨材料を利用するケースも年々増加している。一般に、自家骨の骨移植が望ましいが、採取できる骨量に限界があり、移植の際には正常組織に侵襲を加えなければならない。また、同種・異種骨移植では免疫拒絶や合併症がある。一方、セラミックス、高分子、金属等の人工骨材料のみの移植では骨形成が得られたり得られなかったり、治療成績が一様ではないという問題がある。そこで、人工骨を使用する場合、材料表面に意図的に骨芽細胞を付着させ、自家骨の場合と同様に表面で骨細胞を分化させることにより、治癒成績を向上させることが期待できる。そのためには、効率よく骨芽細胞を材料に付着させ細胞が増殖しやすい表面にすることにより材料の生体適合性を向上させる手法を確立しなくてはならない。
【0003】
従来、既知の人工骨材料を治療へ利用する場合、生体適合性の高い水酸アパタイト等による表面コーティング、関節可動部位等の摩擦によるスムーズ化、及び組織との接着性を高めるための比表面積の増加等を目的とした部分的な粗面化を除けば、製造した人工骨材料を表面処理することはほとんど行われていない。そこで、生体内での骨再生に関与する各種細胞を効率良く材料表面に生着させ、増殖しやすい状態で移植することができれば、骨の自己再生作用を促し、生体内での人工骨材料との自然な結合を生じさせることができ、それにより、治療時間をより短くすることが期待できる。
【0004】
しかしながら、各生体材料のどのような表面状態が、細胞の付着性が高く、さらに、それらの増殖に適する環境か、といった知見は得られていない。人工骨材料の表面をより細胞が生着、増殖しやすい表面状態に制御できれば、自己の骨芽細胞を人工骨材料の表面に増殖させ、それを利用する新しい骨治療が可能となり、それにより、現在のさまざまな問題が克服できる。そのためには、実際に培養した骨芽細胞を人工骨材料の表面に生着させる場合に適した材料を開発し、その表面状態の最適化を行わなければならない。さらに、材料表面の研摩処理は、製造過程の一プロセスとして容易に組込めるとともに、コーティング処理のような被覆後の界面での剥離劣化といった問題が少なく、安価でかつ安全な制御方法であることから、その利点は大きい。
【0005】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、上記従来技術に鑑みて、人工骨の材料表面に効率よく骨芽細胞を付着させ、細胞が増殖しやすい表面状態に制御できる新しい生体適合性材料を開発することを目標として鋭意研究を積み重ねた結果、骨芽細胞の殖増性がよいリン酸カルシウム系セラミックス焼結体及び硬化体等の材料を用いてその最適化を図ることにより所期の目的を達成できるとの知見を得て、さらに研究を重ねて、本発明を完成するに至った。
本発明は、表面に骨芽細胞を付着させた生体適合性の高い人工骨材料を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決する本発明は、以下の技術的手段から構成される。
(1)表面に骨芽細胞を付着させた生体適合性の高い人工骨材料であって、骨組織を培養して得られた骨芽細胞の培養液を、平均0.3μm粒子径のダイヤモンド又はアルミナのスラリー又はペーストによる表面研摩処理と同等の表面研処理で鏡面状に研したリン酸カルシウム系セラミックスを主成分とする材料に含浸させ、骨芽細胞を当該材料の表面に付着させたことを特徴とする人工骨材料。
(2)平均0.3μm粒子径のダイヤモンドやアルミナのスラリーにてバフ研し、表面を鏡面状に研して得られるリン酸カルシウム系セラミックスを主成分とする材料に含浸させる前記(1)記載の人工骨材料。
(3)リン酸カルシウム系セラミックスが、α−Ca3 (PO42 、β−Ca3 (PO42、Ca8 (HPO44 5H2 O、Ca10(OH)2(PO46 の1種以上を含有する前記(1)記載の人工骨材料。
(4)リン酸カルシウム系セラミックスを主成分とする材料が、α−Ca3 (PO4 )2 ,β−Ca3(PO42 ,Ca8 (HPO44 5H2O,Ca10(OH)2 (PO46 の少なくとも一種を含有するリン酸カルシウム系セラミックス焼結体又は硬化体と、ソーダガラス、乳酸樹脂等の生体高分子、金属の1種以上とからなる前記(1)記載の人工骨材料。
(5)人工股関節全置換術時に大腿骨転子部間より採取した骨組織を5〜7週間組織培養し、得られたヒト骨芽細胞を含む培養液に、表面研摩処理したリン酸カルシウム系セラッミクス材料を、所定時間浸し、骨芽細胞を表面に付着させた前記(1)記載の人工骨材料。
尚、本発明において、表面研摩処理で鏡面状に研摩したとは、例えば、平均0.3μm粒子径のダイヤモンドやアルミナのスラリーにてバフ研摩し、表面を鏡面状に研摩して得られる程度のスムーズ面を意味するものとして定義される。
【0007】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明では、(1) 現在利用されている人工骨材料の表面粗さと骨芽細胞との親和性の関係に着目し、機械的表面研摩により既存の人工骨材料をより細胞が生着・密着しやすい表面に制御すること、(2) 骨芽細胞の増殖性がよいリン酸カルシウム系セラミックス焼結体及び硬化体等の材料の最適化を図ること、を技術的特徴としている。
表面粗さの制御には、焼結及び水和硬化させたリン酸カルシウム系セラミックス材料、すなわち、α−Ca(PO,β−Ca(PO ,Ca(HPO 5H O,Ca10(OH) (PO 等を少なくとも一種以上含有する材料と、ソーダガラス、乳酸樹脂等の生体高分子及び金属(チタン及びチタン合金等)等の1種以上とからなる人工骨材料を#200番以下のダイアモンド埋込み研摩プレート又は研摩紙で研摩した粗面と、さらに、平均0.3μm粒子径のダイアモンドやアルミナのスラリーにてバフ研摩し、表面を鏡面状に研摩したスムーズ面が利用される。
【0008】
通常、細胞生着後、骨芽細胞が増殖しやすい環境であることが、骨移植後の骨成長に重要である。一般に、比表面積が大きいほど組織液及び細胞との接触界面が大きく、細胞生着が起こりやすいと言われる。しかしながら、実際には、数10〜数100μmのくぼみが生じた粗面では、骨芽細胞の生着は起こるが、生着後の細胞間の接触が妨げられ、増殖が進まず細胞の減少が観察された。また、ペースト研摩したスムーズな面では、数100μmの大きな骨芽細胞が培養液から材料表面に付着し、さらに、紡錘状と多角形の細胞形態で増殖することにより表面を覆い、細胞数が増加するのが観察された。そのため、細胞が表面に生着後、増殖過程で細胞間のネットワークを生じ、よく密着することで、粗面よりも剥離しにくくなった。この結果より、培養した骨芽細胞を生体材料に生着させ増殖する状態で移植するためには、細胞のネットワーク化を妨げないスムーズな面の方が適すると考えられる。
【0009】
培養した骨芽細胞の基板として、利用するリン酸カルシウム系セラミックス焼結体及び硬化体等の人工骨材料として、水酸アパタイト(HA)及びリン酸三カルシウム(β−TCP)焼結体を比較すると、研摩によるスムーズ面では、水酸アパタイトの方が細胞生着後の増殖がより数多く見られた。これは、水酸アパタイトは天然骨硬組織の成分と類似し、さらに、溶解しにくいため、細胞との接触が起こりやすいく、骨芽細胞との親和性が高いことによると考えられる。また、リン酸三カルシウムは水酸アパタイトに比べ、骨と反応する破骨細胞との反応性が良いことが知られるように、表面近傍では組織液への溶解、再析出が起りうるため、侵食された表面では、生着した細胞どうしのネットワーク化が抑制されやすいと考えられる。
【0010】
一方、リン酸八カルシウム(OCP)硬化体表面では、HAやTCP焼結体表面に比べて骨芽細胞数が大きく減少した。これは、基板表面の観察より、結晶が盤状結晶粒子として成長し、研摩後も、表面に隙間が多く見られ平滑な面が出にくいため、細胞生着もしにくく、骨芽細胞のネットワーク化も起りにくいことが原因と考えられる。
以上の結果より、培養骨芽細胞を付着、増殖させ、骨移植に用いる場合、HAやTCP焼結体で、その表面をスムーズに仕上げた方が、凸凹面や傷が多く残っている粗面にくらべて、骨芽細胞が生着、増殖しやすいので、培養した骨芽細胞を材料表面へ生着、増殖させ移植する場合、適することが分かった。
【0011】
本発明では、骨類似組成のリン酸カルシウムセラミックス等の焼結体及び硬化体、さらには、現在、医療用に利用されている人工骨材料を、破損もしくは欠損した骨治療用の材料として用いる場合、その表面の生体親和性を高め、さらに、治癒効果を向上させるために、材料表面を容易な研摩による表面処理により骨生成にかかわる骨芽細胞が生着、増殖しやすいように制御する。さらに、免疫拒絶性や吸収による合併症を最小にするために、人工骨材料に自家骨芽細胞を生着させ、その表面で増殖させた人工骨材料を新しい人工骨移植技術として応用するものである。
【0012】
これまで、人工骨として、治療への利用が期待されているリン酸カルシウム等の焼結体や硬化体において、材料表面への細胞生着やその増殖状態の有無を積極的に制御することを考えた表面処理はほとんど行われていない。本発明では、培養した骨芽細胞と研摩処理を施した種々のリン酸カルシウム焼結体及び硬化体を用い、骨芽細胞が付着しやすい材料と、表面研摩処理条件として、例えば、平均0.3μm粒子径のダイアモンドやアルミナのスラリーにてバフ研摩した水酸アパタイト焼結体のスムーズ面を利用することにより、骨芽細胞を表面に広く密着して成長させ、培養した自家骨芽細胞を付着させ、人工骨材料として利用する。
【0013】
本発明では、自家骨芽細胞として、ヒト大腿骨頚部、上腕骨近位端の海綿骨や緻密骨などが使用される。これらの骨組織を、無機塩類、アミノ酸、ビタミン類、糖類の栄養素、抗生物質及び血清の含まれる培地中で、フラスコ内で30℃付近の恒温に保ち静置した条件で培養し、コラーゲナーゼ及びトリプシン処理で浮遊させた細胞溶液を調製する。
一方、リン酸カルシウム系セラミックスとしては、水酸アパタイト、リン酸三カルシウム、リン酸八カルシウム、リン酸水素カルシウムが例示される。これらは、一軸加圧成形後、静水圧加圧成形し電気炉で焼結した焼結体、緩衝溶液をリン酸カルシウム粉体と練和することによる水和硬化反応で硬化した硬化体として使用される。
人工骨材料として、このリン酸カルシウム系セラミックス焼結体に、さらに、ソーダガラス、リン酸ガラス、乳酸樹脂、アクリル系樹脂など、チタン、チタン合金、ステンレス合金などの金属を使用することも適宜可能であり、人工骨を構成する他の材料に特に制限されない。
【0014】
上記人工骨は、例えば、0.3μm粒子径のダイヤモンドペーストで鏡面状に研するが、その方法及び手段は特に制限されない。
次に、これらの材料で上記細胞溶液に30℃付近の恒温に保ち静置した条件で1〜4日間含浸し、材料表面に骨芽細胞を生着、増殖、分化させる。それにより、表面に骨芽細胞が付着した人工骨材料が得られる。
【0015】
【実施例】
以下、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例によってなんら限定されるものではない。
実施例1
図1に示す試験方法により、人工股関節全置換術で治療に必要のないヒト大腿骨転子間部より採取した骨組織(海綿骨)を5〜7週間フラスコ内で組織培養を行い、フラスコから剥離、浮遊させた骨芽細胞が2.5x10 個/cm となるまで培養し、細胞溶液を調製した。
一方、典型的な三種類のリン酸カルシウム、すなわち、水酸アパタイト(HA):Ca10(OH)(PO 、リン酸三カルシウム(β−TCP):Ca(PO 、及びリン酸八カルシウム(OCP):Ca (HPO 5H O:の焼結体及び硬化体のペレットを作製した。すなわち、水酸化アパタイトについては、H PO に硝酸カルシウムを混合し、NH OHでpH9に中和し、沈澱物を合成し、次いで、20MPa一軸加圧で成形後、CIPにより1150℃、4時間、焼結し、ペレットを作製した。
また、リン酸三カルシウムについては、市販β−TCP粉末を使用し、20MPa一軸加圧で成形後、CIPにより1150℃、4時間、焼結し、ペレットを作製した。
さらに、リン酸八カルシウムについては、市販α−TCP粉末を使用し、pH5酢酸ナトリウム緩衝溶液で練和し、養成し、次いで、60℃、3日間、水和硬化し、ペレットを作製した。
得られた焼結体及び硬化体(直径6mm、厚さ約2mmの円形ペレット)を200番の研摩紙での粗い研摩と0.3μm粒子径のダイアモンドスラリーにてバフ研摩して鏡面状に研摩した。使用したペレット試料のX線回折パターンを図2に示す。
上記細胞溶液に上記試料を1〜4日間静置で含浸し、細胞の固定処理を行い、骨芽細胞を表面に付着させた人工骨材料を作製した。
本実施例の試験に用いた試料の合成条件を表1に示す。
【0016】
【表1】

Figure 0003629573
【0017】
実施例2
上記実施例1において、試験前の各ペレットの試料及び骨芽細胞の培養液に4日間含浸した各ペレット試料の表面を走査電子顕微鏡で観察した。その電子顕微鏡写真を図3〜図8に示す。図3のスムーズな表面にペースト研摩した水酸アパタイト焼結体では、4日間の培養で紡錘形と多角形の骨芽細胞が生着し、さらに、密に表面を被っていた。
一方、図4の粗い表面に粗研磨した水酸化アパタイト焼結体では、骨芽細胞の生着が見られたが、細胞数及びそのネットワーク化も少なかった。他の材料においても材料表面の研摩状態の違いにより同様の傾向がみられた(図5〜図8)。また、比較したリン酸カルシウム焼結体及び硬化体の中では、水酸化アパタイト焼結体が骨芽細胞との親和性が最も良かった。
【0018】
実施例3
上記実施例2において、図3〜図8のSEM写真より、縦横等間隔に作製した100点のポイントカウンティング法により細胞の生着・増殖量を比較した。その結果を図9に示す。この結果からも、鏡面状に研摩した水酸化アパタイト表面への骨芽細胞の付着性が良く、リン酸三カルシウム、リン酸八カルシウムの順で、細胞の生着率が低下することが観察された。
【0019】
【発明の効果】
以上詳述した通り、本発明は、表面に骨芽細胞を付着させた生体適合性の高い人工骨材料であって、骨組織を培養して得られた骨芽細胞の培養液を、表面研処理で鏡面状に研したリン酸カルシウム系セラミックスを主成分とする材料に含浸させ、骨芽細胞を当該材料の表面に付着させたことを特徴とする人工骨材料に係るものであり、本発明により、1)表面に自家骨細胞を付着させた人工骨材料が得られる、2)生体適合性を向上させた人工骨材料を提供することができる、3)簡便な製造プロセスで人工骨材料を作製することができる、4)新しい人工骨移植技術を提供することができる、という格別の効果が奏される。
【図面の簡単な説明】
【図1】実施例の試験方法をフローチャートにて表した説明図である。
【図2】実施例の試験に用いた試料のX線回折(XRD)パターンを示した説明図である。
【図3】実施例の試験にて用いたダイアモンドペースト研摩にて鏡面状に表面研摩した水酸アパタイト焼結体の試験前及び4日間骨芽細胞培養液に含浸した後の試験試料表面の電子顕微鏡写真である。
【図4】実施例の試験にて用いた200番の研摩紙で研摩し作製した粗面の水酸アパタイト焼結体の試験前及び4日間骨芽細胞培養液に含浸した後の試験試料表面の電子顕微鏡写真。
【図5】実施例の試験にて用いたダイアモンドペースト研摩にて鏡面状に表面研摩したリン酸三カルシウム焼結体の試験前及び4日間骨芽細胞培養液に含浸した後の試験試料表面の電子顕微鏡写真である。
【図6】実施例の試験にて用いた200番の研摩紙で研摩し作製した粗面のリン酸三カルシウム焼結体の試験前及び4日間骨芽細胞培養液に含浸した後の試験試料表面の電子顕微鏡写真である。
【図7】実施例の試験にて用いたダイアモンドペースト研摩にて鏡面状に表面研摩したリン酸八カルシウム焼結体の試験前及び4日間骨芽細胞培養液に含浸した後の試験試料表面の電子顕微鏡写真である。
【図8】実施例の試験にて用いた200番の研摩紙で研摩し作製した粗面のリン酸八カルシウム焼結体の試験前及び4日間骨芽細胞培養液に含浸した後の試験試料表面の電子顕微鏡写真である。
【図9】実施例の試験にて試料観察に用いた電子顕微鏡写真からのポイントカウンティング法による各試料表面への骨芽細胞の生着・増殖量の比較を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biocompatible artificial bone material having osteoblasts attached to the surface, and more particularly, to a material obtained by engrafting, proliferating and differentiating cultured osteoblasts on the material surface. The material of which the surface of the existing biomaterial is controlled by mechanical polishing so that osteoblasts adhere and grow easily and the biocompatibility is improved, and a new artificial bone grafting technology using the material It is about.
The present invention provides a new artificial bone material to which autologous tissue is attached to minimize complications due to immune rejection and resorption when an artificial bone is transplanted in orthopedic treatment.
[0002]
[Prior art]
Bone transplantation has been carried out as an orthopedic treatment for a wide range of bone defects associated with severe trauma in the living body and bone removal due to bone tumors. Currently, autologous bone, allogeneic bone, heterogeneous bone and artificial bone are transplanted as a method of transplanting bone. Furthermore, cases of using artificial bone materials such as calcium phosphate-based ceramics, polymers, and metals that are safe in vivo as artificial bones are increasing year by year. In general, bone transplantation of autologous bone is desirable, but the amount of bone that can be collected is limited, and normal tissue must be invaded when transplanting. In addition, allogeneic and xenogeneic bone transplantation has immune rejection and complications. On the other hand, when only artificial bone materials such as ceramics, polymers, and metals are transplanted, there is a problem that bone formation is not obtained or treatment results are not uniform. Therefore, when using an artificial bone, it is expected that the healing results can be improved by intentionally attaching osteoblasts to the material surface and differentiating the bone cells on the surface as in the case of autologous bone. To that end, it is necessary to establish a method for improving the biocompatibility of the material by efficiently attaching osteoblasts to the material and forming a surface on which the cells easily grow.
[0003]
Conventionally, when using known artificial bone materials for treatment, surface coating with highly biocompatible hydroxyapatite, etc., smoothing by friction of joint movable parts, etc., and specific surface area to increase adhesion to tissue Except for the partial roughening for the purpose of increasing, surface treatment of the manufactured artificial bone material is hardly performed. Therefore, if various cells involved in bone regeneration in a living body can be efficiently engrafted on the surface of the material and transplanted in a state of being easily proliferated, the self-regenerative action of bone is promoted, and the artificial bone material in vivo Can be expected to result in a natural binding of the drug, thereby shortening the treatment time.
[0004]
However, no knowledge has been obtained as to what surface state of each biomaterial is an environment suitable for cell proliferation and suitable for their proliferation. If the surface of the artificial bone material can be controlled to a surface state in which cells are more likely to engraft and proliferate, self osteoblasts can be grown on the surface of the artificial bone material, and new bone treatment using it can be performed. It can overcome various current problems. For this purpose, it is necessary to develop a material suitable for engrafting the actually cultured osteoblasts on the surface of the artificial bone material and to optimize the surface state. Furthermore, the material surface polishing process can be easily incorporated as a process in the manufacturing process, and there are few problems such as peeling degradation at the interface after coating as in the coating process, and it is an inexpensive and safe control method. The advantage is great.
[0005]
[Problems to be solved by the invention]
Under such circumstances, in view of the above-described conventional technology, the present inventors have made a new biocompatibility that allows osteoblasts to efficiently adhere to the material surface of an artificial bone and control the surface state to facilitate cell growth. As a result of intensive research with the goal of developing materials, the objective was to optimize by using materials such as calcium phosphate ceramics sintered body and hardened body, which have good growth of osteoblasts. As a result, the present invention has been completed.
An object of the present invention is to provide an artificial bone material having high biocompatibility with osteoblasts attached to the surface.
[0006]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
(1) An artificial bone material having high biocompatibility with osteoblasts attached to the surface, and an osteoblast culture solution obtained by culturing bone tissue is made of diamond having an average particle diameter of 0.3 μm or the surface abrasive treatment equivalent surface Labs grinding treatment with a slurry or paste of alumina is impregnated with a material composed mainly of Ken grinding calcium phosphate-based ceramics mirror shape that osteoblasts were deposited on the surface of the material Features artificial bone material.
(2) Average 0.3μm buff Labs friction at the particle size of the diamond or alumina slurry, impregnating the surface material mainly composed of lapis lazuli phosphate calcium-based ceramics obtained by Ken milling mirror shape the (1) The artificial bone material as described.
(3) Calcium phosphate ceramics are α-Ca 3 (PO 4 ) 2 , β-Ca 3 (PO 4 ) 2 , Ca 8 (HPO 4 ) 4 5H 2 O, Ca 10 (OH) 2 (PO 4 ) 6 The artificial bone material according to (1), which contains one or more of the above.
(4) The materials mainly composed of calcium phosphate ceramics are α-Ca 3 (PO 4 ) 2 , β-Ca 3 (PO 4 ) 2 , Ca 8 (HPO 4 ) 4 5H 2 O, Ca 10 (OH) 2 ( The artificial bone material according to (1) above, comprising a calcium phosphate ceramic sintered body or cured body containing at least one of PO 4 ) 6 and one or more kinds of biopolymers and metals such as soda glass and lactic acid resin.
(5) Calcium phosphate-based ceramics material obtained by subjecting bone tissue collected from the intertrochanteric part of the femur during total hip replacement to tissue culture for 5 to 7 weeks and then subjecting the resulting culture solution containing human osteoblasts to surface polishing treatment The artificial bone material according to (1) above, wherein the bone buds are soaked for a predetermined time, and osteoblasts are attached to the surface.
In the present invention, the mirror-polished surface polishing treatment means, for example, buffing with a diamond or alumina slurry having an average particle diameter of 0.3 μm and polishing the surface into a mirror-like surface. Defined as meaning smooth surface.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
In the present invention, (1) focusing on the relationship between the surface roughness of the artificial bone material currently used and the affinity with osteoblasts, the cells are engrafted and adhered more closely to the existing artificial bone material by mechanical surface polishing. The technical features are to control the surface to be easy to perform, and (2) to optimize materials such as calcium phosphate ceramics sintered bodies and hardened bodies, which have good osteoblast proliferation.
For controlling the surface roughness, sintered and hydrated calcium phosphate ceramic materials, that is, α-Ca 3 (PO 4 ) 2 , β-Ca 3 (PO 4 ) 2 , Ca 8 (HPO 4 ) 4 are used. A material containing at least one or more of 5H 2 O, Ca 10 (OH) 2 (PO 4 ) 6, and one or more of biopolymers such as soda glass and lactic acid resin and metals (such as titanium and titanium alloys) A rough surface polished with # 200 or less diamond-embedded polishing plate or abrasive paper, and buffing with a diamond or alumina slurry having an average particle size of 0.3 μm to make the surface mirror-like Polished smooth surface is used.
[0008]
Usually, an environment in which osteoblasts are easily proliferated after cell engraftment is important for bone growth after bone transplantation. In general, it is said that the larger the specific surface area, the larger the contact interface with the tissue fluid and cells, and cell engraftment tends to occur. In reality, however, osteoblast engraftment occurs on rough surfaces where dents of several tens to several hundreds of μm occur, but contact between cells after engraftment is hindered, proliferation does not progress, and cell loss does not occur. Observed. In addition, on the smooth surface after paste polishing, large osteoblasts of several hundred μm adhere to the surface of the material from the culture solution, and further cover the surface by growing in the form of spindle and polygonal cells, increasing the number of cells. It was observed to do. For this reason, after cells engraft on the surface, a network between the cells is formed in the growth process, and the cells adhere well, making it more difficult to peel off than the rough surface. From this result, it is considered that a smooth surface that does not hinder cell networking is more suitable for transplanting cultured osteoblasts in a state of engrafting and proliferating on biomaterials.
[0009]
As an artificial bone material such as a calcium phosphate-based ceramic sintered body and a cured body to be used as a substrate for cultured osteoblasts, when comparing hydroxyapatite (HA) and tricalcium phosphate (β-TCP) sintered bodies, On the smooth surface by polishing, hydroxyapatite showed more proliferation after cell engraftment. This is thought to be because hydroxyapatite is similar to the component of natural bone and hard tissue and is difficult to dissolve, so that it easily contacts with cells and has high affinity with osteoblasts. In addition, tricalcium phosphate is eroded because it can dissolve in tissue fluid and reprecipitate near the surface, as it is known that it has better reactivity with osteoclasts that react with bone than hydroxyapatite. On the other hand, the network of engrafted cells is likely to be suppressed.
[0010]
On the other hand, on the surface of the octacalcium phosphate (OCP) cured body, the number of osteoblasts was greatly reduced compared to the surface of HA or TCP sintered body. This is because, from the observation of the substrate surface, the crystal grows as a plate-like crystal particle, and even after polishing, there are many gaps on the surface and it is difficult to produce a smooth surface. This is thought to be due to the fact that it is difficult to occur.
From the above results, when the cultured osteoblasts are attached and proliferated and used for bone grafting, the rough surface with more irregularities and scratches remains when the surface is smoothened with HA or TCP sintered body. Compared to the above, osteoblasts are more likely to engraft and proliferate, and it has been found that it is suitable when engrafted, proliferated and transplanted cultured osteoblasts on the material surface.
[0011]
In the present invention, when using a sintered body and a hardened body such as calcium phosphate ceramics having a bone-like composition, and an artificial bone material currently used for medical treatment as a damaged or missing bone treatment material, In order to enhance the biocompatibility of the surface and further improve the healing effect, the surface of the material is controlled so as to facilitate the engraftment and proliferation of osteoblasts involved in bone formation by surface treatment by easy polishing. In addition, in order to minimize complications due to immune rejection and absorption, artificial bone material is engrafted on the artificial bone material and proliferated on the surface, and applied as a new artificial bone grafting technology. is there.
[0012]
Up to now, we considered to actively control the presence or absence of cell engraftment on the material surface and its growth state in sintered bodies and hardened bodies such as calcium phosphate, which are expected to be used for treatment as artificial bones. There is almost no surface treatment. In the present invention, various calcium phosphate sintered bodies and hardened bodies that have been subjected to cultured osteoblasts and polishing treatments are used, and materials that easily adhere to osteoblasts and surface polishing treatment conditions include, for example, average 0.3 μm particles By using the smooth surface of the hydroxyapatite sintered body buffed with a diamond or alumina slurry of diameter, the osteoblasts are grown in close contact with the surface, and the cultured autologous osteoblasts are attached, Used as artificial bone material.
[0013]
In the present invention, human femoral neck, cancellous bone and dense bone at the proximal end of the humerus are used as autologous osteoblasts. These bone tissues are cultured in a medium containing inorganic salts, amino acids, vitamins, saccharide nutrients, antibiotics and serum, and kept in a flask at a constant temperature of about 30 ° C., and collagenase and Prepare a cell solution suspended by trypsinization.
On the other hand, examples of calcium phosphate ceramics include hydroxyapatite, tricalcium phosphate, octacalcium phosphate, and calcium hydrogen phosphate. These are used as a sintered body obtained by uniaxial pressure molding, hydrostatic pressure molding and sintering in an electric furnace, and a cured body cured by a hydration curing reaction by kneading a buffer solution with calcium phosphate powder. .
As an artificial bone material, it is also possible to use a metal such as titanium, titanium alloy, stainless steel, soda glass, phosphate glass, lactic acid resin, acrylic resin, etc., in addition to this calcium phosphate ceramic sintered body. There is no particular limitation on other materials constituting the artificial bone.
[0014]
The artificial bone, for example, Ken grinding Suruga mirror-finished at 0.3μm particle size diamond paste, the method and means are not particularly limited.
Next, the above cell solution is impregnated with these materials at a constant temperature of about 30 ° C. for 1 to 4 days, and osteoblasts are engrafted, proliferated and differentiated on the material surface. As a result, an artificial bone material having osteoblasts attached to the surface can be obtained.
[0015]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following example.
Example 1
According to the test method shown in FIG. 1, bone tissue (cancellous bone) collected from the intertrochanteric portion of the human femur that is not required for treatment by total hip replacement is subjected to tissue culture in a flask for 5 to 7 weeks. The exfoliated and suspended osteoblasts were cultured until they reached 2.5 × 10 4 cells / cm 2 to prepare a cell solution.
On the other hand, three typical types of calcium phosphates, namely, hydroxyapatite (HA): Ca 10 (OH) 2 (PO 4 ) 6 , tricalcium phosphate (β-TCP): Ca 3 (PO 4 ) 2 , and Sintered and hardened pellets of octacalcium phosphate (OCP): Ca 8 (HPO 4 ) 4 5H 2 O: were prepared. That is, for hydroxide apatite, calcium nitrate is mixed with H 3 PO 4 , neutralized to pH 9 with NH 4 OH, a precipitate is synthesized, and then molded at 20 MPa uniaxial pressure, then at 1150 ° C. with CIP, Sintered for 4 hours to produce pellets.
As for tricalcium phosphate, a commercially available β-TCP powder was used, and after molding at 20 MPa uniaxial pressure, it was sintered with CIP at 1150 ° C. for 4 hours to produce pellets.
Further, for octacalcium phosphate, commercially available α-TCP powder was used, kneaded with a pH 5 sodium acetate buffer solution, cultivated, and then hydrated and cured at 60 ° C. for 3 days to produce pellets.
The obtained sintered body and hardened body (circular pellet having a diameter of 6 mm and a thickness of about 2 mm) were polished with a rough surface with No. 200 abrasive paper and with a diamond slurry having a particle diameter of 0.3 μm and polished into a mirror surface. did. The X-ray diffraction pattern of the used pellet sample is shown in FIG.
The cell solution was impregnated with the sample for 1 to 4 days, and subjected to cell fixing treatment to produce an artificial bone material having osteoblasts attached to the surface.
Table 1 shows the synthesis conditions of the samples used in the test of this example.
[0016]
[Table 1]
Figure 0003629573
[0017]
Example 2
In Example 1 above, the surface of each pellet sample before the test and the pellet sample impregnated in the culture solution of osteoblasts for 4 days were observed with a scanning electron microscope. The electron micrographs are shown in FIGS. In the hydroxyapatite sintered body paste-polished on the smooth surface of FIG. 3, spindle-shaped and polygonal osteoblasts were engrafted after 4 days of culture, and the surface was covered densely.
On the other hand, in the hydroxyapatite sintered body roughly polished on the rough surface in FIG. 4, osteoblast engraftment was observed, but the number of cells and their networking were also small. The same tendency was observed in other materials due to the difference in the polishing state of the material surface (FIGS. 5 to 8). Of the calcium phosphate sintered bodies and hardened bodies compared, the hydroxyapatite sintered body had the best affinity with osteoblasts.
[0018]
Example 3
In the above Example 2, the engraftment / proliferation amount of cells was compared by the 100-point point counting method prepared at equal intervals in the vertical and horizontal directions from the SEM photographs of FIGS. The result is shown in FIG. From this result, it was observed that the adhesion of osteoblasts to the surface of hydroxide apatite polished to a mirror surface was good, and the cell viability decreased in the order of tricalcium phosphate and octacalcium phosphate. It was.
[0019]
【The invention's effect】
As described above in detail, the present invention is an artificial bone material having high biocompatibility with osteoblasts attached to the surface, and an osteoblast culture solution obtained by culturing bone tissue is treated with surface the calcium phosphate ceramics and Ken grinding to mirror surface by grinding processing by impregnating a material mainly are those relating osteoblasts artificial bone material, characterized in that attached to the surface of the material, the present invention 1) An artificial bone material having autologous bone cells attached to the surface can be obtained, 2) an artificial bone material with improved biocompatibility can be provided, and 3) an artificial bone material can be produced by a simple manufacturing process. 4) It is possible to provide a new artificial bone grafting technique.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a test method of an embodiment in a flowchart.
FIG. 2 is an explanatory diagram showing an X-ray diffraction (XRD) pattern of a sample used in a test of an example.
FIG. 3 shows an electron on the surface of a test sample before the test of a hydroxyapatite sintered body mirror-polished by diamond paste polishing used in the test of Example and after impregnation in an osteoblast culture for 4 days. It is a micrograph.
FIG. 4 shows the surface of the test sample before the test of the rough hydroxyapatite sintered body prepared by polishing with No. 200 polishing paper used in the test of the example and after impregnation in the osteoblast culture medium for 4 days. Electron micrograph.
FIG. 5 shows the surface of the test sample surface before the test of the tricalcium phosphate sintered body mirror-polished by diamond paste polishing used in the test of the example and after impregnation in the osteoblast culture medium for 4 days. It is an electron micrograph.
FIG. 6 shows a test sample of a rough surface tricalcium phosphate sintered body prepared by polishing with No. 200 polishing paper used in the test of Example, and after impregnation in an osteoblast culture medium for 4 days. It is an electron micrograph of the surface.
FIG. 7 shows the surface of the test sample surface before the test of the octacalcium phosphate sintered body mirror-polished by the diamond paste polishing used in the test of the example and after impregnation in the osteoblast culture medium for 4 days. It is an electron micrograph.
FIG. 8 shows a test sample of a rough surface octacalcium phosphate sintered body prepared by polishing with No. 200 polishing paper used in the test of Example, and after impregnation in an osteoblast culture medium for 4 days. It is an electron micrograph of the surface.
FIG. 9 is an explanatory diagram showing a comparison of the amount of engraftment / proliferation of osteoblasts on the surface of each sample by a point counting method from an electron micrograph used for sample observation in the test of Example.

Claims (5)

表面に骨芽細胞を付着させた生体適合性の高い人工骨材料であって、骨組織を培養して得られた骨芽細胞の培養液を、平均0.3μm粒子径のダイヤモンド又はアルミナのスラリー又はペーストによる表面研摩処理と同等の表面研処理で鏡面状に研したリン酸カルシウム系セラミックスを主成分とする材料に含浸させ、骨芽細胞を当該材料の表面に付着させたことを特徴とする人工骨材料。An artificial bone material having high biocompatibility with osteoblasts attached to the surface, and an osteoblast culture solution obtained by culturing bone tissue is a slurry of diamond or alumina having an average particle diameter of 0.3 μm or paste is impregnated with a material composed mainly of Ken grinding calcium phosphate-based ceramics in mirror-like surface abrasive treatment equivalent surface Labs grinding treatment with, osteoblasts, characterized in that attached to the surface of the material Artificial bone material. 平均0.3μm粒子径のダイヤモンドやアルミナのスラリーにてバフ研し、表面を鏡面状に研して得られるリン酸カルシウム系セラミックスを主成分とする材料に含浸させる請求項1記載の人工骨材料。Buff Labs friction at an average 0.3μm particle size of the diamond or alumina slurry, according to claim 1, wherein impregnating the surface material mainly composed of lapis lazuli phosphate calcium-based ceramics obtained by Ken milling mirror-finished Artificial bone material. リン酸カルシウム系セラミックスが、α−Ca3 (PO42 、β−Ca3 (PO42、Ca8 (HPO44 5H2 O、Ca10(OH)2(PO46 の1種以上を含有する請求項1記載の人工骨材料。Calcium phosphate ceramics are one of α-Ca 3 (PO 4 ) 2 , β-Ca 3 (PO 4 ) 2 , Ca 8 (HPO 4 ) 4 5H 2 O, and Ca 10 (OH) 2 (PO 4 ) 6 . The artificial bone material according to claim 1 containing the above. リン酸カルシウム系セラミックスを主成分とする材料が、α−Ca3 (PO42 ,β−Ca3 (PO42,Ca8 (HPO4 4 5H2 O,Ca10(OH)2(PO46 の少なくとも一種を含有するリン酸カルシウム系セラミックス焼結体又は硬化体と、ソーダガラス、乳酸樹脂等の生体高分子、金属の1種以上とからなる請求項1記載の人工骨材料。The materials mainly composed of calcium phosphate ceramics are α-Ca 3 (PO 4 ) 2 , β-Ca 3 (PO 4 ) 2 , Ca 8 (HPO 4 ) 4 5H 2 O, Ca 10 (OH) 2 (PO 4 ) The artificial bone material according to claim 1, comprising a calcium phosphate ceramic sintered body or a cured body containing at least one of 6 and one or more kinds of biopolymers and metals such as soda glass and lactic acid resin. 人工股関節全置換術時に大腿骨転子部間より採取した骨組織を5〜7週間組織培養し、得られたヒト骨芽細胞を含む培養液に、表面研摩処理したリン酸カルシウム系セラッミクス材料を、所定時間浸し、骨芽細胞を表面に付着させた請求項1記載の人工骨材料。Bone tissue collected from the intertrochanteric region of the femur during total hip replacement is subjected to tissue culture for 5 to 7 weeks. The artificial bone material according to claim 1, which is soaked in time and has osteoblasts attached to the surface.
JP2000155116A 2000-05-25 2000-05-25 A new artificial bone grafting method combining biocompatibility control of biomaterial surface by surface polishing treatment and adhesion of cultured osteoblasts Expired - Lifetime JP3629573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155116A JP3629573B2 (en) 2000-05-25 2000-05-25 A new artificial bone grafting method combining biocompatibility control of biomaterial surface by surface polishing treatment and adhesion of cultured osteoblasts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155116A JP3629573B2 (en) 2000-05-25 2000-05-25 A new artificial bone grafting method combining biocompatibility control of biomaterial surface by surface polishing treatment and adhesion of cultured osteoblasts

Publications (2)

Publication Number Publication Date
JP2001333974A JP2001333974A (en) 2001-12-04
JP3629573B2 true JP3629573B2 (en) 2005-03-16

Family

ID=18660109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155116A Expired - Lifetime JP3629573B2 (en) 2000-05-25 2000-05-25 A new artificial bone grafting method combining biocompatibility control of biomaterial surface by surface polishing treatment and adhesion of cultured osteoblasts

Country Status (1)

Country Link
JP (1) JP3629573B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030180263A1 (en) * 2002-02-21 2003-09-25 Peter Geistlich Resorbable extracellular matrix for reconstruction of bone
US8858981B2 (en) 1997-10-10 2014-10-14 Ed. Geistlich Soehne Fuer Chemistrie Industrie Bone healing material comprising matrix carrying bone-forming cells
US9034315B2 (en) 1997-10-10 2015-05-19 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Cell-charged multi-layer collagen membrane
US20050186283A1 (en) 1997-10-10 2005-08-25 Ed. Geistlich Soehne Ag Fuer Chemistrie Industrie Collagen carrier of therapeutic genetic material, and method
JP2004016045A (en) * 2002-06-13 2004-01-22 Olympus Corp Incubator
AU2003257684A1 (en) * 2002-08-23 2004-03-11 Asahi Medical Co., Ltd. Fibrin-containing composition
CN110770164B (en) * 2017-06-16 2023-01-13 株式会社Gc Method for producing octacalcium phosphate molded body

Also Published As

Publication number Publication date
JP2001333974A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
Kim Ceramic bioactivity and related biomimetic strategy
LeGeros Calcium phosphate-based osteoinductive materials
Kim et al. Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer
Hayakawa et al. Trabecular bone response to surface roughened and calcium phosphate (Ca-P) coated titanium implants
US7416564B2 (en) Porous bioceramics for bone scaffold and method for manufacturing the same
Dorozhkin Calcium orthophosphate (CaPO4) scaffolds for bone tissue engineering applications
Biggemann et al. Modular ceramic scaffolds for individual implants
Song et al. Characteristics and osteogenic effect of zirconia porous scaffold coated with β-TCP/HA
Kim et al. Hard‐tissue‐engineered zirconia porous scaffolds with hydroxyapatite sol–gel and slurry coatings
Heymann et al. Ultrastructural evidence in vitro of osteoclastinduced degradation of calcium phosphate ceramic by simultaneous resorption and phagocytosis mechanisms
JP3629573B2 (en) A new artificial bone grafting method combining biocompatibility control of biomaterial surface by surface polishing treatment and adhesion of cultured osteoblasts
Ingole et al. Bioactive ceramic composite material stability, characterization
Rosa et al. Osseointegration and osseoconductivity of hydroxyapatite of different microporosities
Islam et al. Excellency of hydroxyapatite composite scaffolds for bone tissue engineering
Clavell et al. In vitro assessment of the biological response of Ti6Al4V implants coated with hydroxyapatite microdomains
CN111465418B (en) Bone substitute material
CN114761048A (en) Collagen matrix or particle blends of bone substitute materials
KR101611583B1 (en) Implant Surface Treated With Gold Particle And Fabrication Method Thereof
JP2984176B2 (en) Method for culturing bone marrow cells, culture mixture and material for transplantation into hard tissue defect
Hasirci et al. Ceramics
Ruan et al. Porous hydroxyapatite–tricalcium phosphate bioceramics
CN113276248A (en) Preparation method of porous bone implant with metal coated surface
US6818332B1 (en) Bioactive implants and method for the production thereof
KR100558157B1 (en) Porous Bioceramics for Bone Scaffold and Method for Manufacturing the Same
US20230075772A1 (en) Implantable bone scaffolds including at least one integration aid, methods of making and using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041118

R150 Certificate of patent or registration of utility model

Ref document number: 3629573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term