JP2001333974A - New method of implanting artificial bone to combine control of biocompatibility in surface of biomaterial by polishing surface and sticking of cultured osteoblasts - Google Patents

New method of implanting artificial bone to combine control of biocompatibility in surface of biomaterial by polishing surface and sticking of cultured osteoblasts

Info

Publication number
JP2001333974A
JP2001333974A JP2000155116A JP2000155116A JP2001333974A JP 2001333974 A JP2001333974 A JP 2001333974A JP 2000155116 A JP2000155116 A JP 2000155116A JP 2000155116 A JP2000155116 A JP 2000155116A JP 2001333974 A JP2001333974 A JP 2001333974A
Authority
JP
Japan
Prior art keywords
osteoblasts
artificial bone
calcium phosphate
bone
bone material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000155116A
Other languages
Japanese (ja)
Other versions
JP3629573B2 (en
Inventor
Yoshinobu Fujishiro
芳伸 藤代
Masamizu Oyama
正瑞 大山
Shoichi Kokubu
正一 国分
Koji Kaji
光司 鍛冶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000155116A priority Critical patent/JP3629573B2/en
Publication of JP2001333974A publication Critical patent/JP2001333974A/en
Application granted granted Critical
Publication of JP3629573B2 publication Critical patent/JP3629573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an artificial bone material that is highly biocompatible by sticking cultured osteoblasts to its surface. SOLUTION: The artificial bone material is highly biocompatible by sticking cultured osteoblasts to its surface. Feature of the artificial bone material is to be stuck with the osteoblasts to surface of the material by impregnating the culture medium of the osteoblasts obtained from cultured bony tissue into a material that mainly consists of calcium phosphate ceramic glassily polished by polishing surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面に骨芽細胞を
付着させた生体適合性の高い人工骨材料に関するもので
あり、さらに詳しくは、培養した骨芽細胞を材料表面に
生着、増殖、分化させた材料に係るものであり、既存の
生体材料の表面を機械的研摩により骨芽細胞が付着し、
成長しやすい状態に制御し、その生体適合性を向上させ
た材料、及びそれを利用した新しい人工骨移植技術に関
するものである。本発明は、整形治療において人工骨を
移植する際に、免疫拒絶性や吸収による合併症を最小に
するための、自家組織を付着させた新しい人工骨材料を
提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly biocompatible artificial bone material having osteoblasts adhered to its surface, and more specifically, to engraft and grow cultured osteoblasts on the surface of the material. According to the differentiated material, osteoblasts adhere to the surface of the existing biomaterial by mechanical polishing,
The present invention relates to a material whose biocompatibility has been improved by controlling it to a state in which it is easy to grow, and a new artificial bone graft technique using the same. The present invention provides a new artificial bone material to which autologous tissue is adhered so as to minimize complications due to immunorejection and resorption when implanting an artificial bone in orthopedic treatment.

【0002】[0002]

【従来の技術】生体における高度な外傷や骨腫瘍による
骨摘出にともなう広範囲での骨欠損に対し、その整形外
科治療として骨移植が行われている。現在、骨を移植す
る方法として、自家骨、同種骨、異種骨及び人工骨を移
植することが行われている。さらに、人工骨として、生
体内で安全なリン酸カルシウム系のセラミックス、高分
子、金属等の人工骨材料を利用するケースも年々増加し
ている。一般に、自家骨の骨移植が望ましいが、採取で
きる骨量に限界があり、移植の際には正常組織に侵襲を
加えなければならない。また、同種・異種骨移植では免
疫拒絶や合併症がある。一方、セラミックス、高分子、
金属等の人工骨材料のみの移植では骨形成が得られたり
得られなかったり、治療成績が一様ではないという問題
がある。そこで、人工骨を使用する場合、材料表面に意
図的に骨芽細胞を付着させ、自家骨の場合と同様に表面
で骨細胞を分化させることにより、治癒成績を向上させ
ることが期待できる。そのためには、効率よく骨芽細胞
を材料に付着させ細胞が増殖しやすい表面にすることに
より材料の生体適合性を向上させる手法を確立しなくて
はならない。
2. Description of the Related Art Bone transplantation has been performed as an orthopedic treatment for a wide range of bone defects associated with high-level trauma or bone resection due to a bone tumor in a living body. Currently, autogenous bone, allogeneic bone, xenogeneic bone, and artificial bone are being transplanted as a bone transplantation method. Further, cases of using artificial bone materials such as calcium phosphate-based ceramics, polymers, metals and the like which are safe in vivo as artificial bones are increasing year by year. Generally, autograft bone transplantation is desirable, but the amount of bone that can be collected is limited, and normal tissue must be invaded during transplantation. In addition, allogeneic / xenogeneic bone transplantation has immunological rejection and complications. On the other hand, ceramics, polymers,
There is a problem in that bone formation can be obtained or not obtained by implanting only an artificial bone material such as metal, and the treatment results are not uniform. Therefore, when artificial bone is used, it is expected that the healing results can be improved by intentionally attaching osteoblasts to the surface of the material and differentiating the bone cells on the surface as in the case of autologous bone. For that purpose, it is necessary to establish a method for efficiently attaching osteoblasts to the material and improving the biocompatibility of the material by forming a surface on which the cells can easily grow.

【0003】従来、既知の人工骨材料を治療へ利用する
場合、生体適合性の高い水酸アパタイト等による表面コ
ーティング、関節可動部位等の摩擦によるスムーズ化、
及び組織との接着性を高めるための比表面積の増加等を
目的とした部分的な粗面化を除けば、製造した人工骨材
料を表面処理することはほとんど行われていない。そこ
で、生体内での骨再生に関与する各種細胞を効率良く材
料表面に生着させ、増殖しやすい状態で移植することが
できれば、骨の自己再生作用を促し、生体内での人工骨
材料との自然な結合を生じさせることができ、それによ
り、治療時間をより短くすることが期待できる。
Conventionally, when a known artificial bone material is used for treatment, surface coating with highly biocompatible hydroxyapatite or the like, smoothing of joint movable parts by friction, etc.
Except for partial surface roughening for the purpose of increasing the specific surface area for enhancing the adhesiveness to the tissue, the surface treatment of the manufactured artificial bone material is hardly performed. Therefore, if various cells involved in bone regeneration in the living body can be efficiently engrafted on the surface of the material and transplanted in an easily proliferating state, the self-regenerating action of bone can be promoted, and artificial bone material in vivo , Which can be expected to result in a shorter treatment time.

【0004】しかしながら、各生体材料のどのような表
面状態が、細胞の付着性が高く、さらに、それらの増殖
に適する環境か、といった知見は得られていない。人工
骨材料の表面をより細胞が生着、増殖しやすい表面状態
に制御できれば、自己の骨芽細胞を人工骨材料の表面に
増殖させ、それを利用する新しい骨治療が可能となり、
それにより、現在のさまざまな問題が克服できる。その
ためには、実際に培養した骨芽細胞を人工骨材料の表面
に生着させる場合に適した材料を開発し、その表面状態
の最適化を行わなければならない。さらに、材料表面の
研摩処理は、製造過程の一プロセスとして容易に組込め
るとともに、コーティング処理のような被覆後の界面で
の剥離劣化といった問題が少なく、安価でかつ安全な制
御方法であることから、その利点は大きい。
[0004] However, no knowledge has been obtained as to what surface condition of each biomaterial is an environment suitable for cell proliferation and cell proliferation. If the surface of the artificial bone material can be controlled to a surface state on which cells can easily engraft and proliferate, new osteoblasts can be proliferated on the surface of the artificial bone material, and a new bone treatment using it can be performed.
Thereby, various current problems can be overcome. For that purpose, it is necessary to develop a material suitable for allowing the actually cultured osteoblasts to engraft on the surface of the artificial bone material, and to optimize the surface condition. Furthermore, since the polishing treatment of the material surface can be easily incorporated as a process in the manufacturing process, it is an inexpensive and safe control method with few problems such as delamination deterioration at the interface after coating such as coating treatment. , Its advantages are great.

【0005】[0005]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来技術に鑑みて、人工骨の材
料表面に効率よく骨芽細胞を付着させ、細胞が増殖しや
すい表面状態に制御できる新しい生体適合性材料を開発
することを目標として鋭意研究を積み重ねた結果、骨芽
細胞の殖増性がよいリン酸カルシウム系セラミックス焼
結体及び硬化体等の材料を用いてその最適化を図ること
により所期の目的を達成できるとの知見を得て、さらに
研究を重ねて、本発明を完成するに至った。本発明は、
表面に骨芽細胞を付着させた生体適合性の高い人工骨材
料を提供することを目的とする。
Under such circumstances, the present inventors, in view of the above-mentioned prior art, efficiently attach osteoblasts to the surface of a material of an artificial bone and facilitate cell proliferation. As a result of intensive research aimed at developing a new biocompatible material that can control the surface state, it has been optimized using materials such as calcium phosphate-based ceramic sintered compacts and hardened products with good osteoblast proliferation. The inventor obtained the knowledge that the intended purpose can be attained by achieving the objective, and further conducted further research, thereby completing the present invention. The present invention
An object is to provide a highly biocompatible artificial bone material having osteoblasts attached to the surface.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する本発
明は、以下の技術的手段から構成される。 (1)表面に骨芽細胞を付着させた生体適合性の高い人
工骨材料であって、骨組織を培養して得られた骨芽細胞
の培養液を、表面研磨処理で鏡面状に研磨したリン酸カ
ルシウム系セラミックスを主成分とする材料に含浸さ
せ、骨芽細胞を当該材料の表面に付着させたことを特徴
とする人工骨材料。 (2)リン酸カルシウム系セラミックスが、α−Ca3
(PO42 、β−Ca3 (PO4 2 、Ca8 (HP
4 4 5H2 O、Ca10(OH)2 (PO46 の1
種以上を含有する前記(1)記載の人工骨材料。 (3)リン酸カルシウム系セラミックスを主成分とする
材料が、α−Ca3 (PO42 ,β−Ca3 (P
4 2 ,Ca8 (HPO44 5H2 O,Ca10(O
H)2 (PO4 6 の少なくとも一種を含有するリン酸
カルシウム系セラミックス焼結体又は硬化体と、ソーダ
ガラス、乳酸樹脂等の生体高分子、金属の1種以上とか
らなる前記(1)記載の人工骨材料。 (4)人工股関節全置換術時に大腿骨転子部間より採取
した骨組織を5〜7週間組織培養し、得られたヒト骨芽
細胞を含む培養液に、表面研摩処理したリン酸カルシウ
ム系セラッミクス材料を、所定時間浸し、骨芽細胞を表
面に付着させた前記(1)記載の人工骨材料。
The present invention for solving the above problems comprises the following technical means. (1) A highly biocompatible artificial bone material having osteoblasts adhered to its surface, and a culture solution of osteoblasts obtained by culturing bone tissue was polished to a mirror surface by surface polishing treatment. An artificial bone material characterized by impregnating a material containing calcium phosphate ceramics as a main component and causing osteoblasts to adhere to the surface of the material. (2) The calcium phosphate ceramic is α-Ca 3
(PO 4 ) 2 , β-Ca 3 (PO 4 ) 2 , Ca 8 (HP
O 4) 4 5H 2 O, Ca 10 (OH) 2 (PO 4) 6 1
The artificial bone material according to the above (1), comprising at least one species. (3) Materials mainly composed of calcium phosphate ceramics are α-Ca 3 (PO 4 ) 2 , β-Ca 3 (P
O 4) 2, Ca 8 ( HPO 4) 4 5H 2 O, Ca 10 (O
The composition according to the above (1), comprising a calcium phosphate-based ceramics sintered body or hardened body containing at least one of H) 2 (PO 4 ) 6 and at least one of biopolymers such as soda glass and lactic acid resin, and metals. Artificial bone material. (4) Bone tissue collected from between the trochanters of the femur at the time of total hip arthroplasty was tissue-cultured for 5 to 7 weeks, and the resulting culture solution containing human osteoblasts was surface-polished to a calcium phosphate ceramic material. Is immersed for a predetermined time to allow osteoblasts to adhere to the surface.

【0007】[0007]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明では、(1) 現在利用されている人工骨
材料の表面粗さと骨芽細胞との親和性の関係に着目し、
機械的表面研摩により既存の人工骨材料をより細胞が生
着・密着しやすい表面に制御すること、(2) 骨芽細胞の
増殖性がよいリン酸カルシウム系セラミックス焼結体及
び硬化体等の材料の最適化を図ること、を技術的特徴と
している。表面粗さの制御には、焼結及び水和硬化させ
たリン酸カルシウム系セラミックス材料、すなわち、α
−Ca3 (PO4 2 ,β−Ca3 (PO42 ,Ca
8 (HPO44 5H2 O,Ca10(OH)2 (PO
46 等を少なくとも一種以上含有する材料と、ソーダ
ガラス、乳酸樹脂等の生体高分子及び金属(チタン及び
チタン合金等)等の1種以上とからなる人工骨材料を#
200番以下のダイアモンド埋込み研摩プレート又は研
摩紙で研摩した粗面と、さらに、平均0.3μm粒子径
のダイアモンドやアルミナのスラリーにてバフ研摩し、
表面を鏡面状に研摩したスムーズ面が利用される。
Next, the present invention will be described in more detail.
explain. In the present invention, (1) artificial bones currently used
Focusing on the relationship between the surface roughness of the material and the affinity with osteoblasts,
Cell production from existing artificial bone material by mechanical surface polishing
(2) To control the surface of osteoblasts
Calcium phosphate ceramic sintered body with good growth
And optimization of materials such as
are doing. Sintering and hydration hardening are used to control surface roughness.
Calcium phosphate ceramic material, that is, α
-CaThree(POFour)Two, Β-CaThree(POFour )Two , Ca
8 (HPOFour )Four 5HTwo O, CaTen(OH)Two (PO
Four )6 Material containing at least one or more of
Biopolymers such as glass and lactic acid resin and metals (titanium and
Artificial bone material consisting of at least one of titanium alloys)
No. 200 or less diamond embedded polishing plate or
Rough surface polished with paper, and average 0.3μm particle size
Buffing with diamond or alumina slurry,
A smooth surface with a mirror-polished surface is used.

【0008】通常、細胞生着後、骨芽細胞が増殖しやす
い環境であることが、骨移植後の骨成長に重要である。
一般に、比表面積が大きいほど組織液及び細胞との接触
界面が大きく、細胞生着が起こりやすいと言われる。し
かしながら、実際には、数10〜数100μmのくぼみ
が生じた粗面では、骨芽細胞の生着は起こるが、生着後
の細胞間の接触が妨げられ、増殖が進まず細胞の減少が
観察された。また、ペースト研摩したスムーズな面で
は、数100μmの大きな骨芽細胞が培養液から材料表
面に付着し、さらに、紡錘状と多角形の細胞形態で増殖
することにより表面を覆い、細胞数が増加するのが観察
された。そのため、細胞が表面に生着後、増殖過程で細
胞間のネットワークを生じ、よく密着することで、粗面
よりも剥離しにくくなった。この結果より、培養した骨
芽細胞を生体材料に生着させ増殖する状態で移植するた
めには、細胞のネットワーク化を妨げないスムーズな面
の方が適すると考えられる。
[0008] In general, it is important for bone growth after bone transplantation to be in an environment in which osteoblasts are likely to proliferate after cell engraftment.
Generally, it is said that the larger the specific surface area is, the larger the contact interface between the tissue fluid and the cell is, and the more likely the cell engraftment occurs. However, in practice, osteoblast engraftment occurs on the rough surface having dents of several tens to several hundreds of μm, but contact between cells after engraftment is hindered, proliferation does not proceed, and cells decrease. Was observed. In addition, on a smooth surface that has been paste-polished, large osteoblasts of several hundred μm adhere to the surface of the material from the culture solution and further proliferate in spindle and polygonal cell forms to cover the surface, increasing the number of cells. Was observed. For this reason, after the cells have adhered to the surface, a network between the cells is formed in the growth process and adheres well, so that the cells are less likely to peel off than the rough surface. From these results, it is considered that a smooth surface that does not hinder the networking of cells is more suitable for transplanting the cultured osteoblasts in a state of engraftment and proliferation in a biological material.

【0009】培養した骨芽細胞の基板として、利用する
リン酸カルシウム系セラミックス焼結体及び硬化体等の
人工骨材料として、水酸アパタイト(HA)及びリン酸
三カルシウム(β−TCP)焼結体を比較すると、研摩
によるスムーズ面では、水酸アパタイトの方が細胞生着
後の増殖がより数多く見られた。これは、水酸アパタイ
トは天然骨硬組織の成分と類似し、さらに、溶解しにく
いため、細胞との接触が起こりやすいく、骨芽細胞との
親和性が高いことによると考えられる。また、リン酸三
カルシウムは水酸アパタイトに比べ、骨と反応する破骨
細胞との反応性が良いことが知られるように、表面近傍
では組織液への溶解、再析出が起りうるため、侵食され
た表面では、生着した細胞どうしのネットワーク化が抑
制されやすいと考えられる。
As a substrate for cultured osteoblasts, a hydroxyapatite (HA) and tricalcium phosphate (β-TCP) sintered body are used as artificial bone materials such as a calcium phosphate ceramic sintered body and a hardened body. In comparison, on the smooth surface by polishing, hydroxyapatite showed more proliferation after cell engraftment. This is considered to be because hydroxyapatite is similar to the component of natural bone hard tissue and hardly dissolves, so that it easily contacts cells and has high affinity with osteoblasts. In addition, tricalcium phosphate is known to have better reactivity with bone and osteoclasts than hydroxyapatite. It is thought that networking of engrafted cells is likely to be suppressed on the surface.

【0010】一方、リン酸八カルシウム(OCP)硬化
体表面では、HAやTCP焼結体表面に比べて骨芽細胞
数が大きく減少した。これは、基板表面の観察より、結
晶が盤状結晶粒子として成長し、研摩後も、表面に隙間
が多く見られ平滑な面が出にくいため、細胞生着もしに
くく、骨芽細胞のネットワーク化も起りにくいことが原
因と考えられる。以上の結果より、培養骨芽細胞を付
着、増殖させ、骨移植に用いる場合、HAやTCP焼結
体で、その表面をスムーズに仕上げた方が、凸凹面や傷
が多く残っている粗面にくらべて、骨芽細胞が生着、増
殖しやすいので、培養した骨芽細胞を材料表面へ生着、
増殖させ移植する場合、適することが分かった。
[0010] On the other hand, the number of osteoblasts was significantly reduced on the surface of the octacalcium phosphate (OCP) hardened material as compared with the surface of the HA or TCP sintered body. This is due to the fact that the crystals grow as disc-shaped crystal particles from the observation of the substrate surface, and even after polishing, there are many gaps on the surface and it is difficult for a smooth surface to appear, so it is difficult for cells to engraft, and osteoblast network It is considered that the cause is that it is hard to occur. From the above results, when the cultured osteoblasts are attached and proliferated and used for bone transplantation, it is better to finish the surface smoothly with HA or TCP sintered body, and rough surfaces with many uneven surfaces and scratches remain. Osteoblasts are more likely to engraft and proliferate compared to, so cultured osteoblasts engraft on the material surface,
It was found to be suitable for growing and transplanting.

【0011】本発明では、骨類似組成のリン酸カルシウ
ムセラミックス等の焼結体及び硬化体、さらには、現
在、医療用に利用されている人工骨材料を、破損もしく
は欠損した骨治療用の材料として用いる場合、その表面
の生体親和性を高め、さらに、治癒効果を向上させるた
めに、材料表面を容易な研摩による表面処理により骨生
成にかかわる骨芽細胞が生着、増殖しやすいように制御
する。さらに、免疫拒絶性や吸収による合併症を最小に
するために、人工骨材料に自家骨芽細胞を生着させ、そ
の表面で増殖させた人工骨材料を新しい人工骨移植技術
として応用するものである。
In the present invention, a sintered body and a hardened body such as a calcium phosphate ceramic having a bone-like composition, and an artificial bone material currently used for medical treatment are used as a material for treating a damaged or defective bone. In this case, in order to increase the biocompatibility of the surface and further improve the healing effect, the surface of the material is controlled by a surface treatment by easy polishing so that osteoblasts involved in bone formation can be easily engrafted and proliferated. Furthermore, in order to minimize complications due to immune rejection and resorption, autologous osteoblasts are engrafted on the artificial bone material, and the artificial bone material grown on the surface is applied as a new artificial bone transplantation technology. is there.

【0012】これまで、人工骨として、治療への利用が
期待されているリン酸カルシウム等の焼結体や硬化体に
おいて、材料表面への細胞生着やその増殖状態の有無を
積極的に制御することを考えた表面処理はほとんど行わ
れていない。本発明では、培養した骨芽細胞と研摩処理
を施した種々のリン酸カルシウム焼結体及び硬化体を用
い、骨芽細胞が付着しやすい材料と、表面研摩処理条件
として、例えば、平均0.3μm粒子径のダイアモンド
やアルミナのスラリーにてバフ研摩した水酸アパタイト
焼結体のスムーズ面を利用することにより、骨芽細胞を
表面に広く密着して成長させ、培養した自家骨芽細胞を
付着させ、人工骨材料として利用する。
[0012] Until now, in a sintered body or a hardened body of calcium phosphate or the like, which is expected to be used for treatment as an artificial bone, it is necessary to actively control cell engraftment on the material surface and the presence or absence of the growth state. Almost no surface treatment is performed. In the present invention, using a variety of calcium phosphate sintered bodies and hardened bodies subjected to polishing treatment with cultured osteoblasts, a material to which osteoblasts easily adhere, and surface polishing treatment conditions, for example, an average of 0.3 μm particles By using the smooth surface of a hydroxyapatite sintered body buffed with a slurry of diamond or alumina of diameter, osteoblasts are grown in close contact with the surface, and cultured autologous osteoblasts are attached, Used as artificial bone material.

【0013】本発明では、自家骨芽細胞として、ヒト大
腿骨頚部、上腕骨近位端の海綿骨や緻密骨などが使用さ
れる。これらの骨組織を、無機塩類、アミノ酸、ビタミ
ン類、糖類の栄養素、抗生物質及び血清の含まれる培地
中で、フラスコ内で30℃付近の恒温に保ち静置した条
件で培養し、コラーゲナーゼ及びトリプシン処理で浮遊
させた細胞溶液を調製する。一方、リン酸カルシウム系
セラミックスとしては、水酸アパタイト、リン酸三カル
シウム、リン酸八カルシウム、リン酸水素カルシウムが
例示される。これらは、一軸加圧成形後、静水圧加圧成
形し電気炉で焼結した焼結体、緩衝溶液をリン酸カルシ
ウム粉体と練和することによる水和硬化反応で硬化した
硬化体として使用される。人工骨材料として、このリン
酸カルシウム系セラミックス焼結体に、さらに、ソーダ
ガラス、リン酸ガラス、乳酸樹脂、アクリル系樹脂な
ど、チタン、チタン合金、ステンレス合金などの金属を
使用することも適宜可能であり、人工骨を構成する他の
材料に特に制限されない。
In the present invention, as autologous osteoblasts, human femoral neck, trabecular bone or compact bone at the proximal end of the humerus are used. These bone tissues were cultured in a medium containing inorganic salts, amino acids, vitamins, nutrients of saccharides, antibiotics and serum at a constant temperature of about 30 ° C. in a flask and allowed to stand. Prepare a cell solution suspended by trypsinization. On the other hand, examples of calcium phosphate ceramics include hydroxyapatite, tricalcium phosphate, octacalcium phosphate, and calcium hydrogenphosphate. These are used as a sintered body obtained by uniaxial pressing, then isostatic pressing, sintered in an electric furnace, and a cured body cured by a hydration curing reaction by kneading a buffer solution with calcium phosphate powder. . As an artificial bone material, it is also possible to appropriately use a metal such as titanium, a titanium alloy, and a stainless alloy, such as soda glass, phosphate glass, lactic acid resin, and acrylic resin, in the calcium phosphate-based ceramic sintered body. However, it is not particularly limited to other materials constituting the artificial bone.

【0014】上記人工骨は、例えば、0.3μm粒子径
のダイヤモンドペーストで鏡面状に研磨するが、その方
法及び手段は特に制限されない。次に、これらの材料で
上記細胞溶液に30℃付近の恒温に保ち静置した条件で
1〜4日間含浸し、材料表面に骨芽細胞を生着、増殖、
分化させる。それにより、表面に骨芽細胞が付着した人
工骨材料が得られる。
The above artificial bone is polished to a mirror surface with, for example, a diamond paste having a particle diameter of 0.3 μm, but the method and means are not particularly limited. Next, the above-mentioned cell solution was impregnated with these materials in the above-mentioned cell solution at a constant temperature of about 30 ° C. for 1 to 4 days, and osteoblasts were engrafted and proliferated on the material surface.
Let it differentiate. Thus, an artificial bone material having osteoblasts adhered to the surface is obtained.

【0015】[0015]

【実施例】以下、実施例に基づいて本発明を具体的に説
明するが、本発明は以下の実施例によってなんら限定さ
れるものではない。 実施例1 図1に示す試験方法により、人工股関節全置換術で治療
に必要のないヒト大腿骨転子間部より採取した骨組織
(海綿骨)を5〜7週間フラスコ内で組織培養を行い、
フラスコから剥離、浮遊させた骨芽細胞が2.5x10
4 個/cm2 となるまで培養し、細胞溶液を調製した。
一方、典型的な三種類のリン酸カルシウム、すなわち、
水酸アパタイト(HA):Ca10(OH)2 (PO4
6 、リン酸三カルシウム(β−TCP):Ca3 (PO
42 、及びリン酸八カルシウム(OCP):Ca8
(HPO44 5H2 O:の焼結体及び硬化体のペレッ
トを作製した。すなわち、水酸化アパタイトについて
は、H3 PO4 に硝酸カルシウムを混合し、NH4 OH
でpH9に中和し、沈澱物を合成し、次いで、20MP
a一軸加圧で成形後、CIPにより1150℃、4時
間、焼結し、ペレットを作製した。また、リン酸三カル
シウムについては、市販β−TCP粉末を使用し、20
MPa一軸加圧で成形後、CIPにより1150℃、4
時間、焼結し、ペレットを作製した。さらに、リン酸八
カルシウムについては、市販α−TCP粉末を使用し、
pH5酢酸ナトリウム緩衝溶液で練和し、養成し、次い
で、60℃、3日間、水和硬化し、ペレットを作製し
た。得られた焼結体及び硬化体(直径6mm、厚さ約2
mmの円形ペレット)を200番の研摩紙での粗い研摩
と0.3μm粒子径のダイアモンドスラリーにてバフ研
摩して鏡面状に研摩した。使用したペレット試料のX線
回折パターンを図2に示す。上記細胞溶液に上記試料を
1〜4日間静置で含浸し、細胞の固定処理を行い、骨芽
細胞を表面に付着させた人工骨材料を作製した。本実施
例の試験に用いた試料の合成条件を表1に示す。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. Example 1 According to the test method shown in FIG. 1, bone tissue (cancellous bone) collected from the intertrochanter of a human femur, which is not necessary for treatment in total hip arthroplasty, was cultured in a flask for 5 to 7 weeks. ,
2.5 × 10 5 osteoblasts detached from the flask and suspended
The cells were cultured until they reached 4 cells / cm 2 to prepare a cell solution.
On the other hand, there are three typical calcium phosphates:
Hydroxyapatite (HA): Ca 10 (OH) 2 (PO 4 )
6 , tricalcium phosphate (β-TCP): Ca 3 (PO
4 ) 2 , and octacalcium phosphate (OCP): Ca 8
(HPO 4) 4 5H 2 O : Pellets were produced in the sintered body and the cured body of the. That is, for hydroxyapatite, calcium nitrate is mixed with H 3 PO 4 and NH 4 OH
To pH 9 to synthesize a precipitate, and then 20MP
a After molding by uniaxial pressing, sintering was performed at 1150 ° C. for 4 hours by CIP to produce pellets. For the tricalcium phosphate, a commercially available β-TCP powder was used, and
After molding under uniaxial pressure of 1 MPa, 1150 ° C, 4
After sintering for a time, pellets were prepared. Furthermore, for octacalcium phosphate, a commercially available α-TCP powder was used,
The mixture was kneaded with a pH 5 sodium acetate buffer solution, trained, and then hydrated and hardened at 60 ° C. for 3 days to produce pellets. The obtained sintered body and cured body (diameter 6 mm, thickness about 2
mm pellets) were buff-polished with a # 200 abrasive paper and buffed with a 0.3 μm-diameter diamond slurry to be mirror-polished. FIG. 2 shows the X-ray diffraction pattern of the pellet sample used. The above-mentioned sample was impregnated with the above-mentioned cell solution for 1 to 4 days in a stationary state, and the cells were fixed. Thus, an artificial bone material having osteoblasts adhered to the surface was prepared. Table 1 shows the synthesis conditions of the samples used in the test of this example.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例2 上記実施例1において、試験前の各ペレットの試料及び
骨芽細胞の培養液に4日間含浸した各ペレット試料の表
面を走査電子顕微鏡で観察した。その電子顕微鏡写真を
図3〜図8に示す。図3のスムーズな表面にペースト研
摩した水酸アパタイト焼結体では、4日間の培養で紡錘
形と多角形の骨芽細胞が生着し、さらに、密に表面を被
っていた。一方、図4の粗い表面に粗研磨した水酸化ア
パタイト焼結体では、骨芽細胞の生着が見られたが、細
胞数及びそのネットワーク化も少なかった。他の材料に
おいても材料表面の研摩状態の違いにより同様の傾向が
みられた(図5〜図8)。また、比較したリン酸カルシ
ウム焼結体及び硬化体の中では、水酸化アパタイト焼結
体が骨芽細胞との親和性が最も良かった。
Example 2 In Example 1, the surfaces of the pellet samples before the test and the pellet samples impregnated with the osteoblast culture solution for 4 days were observed with a scanning electron microscope. The electron micrographs are shown in FIGS. In the case of the hydroxyapatite sintered body paste-polished on the smooth surface shown in FIG. 3, spindle-shaped and polygonal osteoblasts were engrafted after culturing for 4 days, and further covered the surface densely. On the other hand, in the hydroxyapatite sintered body roughly polished on the rough surface in FIG. 4, osteoblast engraftment was observed, but the number of cells and its networking were small. A similar tendency was observed in other materials due to the difference in the polishing state of the material surface (FIGS. 5 to 8). Further, among the comparative calcium phosphate sintered bodies and the cured bodies, the hydroxyapatite sintered bodies had the best affinity for osteoblasts.

【0018】実施例3 上記実施例2において、図3〜図8のSEM写真より、
縦横等間隔に作製した100点のポイントカウンティン
グ法により細胞の生着・増殖量を比較した。その結果を
図9に示す。この結果からも、鏡面状に研摩した水酸化
アパタイト表面への骨芽細胞の付着性が良く、リン酸三
カルシウム、リン酸八カルシウムの順で、細胞の生着率
が低下することが観察された。
Example 3 In Example 2 above, the SEM photographs of FIGS.
Cell engraftment / proliferation was compared by 100 point counting methods prepared at equal intervals in the vertical and horizontal directions. FIG. 9 shows the result. From these results, it was also observed that the adherence of osteoblasts to the mirror-polished surface of hydroxyapatite was good, and that the survival rate of cells decreased in the order of tricalcium phosphate and octacalcium phosphate. Was.

【0019】[0019]

【発明の効果】以上詳述した通り、本発明は、表面に骨
芽細胞を付着させた生体適合性の高い人工骨材料であっ
て、骨組織を培養して得られた骨芽細胞の培養液を、表
面研磨処理で鏡面状に研磨したリン酸カルシウム系セラ
ミックスを主成分とする材料に含浸させ、骨芽細胞を当
該材料の表面に付着させたことを特徴とする人工骨材料
に係るものであり、本発明により、1)表面に自家骨細
胞を付着させた人工骨材料が得られる、2)生体適合性
を向上させた人工骨材料を提供することができる、3)
簡便な製造プロセスで人工骨材料を作製することができ
る、4)新しい人工骨移植技術を提供することができ
る、という格別の効果が奏される。
As described above in detail, the present invention provides a highly biocompatible artificial bone material having osteoblasts adhered to the surface thereof, wherein the osteoblast is obtained by culturing bone tissue. The artificial bone material is characterized in that the liquid is impregnated in a material mainly composed of a calcium phosphate ceramic polished to a mirror surface by a surface polishing treatment, and osteoblasts are attached to the surface of the material. According to the present invention, 1) an artificial bone material having autologous bone cells adhered to the surface can be obtained. 2) An artificial bone material having improved biocompatibility can be provided.
The artificial bone material can be produced by a simple manufacturing process, and 4) a new artificial bone grafting technique can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の試験方法をフローチャートにて表した
説明図である。
FIG. 1 is an explanatory diagram showing a test method of an embodiment in a flowchart.

【図2】実施例の試験に用いた試料のX線回折(XR
D)パターンを示した説明図である。
FIG. 2 shows an X-ray diffraction (XR) of a sample used in a test of an example.
D) It is explanatory drawing which showed the pattern.

【図3】実施例の試験にて用いたダイアモンドペースト
研摩にて鏡面状に表面研摩した水酸アパタイト焼結体の
試験前及び4日間骨芽細胞培養液に含浸した後の試験試
料表面の電子顕微鏡写真である。
FIG. 3 shows an electron on the surface of a test sample before and after impregnation with an osteoblast culture solution for a hydroxyapatite sintered body mirror-polished by diamond paste polishing used in the test of the example. It is a microscope picture.

【図4】実施例の試験にて用いた200番の研摩紙で研
摩し作製した粗面の水酸アパタイト焼結体の試験前及び
4日間骨芽細胞培養液に含浸した後の試験試料表面の電
子顕微鏡写真。
FIG. 4 shows the surface of the test sample before and after the impregnation of the rough hydroxyapatite sintered body prepared by polishing with a No. 200 abrasive paper used in the test of the example and in the osteoblast culture solution for 4 days. Electron micrograph.

【図5】実施例の試験にて用いたダイアモンドペースト
研摩にて鏡面状に表面研摩したリン酸三カルシウム焼結
体の試験前及び4日間骨芽細胞培養液に含浸した後の試
験試料表面の電子顕微鏡写真である。
FIG. 5 shows the surface of a test sample before and after impregnation with an osteoblast culture solution for 4 days before the test of the tricalcium phosphate sintered body mirror-polished by the diamond paste polishing used in the test of the example. It is an electron micrograph.

【図6】実施例の試験にて用いた200番の研摩紙で研
摩し作製した粗面のリン酸三カルシウム焼結体の試験前
及び4日間骨芽細胞培養液に含浸した後の試験試料表面
の電子顕微鏡写真である。
FIG. 6 shows a test sample of a roughened tricalcium phosphate sintered body prepared by polishing with a No. 200 abrasive paper used in the test of the example before the test and after impregnation with the osteoblast culture solution for 4 days. It is an electron micrograph of the surface.

【図7】実施例の試験にて用いたダイアモンドペースト
研摩にて鏡面状に表面研摩したリン酸八カルシウム焼結
体の試験前及び4日間骨芽細胞培養液に含浸した後の試
験試料表面の電子顕微鏡写真である。
FIG. 7 shows the surface of a test sample before and after impregnation with an osteoblast culture medium for 4 days before the test of the sintered body of octacalcium phosphate mirror-polished by mirror polishing with diamond paste used in the test of the example. It is an electron micrograph.

【図8】実施例の試験にて用いた200番の研摩紙で研
摩し作製した粗面のリン酸八カルシウム焼結体の試験前
及び4日間骨芽細胞培養液に含浸した後の試験試料表面
の電子顕微鏡写真である。
FIG. 8 is a test sample of a rough octacalcium phosphate sintered body prepared by polishing with a No. 200 polishing paper used in the test of the example before the test and after impregnation with the osteoblast culture solution for 4 days. It is an electron micrograph of the surface.

【図9】実施例の試験にて試料観察に用いた電子顕微鏡
写真からのポイントカウンティング法による各試料表面
への骨芽細胞の生着・増殖量の比較を示す説明図であ
る。
FIG. 9 is an explanatory diagram showing a comparison of the amount of osteoblasts engrafted / proliferated on the surface of each sample by the point counting method from electron micrographs used for sample observation in the tests of Examples.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61F 2/32 A61F 2/32 (72)発明者 鍛冶 光司 宮城県仙台市太白区八木山緑町16−11−24 Fターム(参考) 4C081 AB03 AB05 BA12 CD34 CF131 CG02 CG03 CG05 DA16 DC03 EA02 EA06 4C097 AA04 BB01 DD05 DD06 DD07 DD09 DD10 DD15 FF17 MM02 MM04 SC01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) A61F 2/32 A61F 2/32 (72) Inventor Kaji Koji 16-11 Yagiyama Midoricho, Taishiro-ku, Sendai City, Miyagi Prefecture −24 F term (reference) 4C081 AB03 AB05 BA12 CD34 CF131 CG02 CG03 CG05 DA16 DC03 EA02 EA06 4C097 AA04 BB01 DD05 DD06 DD07 DD09 DD10 DD15 FF17 MM02 MM04 SC01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面に骨芽細胞を付着させた生体適合性
の高い人工骨材料であって、骨組織を培養して得られた
骨芽細胞の培養液を、表面研磨処理で鏡面状に研磨した
リン酸カルシウム系セラミックスを主成分とする材料に
含浸させ、骨芽細胞を当該材料の表面に付着させたこと
を特徴とする人工骨材料。
1. A highly biocompatible artificial bone material having osteoblasts adhered to its surface, wherein a culture solution of osteoblasts obtained by culturing bone tissue is mirror-polished by surface polishing treatment. An artificial bone material characterized by impregnating a polished calcium phosphate-based ceramic-based material as a main component and allowing osteoblasts to adhere to the surface of the material.
【請求項2】 リン酸カルシウム系セラミックスが、α
−Ca3 (PO42 、β−Ca3 (PO42 、Ca
8 (HPO44 5H2 O、Ca10(OH)2 (P
4 6 の1種以上を含有する請求項1記載の人工骨材
料。
2. The method according to claim 1, wherein the calcium phosphate-based ceramic is α
—Ca 3 (PO 4 ) 2 , β-Ca 3 (PO 4 ) 2 , Ca
8 (HPO 4 ) 4 5H 2 O, Ca 10 (OH) 2 (P
O 4) 6 artificial bone material according to claim 1, further comprising one or more.
【請求項3】 リン酸カルシウム系セラミックスを主成
分とする材料が、α−Ca3 (PO4 2 ,β−Ca3
(PO4 2 ,Ca8 (HPO4 4 5H2 O,Ca10
(OH)2 (PO46 の少なくとも一種を含有するリ
ン酸カルシウム系セラミックス焼結体又は硬化体と、ソ
ーダガラス、乳酸樹脂等の生体高分子、金属の1種以上
とからなる請求項1記載の人工骨材料。
3. A calcium phosphate-based ceramic material.
Α-CaThree(POFour)Two, Β-CaThree
(POFour)Two , Ca8(HPOFour)Four5HTwo O, CaTen
(OH)Two (POFour )6 Containing at least one of
A calcium phosphate-based ceramics sintered body or cured body;
At least one of biopolymers such as soda glass and lactic acid resin, and metals
The artificial bone material according to claim 1, comprising:
【請求項4】 人工股関節全置換術時に大腿骨転子部間
より採取した骨組織を5〜7週間組織培養し、得られた
ヒト骨芽細胞を含む培養液に、表面研摩処理したリン酸
カルシウム系セラッミクス材料を、所定時間浸し、骨芽
細胞を表面に付着させた請求項1記載の人工骨材料。
4. A calcium-phosphate-based calcium phosphate solution obtained by culturing bone tissue collected between the trochanters of the femur during total hip arthroplasty for 5 to 7 weeks, and subjecting the resulting culture solution containing human osteoblasts to surface polishing treatment. The artificial bone material according to claim 1, wherein the ceramics material is immersed for a predetermined time to allow osteoblasts to adhere to the surface.
JP2000155116A 2000-05-25 2000-05-25 A new artificial bone grafting method combining biocompatibility control of biomaterial surface by surface polishing treatment and adhesion of cultured osteoblasts Expired - Lifetime JP3629573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155116A JP3629573B2 (en) 2000-05-25 2000-05-25 A new artificial bone grafting method combining biocompatibility control of biomaterial surface by surface polishing treatment and adhesion of cultured osteoblasts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155116A JP3629573B2 (en) 2000-05-25 2000-05-25 A new artificial bone grafting method combining biocompatibility control of biomaterial surface by surface polishing treatment and adhesion of cultured osteoblasts

Publications (2)

Publication Number Publication Date
JP2001333974A true JP2001333974A (en) 2001-12-04
JP3629573B2 JP3629573B2 (en) 2005-03-16

Family

ID=18660109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155116A Expired - Lifetime JP3629573B2 (en) 2000-05-25 2000-05-25 A new artificial bone grafting method combining biocompatibility control of biomaterial surface by surface polishing treatment and adhesion of cultured osteoblasts

Country Status (1)

Country Link
JP (1) JP3629573B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003260123A (en) * 2002-02-21 2003-09-16 Ed Geistlich Soehne Ag Fuer Chemische Industrie Resorbable extracellular matrix for reconstruction of bone
WO2003106613A1 (en) * 2002-06-13 2003-12-24 オリンパス光学工業株式会社 Culturing apparatus
WO2004018615A1 (en) * 2002-08-23 2004-03-04 Asahi Medical Co., Ltd. Fibrin-containing composition
US8858981B2 (en) 1997-10-10 2014-10-14 Ed. Geistlich Soehne Fuer Chemistrie Industrie Bone healing material comprising matrix carrying bone-forming cells
US8911763B2 (en) 1997-10-10 2014-12-16 Ed. Geistlich Soehne Ag Fuer Chemistrie Industrie Collagen carrier of therapeutic genetic material and method
US9034315B2 (en) 1997-10-10 2015-05-19 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Cell-charged multi-layer collagen membrane
WO2018230675A1 (en) * 2017-06-16 2018-12-20 国立大学法人九州大学 Method for manufacturing calcium octavus phosphate molded article

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858981B2 (en) 1997-10-10 2014-10-14 Ed. Geistlich Soehne Fuer Chemistrie Industrie Bone healing material comprising matrix carrying bone-forming cells
US8911763B2 (en) 1997-10-10 2014-12-16 Ed. Geistlich Soehne Ag Fuer Chemistrie Industrie Collagen carrier of therapeutic genetic material and method
US9034315B2 (en) 1997-10-10 2015-05-19 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Cell-charged multi-layer collagen membrane
JP2003260123A (en) * 2002-02-21 2003-09-16 Ed Geistlich Soehne Ag Fuer Chemische Industrie Resorbable extracellular matrix for reconstruction of bone
EP1338291A3 (en) * 2002-02-21 2003-11-19 Ed. Geistlich Söhne Ag Für Chemische Industrie Resorbable extracellular matrix for reconstruction of bone
WO2003106613A1 (en) * 2002-06-13 2003-12-24 オリンパス光学工業株式会社 Culturing apparatus
WO2004018615A1 (en) * 2002-08-23 2004-03-04 Asahi Medical Co., Ltd. Fibrin-containing composition
WO2018230675A1 (en) * 2017-06-16 2018-12-20 国立大学法人九州大学 Method for manufacturing calcium octavus phosphate molded article
CN110770164A (en) * 2017-06-16 2020-02-07 株式会社Gc Method for producing octacalcium phosphate molded body
JPWO2018230675A1 (en) * 2017-06-16 2020-03-26 株式会社ジーシー Method for producing molded article of octacalcium phosphate
US10723625B2 (en) 2017-06-16 2020-07-28 Gc Corporation Method for producing octacalcium phosphate shaped product
JP7098611B2 (en) 2017-06-16 2022-07-11 株式会社ジーシー Method for manufacturing the eighth calcium phosphate molded product

Also Published As

Publication number Publication date
JP3629573B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
Kim et al. Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer
Kim Ceramic bioactivity and related biomimetic strategy
Park et al. Cellular biocompatibility and stimulatory effects of calcium metaphosphate on osteoblastic differentiation of human bone marrow-derived stromal cells
AU714311B2 (en) An artificial stabilized composition of calcium phosphate phases particularly adapted for supporting bone cell activity
Hayakawa et al. Trabecular bone response to surface roughened and calcium phosphate (Ca-P) coated titanium implants
De Bruijn et al. Osteoclastic resorption of calcium phosphates is potentiated in postosteogenic culture conditions
US7416564B2 (en) Porous bioceramics for bone scaffold and method for manufacturing the same
Piedad et al. The effects of Ca2SiO4–Ca3 (PO4) 2 ceramics on adult human mesenchymal stem cell viability, adhesion, proliferation, differentiation and function
Fricain et al. Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite or calcite form
R Naqshbandi et al. Development of porous calcium phosphate bioceramics for bone implant applications: A review
Heymann et al. Ultrastructural evidence in vitro of osteoclastinduced degradation of calcium phosphate ceramic by simultaneous resorption and phagocytosis mechanisms
EP2211920B1 (en) Biocompatible material and uses thereof
JP5578499B2 (en) Calcium phosphate / biodegradable polymer hybrid material, its production method and implant using the hybrid material
Kim et al. Hard‐tissue‐engineered zirconia porous scaffolds with hydroxyapatite sol–gel and slurry coatings
JP3629573B2 (en) A new artificial bone grafting method combining biocompatibility control of biomaterial surface by surface polishing treatment and adhesion of cultured osteoblasts
Islam et al. Excellency of hydroxyapatite composite scaffolds for bone tissue engineering
CN114761048A (en) Collagen matrix or particle blends of bone substitute materials
JPS5812649A (en) Filler for bone deficient part and void part
Yliheikkilä et al. Preliminary Comparison of Mineralizing Multilayer Cultures Formed by Primary Fetal Bovine Mandibular Osteoblasts Grown on Titanium, Hydroxyapatite, and Glass Substrates.
JP2984176B2 (en) Method for culturing bone marrow cells, culture mixture and material for transplantation into hard tissue defect
Ruan et al. Porous hydroxyapatite–tricalcium phosphate bioceramics
CN113276248A (en) Preparation method of porous bone implant with metal coated surface
US6818332B1 (en) Bioactive implants and method for the production thereof
EP3908229A1 (en) Fluorapatite-containing structures statement regarding federally sponsored research
US20230075772A1 (en) Implantable bone scaffolds including at least one integration aid, methods of making and using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041118

R150 Certificate of patent or registration of utility model

Ref document number: 3629573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term