JP3628487B2 - Coating wire thickness measuring machine - Google Patents

Coating wire thickness measuring machine Download PDF

Info

Publication number
JP3628487B2
JP3628487B2 JP17768297A JP17768297A JP3628487B2 JP 3628487 B2 JP3628487 B2 JP 3628487B2 JP 17768297 A JP17768297 A JP 17768297A JP 17768297 A JP17768297 A JP 17768297A JP 3628487 B2 JP3628487 B2 JP 3628487B2
Authority
JP
Japan
Prior art keywords
displacement meter
wire
measuring device
coating
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17768297A
Other languages
Japanese (ja)
Other versions
JPH116709A (en
Inventor
博 原
茂喜 葉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP17768297A priority Critical patent/JP3628487B2/en
Publication of JPH116709A publication Critical patent/JPH116709A/en
Application granted granted Critical
Publication of JP3628487B2 publication Critical patent/JP3628487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は被覆の施されたより線の被覆厚さを測定する装置に関し、特に被覆の表面に凹凸が現れる被覆線の被覆厚さを測定する装置に関するものである。
【0002】
【従来の技術】
被覆線の偏肉量や膜厚を測定する装置として、次のものが知られている。
まず、非接触式の測定機として電磁センサと光学センサとにより偏肉量を測定するものがある。これは、電磁センサで被覆内の芯線の位置を特定し、光学センサで測定対象の外径を計測して、両者の中心のずれから偏肉量を測定するものである。
【0003】
電磁センサには高周波が印加されるトロイドトランスを用いる。被覆線に近接したトロイドトランスに高周波を印加すると、誘導により被覆線の芯線にも電流が生じ、その周囲に磁界を発生させる。複数の電磁センサを被覆線の周囲に配置しておき、各センサが同じ強さの磁場を受けるようにセンサの位置を移動させれば、常に各センサの中心に被覆線の芯線が位置することになる。
【0004】
一方、光学センサには光源とフォトダイオードアレイを用いる。光源とフォトダイオードアレイとの間に位置する被覆線を光源で照らして明暗で表示される投影像とし、投影像をフォトダイオードアレイで走査して外径を測定する。電磁センサの測定により光学センサの中心も芯線の中心に一致するように移動されているので、フォトダイオードアレイにおける被覆線の投影像の位置は被覆の偏肉量に対応する。
【0005】
また、接触式の測定機として電磁気センサを測定対象に接触させながら回転させて偏肉量を測定するものがある。
その他、超音波を測定対象物に照射して測定する技術もある。
【0006】
【発明が解決しようとする課題】
しかし、上記の装置は主に板状または断面が円形のものを測定対象としており、この技術を応用してエポキシストランド(エポキシ樹脂被覆PC鋼より線)の被覆厚を測定しようとした場合、次のような問題により正確に測定することが難しい。
【0007】
▲1▼非接触式の測定機でも測定対象物の表面に大きい凹凸が見られる場合には被覆厚の検出が難しい。一般的なエポキシストランドとして3〜6mmφ程度の素線を6〜9本程度より合わせた芯線にエポキシ樹脂被覆を施したものがあるが、このような製品は被覆表面の凹凸が大きく、高精度の測定ができない。
【0008】
▲2▼接触式の測定機は測定対象に接触させるプローブが10〜20mmφ程度で大きいため、被覆の外から内部の素線を特定して測定することが困難である。特に、エポキシストランドとコンクリートとの定着性を改善するため被覆表面に砂を付着させたものの場合、プローブはエポキシストランドとの接触により摩耗するため測定を行うことができない。
【0009】
▲3▼超音波式の測定機は、主に測定対象物が平面状の場合にしか利用できない。表面に大きな凹凸のある測定対象物では被覆層表面の反射波、金属素線表面の反射波が共に安定せず、超音波の通過経路も一定でないため、被覆厚を測定することが難しい。
【0010】
従って、本発明の主目的は、表面に凹凸が現れる被覆より線の被覆厚さを非接触で測定できる装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明は上記の課題を解消するためになされたもので、その特徴は、複数の素線をより合わせた芯線の上に形成された被覆の厚さを測定する膜厚測定機において、被覆より線の周囲に配置され、芯線までの距離を計測する電磁気変位計と、電磁気変位計と被覆より線との間隔を測定する間隔測定器と、電磁気変位計と間隔測定器との測定結果から被覆の厚さを演算する手段とを有することにある。
【0012】
ここで、測定する被覆線の芯線と同一サイズの線材に対し、電磁気変位計の出力を同変位計から芯線のクラウン部までの実際の距離と対応するように補正する手段を具えることが好適である。クラウン部とは被覆より線の各素線が外周側に突出したところをいう。
【0013】
被覆の厚さを演算する手段は、次のいずれかの計算により被覆より線のクラウン部における被覆厚さを求めることができる。
【0014】
▲1▼電磁気変位計の測定結果から間隔測定器の測定結果を順次減算し、周期的に変化する減算結果の極大点から被覆より線のクラウン部における被覆の厚さを求める。
【0015】
▲2▼周期的に変化する間隔測定器の測定結果の極小点に対応する電磁気変位計の測定結果から間隔測定機の測定結果を減算し、被覆より線のクラウン部の被覆の厚さを求める。
【0016】
また、被覆より線のうち被覆がなく芯線が露出した箇所において、電磁気変位計と間隔測定器との測定結果が同一となるように補正する手段を具えることが望ましい。
【0017】
被覆より線の周囲に配置される電磁気変位計と間隔測定器とのそれぞれは複数個具えることが好適である。これにより、被覆より線における複数箇所の膜厚を測定することができる。
【0018】
さらに、各電磁気変位計および間隔測定器の中心に被覆線の中心が一致するように、各電磁気変位計または間隔測定器の測定結果に基づいてこれら変位計および間隔測定器を移動する手段を具えることが好ましい。
【0019】
そして、被覆より線の外径を測定する外径測定器を具え、外径測定器により得られた被覆より線の外径から芯線の外径を減じた変化量と、被覆線の対向する位置を計測する一対の電磁気変位計および間隔測定器から得られた膜厚値の合計とが一致するように補正する手段を具えることが望ましい。
【0020】
その場合において、補正する手段により得られた補正値を、被覆線の他の対向する位置を計測する一対の電磁気変位計および間隔測定器に適用してもよい。
【0021】
さらに、外径測定器が測定するタイミングと、電磁気変位計および間隔測定器を1組とする各計測手段が測定するタイミングとをずらすことで被覆より線の同一周上を測定できるように補正する手段を具えることが一層好適である。
【0022】
なお、上記の本発明装置の測定対象としては、導電性の素線を用い、被覆の表面に凹凸が見られる被覆より線が効果的である。被覆の材質は電気絶縁体であれば特に限定されない。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
まず、本発明装置の全体構成の概略を図1に示す。本発明装置は走行するエポキシストランド(被覆より線)の被覆厚さを計測するのに渦流変位計11〜14(電磁気変位計)と間隔測定器21〜24とを用いる。この変位計と間隔測定器とは測定対象となるエポキシストランドの外周に複数配置され、エポキシストランドの全周における数箇所で膜厚を測定できる。本例では、1つの変位計と1つの間隔測定器とを1組の計測手段として合計4組(間隔測定機11〜14,流変位計21〜24)設け、エポキシストランドの上下左右における膜厚を測定できるようにした。
【0024】
渦流変位計11〜14,間隔測定器21〜24の配置を図2に示す。渦流変位計11〜14はエポキシストランドSの長手方向に適宜な間隔で配置され、それぞれエポキシストランドSの上下左右に配置されている。また、間隔測定機21A〜24A,21B〜24B は渦流変位計11〜14と対応する位置に設置されている。
【0025】
ここで、渦流変位計11〜14は高周波が印加されるコイルを具えている。コイルに高周波を印加すると、コイルに近接したエポキシストランドSの芯線には渦電流が生じ、それによって磁界を発生する。その結果、コイルのインピーダンスが芯線との距離に応じて変化するため、このことから芯線までの距離を計測できる。
【0026】
一方、間隔測定機21〜24はレーザ光線を照射する発光部21A〜24A とこのレーザ光線を受光する受光部21B〜24B とを具え、両者の間にエポキシストランドSを挾むように配置されている。発光部21A〜24A は渦流変位計11〜14とエポキシストランドSとを結ぶ線に直交する方向にレーザ光線を照射する。このレーザ光線は、渦流変位計11〜14とエポキシストランドSとを結ぶ線の方向に高速で往復走査され、その一部はエポキシストランドSで遮光され、残りが受光部21B〜24Bに到達することから渦流変位計11〜14とエポキシストランドの被覆表面との距離を計測する。従って、渦流変位計11〜14の測定結果から間隔測定機21〜24の測定結果を減算すれば被覆の厚さを求めることができる。
【0027】
また、本発明装置は前記の変位計11〜14と測定機21〜24の他、外径測定器1および線速計2も具えている(図1参照)。外径測定機1は例えば間隔測定機11と間隔測定機12の間に配置され、エポキシストランドの被覆外径を計測するものである。外径測定機1も間隔測定機21〜24と同様に発光部と受光部とを具え、レーザ光が遮光された範囲からエポキシストランドの被覆外径を求める。また、線速計6はエポキシストランドの走行速度を検出する。
【0028】
これら渦流変位計11〜14,間隔測定機21〜24,外径測定機1および線速計2の測定データは全てコンピュータ3に集約される。また、渦流変位計11〜14,間隔測定機,外径測定機1は、これら全体をX方向およびY方向に移動するための微動Xステージ4および微動Yステージ5に支持されている。各ステージ4,5はモータ6,7により駆動され、そのモータ6,7はコンピュータ3により制御される。コンピュータ3は入力装置としてのキーボード8および出力装置としてのCRT9を具え、コンピュータ内部で後述する処理を行ってエポキシストランドの膜厚を求める。
【0029】
まず、膜厚の計測に先立って渦流変位計11〜14の調整を行う。通常、図3に示すように、渦流変位計は平面の測定対象に対して出力と測定対象までの距離が比例関係となるように調整され、この関係は直線25で表される。しかし、エポキシストランドのように表面に凹凸のある測定対象では、渦流変位計の出力と芯線までの距離との関係は曲線26となる。そのため、渦流変位計の出力と芯線までの距離との関係が実際の曲線に対応するように補正してから渦流変位計を用いる。補正するには被覆のない芯線を測定対象とし、渦流変位計から芯線までの距離を実測すると共に渦流変位計の出力から得られた計測結果も記録し、実測結果と計測結果とが一致するような渦流変位計の出力補正式を品種サイズごとにコンピュータ3に記憶する。
【0030】
上記の補正を行った変位計を図2に示したようにセットし、エポキシストランドを走行させて膜厚の計測を行う。このエポキシストランドSは図4に示すような構造をしている。これは、複数の素線15(PC鋼線)をより合わせた芯線にエポキシ樹脂の被覆16を施したもので、被覆の表面に凹凸が形成されている。このエポキシストランドSの被覆厚を測定する場合、各素線15の間に形成されるより溝の部分17と、各素線15が外周側に突出した箇所とでは被覆の厚さが異なるが、ここでは後者をクラウン部18とし、その被覆厚さを測定する。
【0031】
膜厚を測定するには、図5に示すように、渦流変位計12で同変位計12から素線7までの距離(L)を、間隔測定機22A,22B で渦流変位計12からエポキシストランドSの被覆表面までの距離(w)を計測する。そして、膜厚(t)はL−wにより求めることができる。ただし、クラウン部の膜厚を特定するためには、さらに次の手順が必要となる。
【0032】
図2に示すように、エポキシストランドの表面は周期的に変化する波状となっている。そのため、間隔測定器の測定結果30は、図6に示すように、被覆表面の凹凸に対応した周期的な変化を示す。一方、渦流変位計の測定結果31は芯線表面の凹凸にもかかわらずほぼ一定となっている。この原因は明らかではないが、芯線は複数の素線のより合わせで構成されている上、表面が曲面となっているため、正確な計測が難しいからと推定される。従って、渦流変位計の計測結果31から間隔測定器の測定結果30を順次減算すれば、間隔測定器の測定結果30とは逆位相の周期的な波形の減算結果32が得られ、この波形の極大点33がクラウン部の膜厚に相当する。
【0033】
なお、エポキシストランドは走行よって振動を伴う。この振動が大きい場合には、前記のように順次渦流変位計の計測結果から間隔測定器の計測結果を減算して振動に伴う計測結果の変動分を相殺し、減算結果の極大点がクラウン部に相当すると判断する必要がある。しかし、振動が小さい場合は、間隔測定機の測定結果30である周期的な波形の極小点34がクラウン部に相当するため、この極小点34に対応する渦流変位計の測定結果31から極小点34の数値を減算すればクラウン部における膜厚を求めることができる。
【0034】
以上がクラウン部の膜厚を測定するための基本的な手段であるが、一層正確に測定するには、次のような補正を行えばよい。
【0035】
(1) 測定開始時の補正
エポキシストランドの端部には被覆がなく芯線が露出した箇所があり、その部分を用いて測定開始時に補正を行うことでより正確な測定ができる。この補正には渦流変位計で露出した芯線表面までの距離(L )を計測し、同時に間隔測定機でも渦流変位計と露出した芯線表面との間隔(w )を計測する。理論的には両計測値は一致するはずであるが、芯線を構成する素線には製造過程の温度履歴に起因する特性のばらつきが見られるため、両計測値が一致しないことがある。例えば、素線は製造過程で熱処理を受けているが、製造ロットによって熱処理にばらつきがあれば素線の透磁率,導電率などにもばらつきが見られ、結果として渦流変位計の計測結果にもばらつきを生じる。そこで、両計測値の差(L −w )であるαを補正係数とし、L−w−αにより膜厚(t)を求める。
【0036】
(2) 連続計測中の補正
同一ロットの素線を用いても各素線の長手方向には前述した製造工程の温度履歴に起因する特性のばらつきが見られる。そのため、測定中にも補正を行ってより正確な計測結果が得られるようにする。この場合には図1に示した外径測定機を用いてエポキシストランドの被覆外径を求めると共に、エポキシストランドの対応する位置を計測する一対の電磁気変位計および間隔測定器から得られた膜厚値の合計値を求める。
【0037】
図7に示すように、外径測定機により被覆外径(D )を求め、ストランド上部の渦流変位計12で芯線までの距離(L )を、間隔測定機21A,21B でこの変位計12と被覆表面との間隔(w )を求め、同様にストランド下部における変位計11から芯線までの距離(L )と、この変位計11と被覆表面との間隔(w )を求める。各測定値は全てコンピュータに出力される。また、芯線の外径(D )は素線の仕様値から求める。通常、素線の外径は極めて高い精度を有しているため、素線の仕様値から芯線の外径(素線の外径と本数から求められる)を求め、この数値をコンピュータに予め入力して記憶させておけばよい。
【0038】
そして、D −D の演算によりストランドの対向する位置における膜厚の合計値(T )を求める。併せて上部の膜厚t をL −w により求め、下部の膜厚t をL −w により求めて、ストランドの対向する位置における膜厚の合計値(T )を(L −w )+(L −w )で求める。理論上、両合計値T ,T は一致するはずだが、前述の理由によりばらつきが見られるため、
(D −D )−{(L −w )+(L −w )}
の演算結果を補正値βとし、この補正値βにより計測値を補正する。すなわち、ストランド上部における補正後の膜厚t は(L −w +β)で、同下部における補正後の膜厚t は(L −w +β)で求められる。
【0039】
以上の説明ではエポキシストランドの対向する位置として上下を例としたが、左右などでも同様にして補正を行えばよい。
【0040】
これらの補正を行う際、各渦流変位計および間隔測定機に対してエポキシストランドが中心に位置するように各変位計および間隔測定機を移動させことが好ましい。例えば、4つの間隔測定機の計測値が一致するように微動Xステージおよび微動Yステージのモータを制御して変位計や間隔測定値を移動させる。これにより各変位計,間隔測定機からエポキシストランドまでの距離を同一にし、前記の補正を併せて行うことにより一層誤差の少ない計測が期待できる。
【0041】
さらに、前記の「連続計測中の補正」に際し、エポキシストランドの長手方向にずれて配置された各組の計測手段(渦流変位計および間隔測定機:図2B参照)の測定タイミングをずらすことで、エポキシストランドの同一周上における複数箇所の膜厚を計測してより補正精度を向上させることができる。
【0042】
外径測定機1と各計測手段との長手方向の間隔は予め計測し、コンピュータに3入力して記憶しておく。また、エポキシストランド表面の凹凸ピッチP(図4A参照)は予めわかっている。従って、外径測定機と各計測手段との距離がこのピッチPのいくつ分に相当するかを演算し、このピッチ相当分だけ前(後)に計測されたデータを上流(下流)の計測手段の測定結果から抽出すれば外径測定機1が計測した位置と同一周上における膜厚を計測することができる。
【0043】
例えば、外径測定機,エポキシストランドの上部の膜厚を計測する第一の計測手段および同下部の膜厚を計測する第二の計測手段で同時に計測を行い、それらの計測結果を順次コンピュータに出力する。各計測手段の間隔測定機により得られる周期的変位において、ある極小点から隣接する極小点までの間隔がエポキシストランド表面の凹凸ピッチに対応する。そのため、各間隔測定機のある測定時点のデータから前記ピッチ相当分だけ前(後)の計測データを抽出すれば、外径測定機が測定したエポキシストランドの位置と同一周上のデータを得ることができる。
【0044】
そして、前記「連続計測中の補正」に際し、ある対向する位置の測定から得た補正値βを他の対向する位置の測定にも利用することで外径測定機の数を減らすことができる。前述した「連続計測中の補正」を行うには、外径測定機とエポキシストランドの対向する位置における膜厚を計測する一対の計測手段とが必要になる。そのため、エポキシストランドの上下,左右について「連続計測中の補正」を行うには原則として2つの外径測定機を用いることになる。しかし、エポキシストランドの上下(被覆線のある対向する位置)の測定から得られた補正値βを左右(被覆線の他の対向する位置)の測定の際にも利用すれば、外径測定機を1つにすることができ、コスト低減を図ることができる。
【0045】
なお、以上の説明では、4組の計測手段(渦流変位計と間隔測定器)を用いたが、この数は特に限定されない。例えば、本発明装置を測定対象の軸方向に見た場合、6組の計測手段を正六角形の頂点に位置するように配置してもよい。
【0046】
【発明の効果】
以上説明したように、本発明装置によれば、表面に凹凸のある被覆より線の膜厚を精度よく測定することができる。
【図面の簡単な説明】
【図1】本発明装置の概略説明図である。
【図2】渦流変位計と間隔測定機の配置を示し、(A)はエポキシストランドの軸方向から見た配置図、(B)はこの軸と直交する方向から見た配置図である。
【図3】渦流変位計の出力と測定対象物までの距離との関係を示すグラフである。
【図4】エポキシストランドを示し、(A)は外観側面図、(B)は断面図である。
【図5】膜厚の測定原理を示す説明図である。
【図6】渦流変位計,間隔測定機の計測結果と、両者の減算結果を示すグラフである。
【図7】連続計測中に計測結果を補正する手順を示す説明図である。
【符号の説明】
1 外径測定機 2 線速器 3 コンピュータ 4 微動Xステージ
5 微動Yステージ 6,7 モータ 8 キーボード
9 CRT 11〜14 渦流変位計 21〜24 間隔測定機 21A〜24A 発光部
21B〜24B 受光部 15 素線 16 被覆 17 より溝 18 クラウン部
25 直線 26 曲線 30 間隔測定機の測定結果 31 渦流変位計の測定結果
32 減算結果 33 極大点 34 極小点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring the coating thickness of a coated strand, and more particularly to an apparatus for measuring the coating thickness of a coated wire in which irregularities appear on the surface of the coating.
[0002]
[Prior art]
The following are known as devices for measuring the uneven thickness and the film thickness of the coated wire.
First, there is a non-contact type measuring machine that measures the thickness deviation using an electromagnetic sensor and an optical sensor. In this method, the position of the core wire in the coating is specified by an electromagnetic sensor, the outer diameter of the measurement object is measured by an optical sensor, and the amount of uneven thickness is measured from the deviation between the centers of the two.
[0003]
A toroid transformer to which a high frequency is applied is used for the electromagnetic sensor. When a high frequency is applied to the toroid transformer adjacent to the covered wire, a current is also generated in the core wire of the covered wire by induction, and a magnetic field is generated around the current. If multiple electromagnetic sensors are placed around the covered wire and the position of the sensor is moved so that each sensor receives a magnetic field of the same strength, the core wire of the covered wire is always located at the center of each sensor. become.
[0004]
On the other hand, a light source and a photodiode array are used for the optical sensor. The coated wire positioned between the light source and the photodiode array is illuminated with the light source to form a projected image that is displayed bright and dark, and the projected image is scanned with the photodiode array to measure the outer diameter. Since the center of the optical sensor is moved so as to coincide with the center of the core wire by the measurement of the electromagnetic sensor, the position of the projected image of the covered wire in the photodiode array corresponds to the thickness deviation of the covered wire.
[0005]
In addition, there is a contact-type measuring machine that measures the amount of uneven thickness by rotating an electromagnetic sensor in contact with a measurement object.
In addition, there is a technique for measuring by irradiating a measurement target with ultrasonic waves.
[0006]
[Problems to be solved by the invention]
However, the above devices mainly measure the plate shape or circular cross section, and when applying this technique to measure the coating thickness of epoxy strands (epoxy resin coated PC steel strands) It is difficult to measure accurately due to problems such as
[0007]
(1) Even when a non-contact type measuring machine has large irregularities on the surface of the object to be measured, it is difficult to detect the coating thickness. As a general epoxy strand, there is a core wire in which about 6 to 9 strands of about 3 to 6 mmφ are combined with an epoxy resin coating, but such a product has large unevenness on the coating surface, and has high accuracy. Measurement is not possible.
[0008]
{Circle around (2)} Since the contact-type measuring machine has a large probe of about 10 to 20 mmφ in contact with the object to be measured, it is difficult to specify and measure the internal wire from outside the coating. In particular, in the case where sand is adhered to the coating surface in order to improve the fixing property between the epoxy strand and the concrete, the probe cannot be measured because it is worn by contact with the epoxy strand.
[0009]
{Circle around (3)} Ultrasonic measuring machines can be used only when the object to be measured is planar. For a measurement object having a large unevenness on the surface, the reflected wave on the surface of the coating layer and the reflected wave on the surface of the metal element wire are not stable, and the path of ultrasonic waves is not constant, so it is difficult to measure the coating thickness.
[0010]
Therefore, the main object of the present invention is to provide an apparatus capable of measuring the coating thickness of a wire in a non-contact manner from the coating having irregularities on the surface.
[0011]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-described problems. The feature of the present invention is that in a film thickness measuring machine for measuring the thickness of a coating formed on a core wire obtained by combining a plurality of strands, An electromagnetic displacement meter that is arranged around the wire and measures the distance to the core wire, a distance measuring device that measures the distance between the electromagnetic displacement meter and the wire, and a covering from the measurement results of the electromagnetic displacement meter and the distance measuring device And a means for calculating the thickness.
[0012]
Here, it is preferable to provide means for correcting the output of the electromagnetic displacement meter for the wire having the same size as the core wire of the covered wire to be measured so as to correspond to the actual distance from the displacement meter to the crown portion of the core wire. It is. The crown portion refers to a place where each strand of the wire protrudes from the sheath toward the outer peripheral side.
[0013]
The means for calculating the coating thickness can obtain the coating thickness at the crown portion of the wire from the coating by any of the following calculations.
[0014]
(1) The measurement result of the distance measuring device is subtracted sequentially from the measurement result of the electromagnetic displacement meter, and the thickness of the coating at the crown portion of the wire is obtained from the maximum point of the subtraction result that changes periodically.
[0015]
(2) The measurement result of the distance measuring device is subtracted from the measurement result of the electromagnetic displacement meter corresponding to the minimum point of the measurement result of the interval measuring device that changes periodically, and the coating thickness of the crown portion of the wire is obtained from the coating. .
[0016]
In addition, it is desirable to provide a means for correcting the measurement results of the electromagnetic displacement meter and the distance measuring device to be the same at a portion where the core wire is exposed without covering from the coated wire.
[0017]
It is preferable that a plurality of electromagnetic displacement meters and distance measuring devices arranged around the stranded wire are provided. Thereby, the film thickness of several places in a strand can be measured.
[0018]
Further, means for moving the displacement meter and the distance measuring device based on the measurement result of each electromagnetic displacement meter or the distance measuring device so that the center of the covering wire coincides with the center of each electromagnetic displacement meter and the distance measuring device. It is preferable that
[0019]
And an outer diameter measuring device for measuring the outer diameter of the wire from the sheath, the amount of change obtained by subtracting the outer diameter of the core wire from the outer diameter of the wire from the sheath obtained by the outer diameter measuring device, and the position where the coated wire is opposed to It is desirable to provide means for correcting so that the sum of the film thickness values obtained from the pair of electromagnetic displacement meters and the distance measuring device for measuring the distance coincides.
[0020]
In that case, you may apply the correction value obtained by the means to correct | amend to a pair of electromagnetic displacement meter and space | interval measuring device which measure the other opposing position of a covered wire | wire.
[0021]
Further, by correcting the timing of measurement by the outer diameter measuring instrument and the timing of measurement by each measuring means including one set of electromagnetic displacement meter and interval measuring instrument, correction is performed so that the same circumference of the wire can be measured. More preferably, it comprises means.
[0022]
In addition, as a measuring object of said apparatus of this invention, an electroconductive strand is used and a wire is more effective than the coating | cover by which an unevenness | corrugation is seen on the surface of coating | cover. The material of the coating is not particularly limited as long as it is an electrical insulator.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
First, FIG. 1 shows an outline of the overall configuration of the device of the present invention. The apparatus of the present invention uses eddy current displacement meters 11-14 (electromagnetic displacement meters) and distance measuring devices 21-24 to measure the coating thickness of the traveling epoxy strands (coating strands). A plurality of the displacement meters and the distance measuring devices are arranged on the outer periphery of the epoxy strand to be measured, and the film thickness can be measured at several places on the entire circumference of the epoxy strand. In this example, a total of four sets (interval measuring machines 11 to 14, flow displacement meters 21 to 24) are provided with one displacement meter and one interval measuring device as one set of measuring means, and the film thickness on the upper, lower, left and right sides of the epoxy strands. Can be measured.
[0024]
The arrangement of the eddy current displacement meters 11 to 14 and the distance measuring devices 21 to 24 is shown in FIG. The eddy current displacement meters 11 to 14 are arranged at appropriate intervals in the longitudinal direction of the epoxy strand S, and are arranged on the top, bottom, left and right of the epoxy strand S, respectively. Further, the distance measuring machines 21A to 24A and 21B to 24B are installed at positions corresponding to the eddy current displacement meters 11 to 14.
[0025]
Here, the eddy current displacement meters 11 to 14 include a coil to which a high frequency is applied. When a high frequency is applied to the coil, an eddy current is generated in the core wire of the epoxy strand S adjacent to the coil, thereby generating a magnetic field. As a result, since the impedance of the coil changes according to the distance from the core wire, the distance to the core wire can be measured from this.
[0026]
On the other hand, the distance measuring devices 21 to 24 include light emitting units 21A to 24A that irradiate a laser beam and light receiving units 21B to 24B that receive the laser beam, and are arranged so as to sandwich the epoxy strand S therebetween. The light emitting units 21A to 24A irradiate the laser beam in a direction orthogonal to a line connecting the eddy current displacement meters 11 to 14 and the epoxy strand S. This laser beam is scanned back and forth at high speed in the direction of the line connecting the eddy current displacement meters 11 to 14 and the epoxy strand S, a part of which is shielded by the epoxy strand S, and the rest reaches the light receiving portions 21B to 24B. From this, the distance between the eddy current displacement meters 11 to 14 and the coating surface of the epoxy strand is measured. Therefore, the thickness of the coating can be obtained by subtracting the measurement results of the distance measuring devices 21 to 24 from the measurement results of the eddy current displacement meters 11 to 14.
[0027]
In addition to the displacement meters 11 to 14 and the measuring machines 21 to 24, the device of the present invention also includes an outer diameter measuring device 1 and a linear speed meter 2 (see FIG. 1). The outer diameter measuring device 1 is disposed between the distance measuring device 11 and the distance measuring device 12, for example, and measures the outer diameter of the coated epoxy strand. The outer diameter measuring device 1 also includes a light emitting portion and a light receiving portion in the same manner as the distance measuring devices 21 to 24, and obtains the outer diameter of the epoxy strand from the range where the laser light is shielded. The linear speed meter 6 detects the traveling speed of the epoxy strand.
[0028]
The measurement data of these eddy current displacement meters 11 to 14, the distance measuring devices 21 to 24, the outer diameter measuring device 1 and the linear velocity meter 2 are all collected in the computer 3. Further, the eddy current displacement meters 11 to 14, the distance measuring device, and the outer diameter measuring device 1 are supported by a fine movement X stage 4 and a fine movement Y stage 5 for moving the whole in the X direction and the Y direction. The stages 4 and 5 are driven by motors 6 and 7, and the motors 6 and 7 are controlled by the computer 3. The computer 3 includes a keyboard 8 as an input device and a CRT 9 as an output device, and performs a process described later in the computer to determine the thickness of the epoxy strand.
[0029]
First, the eddy current displacement meters 11 to 14 are adjusted prior to the measurement of the film thickness. Normally, as shown in FIG. 3, the eddy current displacement meter is adjusted so that the output and the distance to the measurement object have a proportional relationship with respect to the planar measurement object, and this relationship is represented by a straight line 25. However, the relationship between the output of the eddy current displacement meter and the distance to the core line is a curve 26 in a measurement object having an uneven surface such as an epoxy strand. Therefore, the eddy current displacement meter is used after correcting the relationship between the output of the eddy current displacement meter and the distance to the core line so as to correspond to the actual curve. To correct, measure the distance from the eddy current displacement meter to the core wire and record the measurement result obtained from the output of the eddy current displacement meter so that the measurement result matches the measurement result. The eddy current displacement meter output correction formula is stored in the computer 3 for each product size.
[0030]
The displacement meter after the above correction is set as shown in FIG. 2, and the epoxy strand is run to measure the film thickness. This epoxy strand S has a structure as shown in FIG. This is a core wire in which a plurality of strands 15 (PC steel wires) are combined, and an epoxy resin coating 16 is applied, and irregularities are formed on the surface of the coating. When measuring the coating thickness of this epoxy strand S, the thickness of the coating is different between the groove portion 17 formed between the strands 15 and the location where each strand 15 protrudes to the outer peripheral side, Here, the latter is the crown portion 18 and the coating thickness is measured.
[0031]
To measure the film thickness, as shown in FIG. 5, the distance (L) from the displacement meter 12 to the strand 7 is measured with the eddy current displacement meter 12, and the distance between the vortex displacement meter 12 and the epoxy strand is measured with the distance measuring devices 22A and 22B. The distance (w) to the coating surface of S is measured. The film thickness (t) can be obtained by Lw. However, in order to specify the film thickness of the crown portion, the following procedure is further required.
[0032]
As shown in FIG. 2, the surface of the epoxy strand has a wavy shape that changes periodically. Therefore, the measurement result 30 of the distance measuring device shows a periodic change corresponding to the unevenness of the coating surface, as shown in FIG. On the other hand, the measurement result 31 of the eddy current displacement meter is almost constant regardless of the irregularities on the surface of the core wire. The cause of this is not clear, but it is presumed that accurate measurement is difficult because the core wire is composed of a plurality of strands and the surface is curved. Therefore, if the measurement result 30 of the interval measuring device is subtracted sequentially from the measurement result 31 of the eddy current displacement meter, a periodic waveform subtraction result 32 having an opposite phase to the measurement result 30 of the interval measuring device is obtained. The maximum point 33 corresponds to the film thickness of the crown portion.
[0033]
Note that the epoxy strands are vibrated by running. When this vibration is large, the measurement result of the distance measuring device is subtracted sequentially from the measurement result of the eddy current displacement meter as described above to cancel the fluctuation of the measurement result due to the vibration, and the maximum point of the subtraction result is the crown portion. It is necessary to judge that it corresponds to. However, when the vibration is small, the periodic waveform minimum point 34, which is the measurement result 30 of the interval measuring machine, corresponds to the crown portion. Therefore, the minimum point is determined from the measurement result 31 of the eddy current displacement meter corresponding to the minimum point 34. If the value of 34 is subtracted, the film thickness at the crown can be obtained.
[0034]
The above is the basic means for measuring the film thickness of the crown portion, but in order to measure more accurately, the following correction may be performed.
[0035]
(1) Correction at the start of measurement There is a portion where the core wire is exposed without covering at the end of the epoxy strand, and more accurate measurement can be performed by performing correction at the start of measurement using that portion. For this correction, the distance (L 0 ) to the exposed core wire surface is measured with an eddy current displacement meter, and at the same time, the distance (w 0 ) between the eddy current displacement meter and the exposed core wire surface is measured with a distance measuring machine. Theoretically, the two measured values should match, but the measured values may not match because there is a variation in characteristics due to the temperature history of the manufacturing process of the strands constituting the core wire. For example, the strands are heat-treated during the manufacturing process, but if there are variations in the heat treatment depending on the production lot, the permeability and conductivity of the strands will also vary. As a result, the measurement results of the eddy current displacement meter Variation occurs. Therefore, α, which is the difference between the two measurement values (L 0 −w 0 ), is used as a correction coefficient, and the film thickness (t) is obtained from Lw−α.
[0036]
(2) Correction during continuous measurement Even when strands of the same lot are used, variation in characteristics due to the temperature history of the manufacturing process described above is observed in the longitudinal direction of each strand. Therefore, correction is performed during measurement so that a more accurate measurement result can be obtained. In this case, the outer diameter measuring device shown in FIG. 1 is used to determine the outer diameter of the coated epoxy strand, and the film thickness obtained from a pair of electromagnetic displacement meters and a distance measuring device for measuring the corresponding position of the epoxy strand. Find the total value.
[0037]
As shown in FIG. 7, the coating outer diameter (D 0 ) is obtained by an outer diameter measuring machine, the distance (L 1 ) to the core wire is measured by the eddy current displacement meter 12 at the upper part of the strand, and the distance measuring devices 21A, 21B obtains the distance between the 12 and the coating surface (w 1), likewise determined distance from the displacement meter 11 in the strand lower until the core wire and (L 2), the distance (w 2) of the displacement meter 11 and the coating surface. All measured values are output to the computer. Further, the outer diameter (D 1 ) of the core wire is obtained from the specification value of the strand. Usually, the outer diameter of the strand has extremely high accuracy, so the outer diameter of the core wire (obtained from the outer diameter and the number of strands) is obtained from the specification value of the strand, and this value is input to the computer in advance. And memorize it.
[0038]
The obtained D 0 -D 1 of the total value of the film thickness at a position opposed to the strand by calculation (T 1). At the same time, the upper film thickness t 1 is obtained from L 1 -w 1 , and the lower film thickness t 2 is obtained from L 2 -w 2 , and the total value (T 2 ) of the film thicknesses at the opposing positions of the strands is ( L 1 −w 1 ) + (L 2 −w 2 ) Theoretically, both total values T 1 and T 2 should match, but due to the above reasons, variation is seen.
(D 0 -D 1) - { (L 1 -w 1) + (L 2 -w 2)}
The calculation result is used as a correction value β, and the measurement value is corrected by the correction value β. That is, the corrected film thickness t 1 ′ at the upper portion of the strand is (L 1 −w 1 + β), and the corrected film thickness t 2 ′ at the lower portion is determined by (L 2 −w 2 + β).
[0039]
In the above description, the upper and lower sides are taken as examples of the positions where the epoxy strands face each other.
[0040]
When performing these corrections, it is preferable to move each displacement meter and the distance measuring device so that the epoxy strand is centered with respect to each eddy current displacement meter and the distance measuring device. For example, the displacement meter and the interval measurement value are moved by controlling the motors of the fine movement X stage and the fine movement Y stage so that the measurement values of the four interval measurement machines match. Thereby, the distance from each displacement meter and interval measuring machine to the epoxy strand is made the same, and measurement with less error can be expected by performing the above correction together.
[0041]
Furthermore, at the time of the “correction during the continuous measurement”, by shifting the measurement timing of each set of measurement means (vortex displacement meter and interval measuring machine: see FIG. 2B) arranged shifted in the longitudinal direction of the epoxy strand, Correction accuracy can be further improved by measuring the film thickness at a plurality of locations on the same circumference of the epoxy strand.
[0042]
The distance in the longitudinal direction between the outer diameter measuring machine 1 and each measuring means is measured in advance, and three inputs are stored in the computer. The uneven pitch P (see FIG. 4A) on the epoxy strand surface is known in advance. Accordingly, the distance between the outer diameter measuring machine and each measuring means is calculated to correspond to the pitch P, and the data measured before (after) by this pitch equivalent is measured upstream (downstream). If it is extracted from the measurement results, the film thickness on the same circumference as the position measured by the outer diameter measuring device 1 can be measured.
[0043]
For example, the outer diameter measuring machine, the first measuring means for measuring the film thickness of the upper part of the epoxy strand, and the second measuring means for measuring the film thickness of the lower part are simultaneously measured, and the measurement results are sequentially transferred to a computer. Output. In the periodic displacement obtained by the interval measuring machine of each measuring means, the interval from a certain minimum point to the adjacent minimum point corresponds to the uneven pitch on the epoxy strand surface. Therefore, if the measurement data before (after) is extracted from the data at a certain measurement time of each interval measuring machine by the amount corresponding to the pitch, data on the same circumference as the position of the epoxy strand measured by the outer diameter measuring machine can be obtained. Can do.
[0044]
In the “correction during continuous measurement”, the number of outer diameter measuring machines can be reduced by using the correction value β obtained from the measurement at a certain opposing position for the measurement at another opposing position. In order to perform the above-described “correction during continuous measurement”, an outer diameter measuring machine and a pair of measuring means for measuring the film thickness at the position where the epoxy strands face each other are required. Therefore, in principle, two outer diameter measuring machines are used to perform “correction during continuous measurement” on the upper, lower, left and right sides of the epoxy strand. However, if the correction value β obtained from the measurement of the top and bottom of the epoxy strand (opposite position with the coated wire) is also used for the measurement of the left and right (other opposed positions of the coated wire), the outer diameter measuring machine Can be reduced to one, and the cost can be reduced.
[0045]
In the above description, four sets of measuring means (eddy current displacement meter and interval measuring device) are used, but this number is not particularly limited. For example, when the device of the present invention is viewed in the axial direction of the measurement object, six sets of measuring means may be arranged so as to be positioned at the apex of a regular hexagon.
[0046]
【The invention's effect】
As described above, according to the apparatus of the present invention, it is possible to accurately measure the film thickness of a wire from a coating having an uneven surface.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of a device of the present invention.
FIGS. 2A and 2B show an arrangement of an eddy current displacement meter and a distance measuring device, in which FIG. 2A is an arrangement view seen from the axial direction of an epoxy strand, and FIG. 2B is an arrangement view seen from a direction orthogonal to the axis.
FIG. 3 is a graph showing the relationship between the output of an eddy current displacement meter and the distance to a measurement object.
FIG. 4 shows an epoxy strand, (A) is an external side view, and (B) is a cross-sectional view.
FIG. 5 is an explanatory diagram showing the measurement principle of film thickness.
FIG. 6 is a graph showing a measurement result of an eddy current displacement meter and an interval measuring device and a subtraction result of both.
FIG. 7 is an explanatory diagram showing a procedure for correcting a measurement result during continuous measurement.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outer diameter measuring machine 2 Line speed device 3 Computer 4 Fine movement X stage 5 Fine movement Y stage 6,7 Motor 8 Keyboard 9 CRT 11-14 Eddy current displacement meter 21-24 Spacing measuring machine 21A-24A Light emission part 21B-24B Light-receiving part 15 Strand 16 Cover 17 Groove 18 Crown 25 Straight line 26 Curve 30 Measurement result of distance measuring device 31 Measurement result of eddy current displacement meter 32 Subtraction result 33 Local maximum point 34 Local minimum point

Claims (6)

複数の素線をより合わせた芯線の上に形成された被覆の厚さを測定する膜厚測定機において、
被覆より線の周囲に配置され、当該被覆より線と離して配置される電磁気変位計と、
電磁気変位計と被覆より線との間隔を測定する間隔測定器と、
電磁気変位計と間隔測定器との測定結果から被覆の厚さを演算する手段とを有し、
電磁気変位計は、当該電磁気変位計から芯線までの距離を計測し、
被覆の厚さを演算する手段は、電磁気変位計の測定結果から間隔測定器の測定結果を順次減算し、周期的に変化する減算結果の極大点から被覆より線のクラウン部における被覆の厚さを求めるようにしていることを特徴とする被覆より線の膜厚測定機。
In a film thickness measuring machine that measures the thickness of a coating formed on a core wire obtained by combining a plurality of strands,
An electromagnetic displacement meter disposed around the strand of the sheath and disposed away from the strand of the sheath ;
A distance measuring device for measuring the distance between the electromagnetic displacement meter and the coated strand;
Means for calculating the thickness of the coating from the measurement results of the electromagnetic displacement meter and the distance measuring device,
The electromagnetic displacement meter measures the distance from the electromagnetic displacement meter to the core wire,
The means for calculating the thickness of the coating sequentially subtracts the measurement result of the distance measuring device from the measurement result of the electromagnetic displacement meter, and the thickness of the coating at the crown portion of the wire from the maximum point of the subtraction result that changes periodically. An apparatus for measuring the thickness of a twisted strand wire, characterized in that:
測定する被覆線の芯線と同一サイズの被覆の無い線材に対し、電磁気変位計の出力により計測された電磁気変位計から線材までの計測結果と、電磁気変位計から線材までの実際の距離とを一致させる電磁気変位計の出力補正式に基づいて電磁気変位計の出力を補正する手段を具えることを特徴とする請求項1記載の被覆より線の膜厚測定機。To coating without wire of the core wire and the same size of the covered wire to be measured, consistent with the measurement results from the electromagnetic displacement meter measured by the output of the electromagnetic displacement meter to the wire, the actual distance from the electromagnetic displacement gauge to wire 2. The coated strand film thickness measuring device according to claim 1 , further comprising means for correcting the output of the electromagnetic displacement meter based on an output correction formula of the electromagnetic displacement meter . 被覆より線のうち被覆がなく芯線が露出した箇所において、電磁気変位計と間隔測定器との測定結果が同一となるように、電磁気変位計の計測結果を補正して、膜厚を補正する手段を具えることを特徴とする請求項1記載の被覆より線の膜厚測定機。Means for correcting the film thickness by correcting the measurement result of the electromagnetic displacement meter so that the measurement result of the electromagnetic displacement meter and the distance measuring device is the same at the portion where the core wire is exposed without the coating of the twisted wire. A coating thickness measuring device for a twisted strand wire according to claim 1. 被覆より線の周囲に配置される電磁気変位計と間隔測定器とのそれぞれを複数個具えることを特徴とする請求項1記載の被覆より線の膜厚測定機。2. The coating strand thickness measuring device according to claim 1, comprising a plurality of electromagnetic displacement meters and interval measuring devices arranged around the coating strand. 各電磁気変位計および間隔測定器の中心に被覆線の中心が一致するように、各電磁気変位計または間隔測定器の測定結果に基づいてこれら変位計および間隔測定器を移動する手段を具えることを特徴とする請求項4記載の被覆より線の膜厚測定機。Means are provided for moving the displacement meter and the distance measuring device based on the measurement result of each electromagnetic displacement meter or the distance measuring device so that the center of the covering wire coincides with the center of each electromagnetic displacement meter and the distance measuring device. A coating thickness measuring device for a twisted wire according to claim 4 . 対応する電磁気変位計および間隔測定器を一組とし、複数組の電磁気変位計および間隔測定器を、組ごとに被覆より線の長手方向に適宜な間隔で配置し、
各組の計測手段が測定するタイミングを組ごとにずらすことで被覆より線の同一周上を測定できるようにしていることを特徴とする請求項4記載の被覆より線の膜厚測定機。
Corresponding electromagnetic displacement meter and interval measuring device are set as one set, and a plurality of sets of electromagnetic displacement meters and interval measuring devices are arranged at appropriate intervals in the longitudinal direction of the wire strands for each set,
5. The coated wire thickness measuring machine according to claim 4, wherein the same circumference of the coated wire can be measured by shifting the measurement timing of each set of measuring means for each set .
JP17768297A 1997-06-17 1997-06-17 Coating wire thickness measuring machine Expired - Lifetime JP3628487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17768297A JP3628487B2 (en) 1997-06-17 1997-06-17 Coating wire thickness measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17768297A JP3628487B2 (en) 1997-06-17 1997-06-17 Coating wire thickness measuring machine

Publications (2)

Publication Number Publication Date
JPH116709A JPH116709A (en) 1999-01-12
JP3628487B2 true JP3628487B2 (en) 2005-03-09

Family

ID=16035271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17768297A Expired - Lifetime JP3628487B2 (en) 1997-06-17 1997-06-17 Coating wire thickness measuring machine

Country Status (1)

Country Link
JP (1) JP3628487B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825084B2 (en) * 2006-08-28 2011-11-30 財団法人電力中央研究所 Jig, film thickness measuring apparatus and method
JP4907632B2 (en) * 2008-10-27 2012-04-04 三菱電機株式会社 Coated metal wire coating thickness measuring device
US10591515B2 (en) * 2016-11-11 2020-03-17 Fluke Corporation Non-contact current measurement system

Also Published As

Publication number Publication date
JPH116709A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
JP2018147803A (en) Production method of cable, inspection method of cable and cable appearance inspection device
JP4803323B2 (en) Wire rope pitch measuring method, wire rope pitch measuring device, and wire rope manufacturing method
CN1094191C (en) Method and apparatus for non-contact measuring thickness of non-metal coating on surface of metal matrix
KR20120113653A (en) Film thickness measuring apparatus using interference and method of measuring film thickness using interference
JP3628487B2 (en) Coating wire thickness measuring machine
JP4233609B2 (en) Method for measuring the thickness of conductive material film
CN109030622A (en) A kind of highly sensitive flexible eddy current array sensor and its monitoring method
JP3214190B2 (en) Non-contact type film thickness measuring instrument
ATE204648T1 (en) METHOD AND DEVICE FOR DETERMINING A PERFORMANCE
JP3126288B2 (en) Method of measuring rail rail shape
JP5981967B2 (en) Method and device for measuring the centrality of a conductor in an insulating jacket
JP3534065B2 (en) Three-dimensional shape measuring device, three-dimensional information measuring method and thin film evaluation measuring method
JPWO2014115720A1 (en) Defect position correction method
JP2002116003A (en) Eccentricity measuring device for coated electrical wire
RU2263878C2 (en) Method of measuring thickness of hollow blade wall
JP2003262514A (en) Management system for round steel product
JPS6196401A (en) Method for measuring thickness of liner on the basis of two frequency
CN116242239B (en) Method and device for detecting thickness of nodular cast iron pipe
JPH11351832A (en) Entrailing air quantity measuring means for coil member and device therefor
JPH06307845A (en) Roll alignment measuring method
JPH063137A (en) Measuring method of core body burying position in belt
JP3690290B2 (en) Coil shape measurement method
JPS6234003A (en) Method for measuring refractory lining profile of ceramic furnace container
JPH0560522B2 (en)
JPH01250712A (en) Method for measuring twist angle of cable strand

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term