JP3627458B2 - Drive output monitoring circuit - Google Patents

Drive output monitoring circuit Download PDF

Info

Publication number
JP3627458B2
JP3627458B2 JP20505897A JP20505897A JP3627458B2 JP 3627458 B2 JP3627458 B2 JP 3627458B2 JP 20505897 A JP20505897 A JP 20505897A JP 20505897 A JP20505897 A JP 20505897A JP 3627458 B2 JP3627458 B2 JP 3627458B2
Authority
JP
Japan
Prior art keywords
load
loads
measurement
current
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20505897A
Other languages
Japanese (ja)
Other versions
JPH1153037A (en
Inventor
哲郎 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP20505897A priority Critical patent/JP3627458B2/en
Publication of JPH1153037A publication Critical patent/JPH1153037A/en
Application granted granted Critical
Publication of JP3627458B2 publication Critical patent/JP3627458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は駆動出力監視回路に係り、特に、動作開始時に負荷の状態を検出し、駆動出力の監視を行う駆動出力監視回路に関する。
【0002】
【従来の技術】
図4に従来の駆動出力監視回路の一例のブロック構成図を示す。
従来の駆動出力監視回路1は、駆動電源2と負荷3−1〜3−nとの間に接続されて、動作開始時に負荷3−1〜3−nの抵抗を測定することにより負荷3−1〜3−nのそれぞれの状態を検出する。
【0003】
駆動出力監視回路1は、負荷3−1〜3−nから1つを選択する負荷選択回路11、負荷3−1〜3−nの抵抗を測定する抵抗測定装置12、負荷3−1〜3−nへの接続を駆動電源2又は抵抗測定装置12に切り替えるスイッチ13、動作開始時に負荷選択回路11及びスイッチ13を制御して、抵抗測定装置12で測定された各負荷3−1〜3−nの測定抵抗に応じて各負荷3−1〜3−nに状態を判定する制御判断部14、制御判断部14での判断結果を表示する表示部15から構成される。
【0004】
負荷選択回路11は、NPNトランジスタQ1〜Qnから構成される。NPNトランジスタQ1〜Qnは、コレクタが負荷3−1〜3−nの接地端子に接続され、エミッタが接地され、ベースが制御判断部14に接続される。トランジスタQ1 〜Qnは制御判断部14からの制御信号に応じてスイッチングされ、抵抗測定装置12に接続される負荷を負荷3−1〜3−nから選択する。
【0005】
負荷3−1〜3−nの電源供給端子は、共通電源ラインL0 に接続される。共通電源ラインL0 は、切換手段13の可動接点aに接続される。
切換手段13の固定接点bは、駆動電源2に接続され、固定接点cは、抵抗測定装置12に接続される。切換手段13の可動接点aは、制御判断部14からの制御信号に応じて切り換えられる。
【0006】
抵抗測定装置12は、負荷3−1〜3−nのそれぞれに微小電流を供給し、負荷3−1〜3−nそれぞれの抵抗値を検出する。抵抗測定装置12は、検出した負荷3−1〜3−nの抵抗値をディジタルデータに変換して制御判断部14に供給する。
制御判断部14は、抵抗測定装置12から供給されるディジタルデータに応じて負荷3−1〜3−nそれぞれの短絡、切断、抵抗値異常などの状態を検出して、表示部15に表示する。
【0007】
図5に従来の駆動出力監視装置の一例の制御判断部のフローチャートを示す。制御判断部14は、動作開始時に、まず、切換手段13の可動接点aを固定接点cに接続し、共通電源ラインL0 に抵抗測定装置12を接続する(ステップS3−1,S3−2)。
次に、制御判断部14は、負荷3−1〜3−nを選択する負荷選択番号Nを「1」にリセットする(ステップS3−3)。次に、制御判断部14は、負荷選択回路11のステップS3−3で選択された選択番号Nに対応するトランジスタQN をオンし、他のトランジスタをオフする(ステップS3−4)。ステップ3−4により、負荷3−Nに抵抗測定装置12から測定用微小電流Im が供給される。
【0008】
制御判断部14は、このとき、抵抗測定装置12で検出された測定抵抗値Rs を入力し、内部に予め設定された上限値R1及び下限値R2と比較する(ステップS3−6,S3−7)。
ステップS3−6で、測定抵抗値Rs が下限抵抗値R1 より小さいと判断された場合には、負荷3−Nは短絡していると判断する(ステップS3−8)。
【0009】
また、ステップS3−7で、測定抵抗値Rs が上限抵抗値R2より大きいと判断された場合には、負荷3−Nは切断していると判断する(ステップS3−9)。
さらに、ステップS3−6,S3−7で、測定抵抗値Rs が下限抵抗値R1と上限抵抗値R2との間にあると判断された場合には、次に、測定抵抗値Rs が所定の範囲(R0 −ΔR3 )<Rs <(R0 +ΔR3 )内にあるか否かが判断される(ステップS3−10)。
【0010】
ステップS3−10で、測定抵抗値Rs が所定の範囲(R0 −ΔR3 )<Rs <(R0 +ΔR3 )内にあれば、負荷Nは正常であると判断され(ステップS3−11)、測定抵抗値Rs が所定の範囲(R0 −ΔR3 )<Rs <(R0 +ΔR3 )内になければ、負荷Nは抵抗値に異常があると判断される(ステップS3−12)。
【0011】
次に、上記のステップS3−6〜S3−12での判定結果を表示部15に表示する(ステップS3−13)。このとき、表示部15には、負荷3−1〜3−nを識別するための負荷番号N及び負荷番号Nに対応する判定結果が表示され、どの負荷にどんな異常があるかが容易にわかるような表示が行われる。
上記ステップS3−4〜S3−13が負荷の数n回繰り返し行われ、負荷3−1〜3−Nそれぞれの状態が検出される(ステップS3−14,S3−15)。
【0012】
以上により、動作開始時の検査処理が終了する。
負荷3−1〜3−nの検査後、全ての負荷3−1〜3−nが正常であれば、切換手段13の可動接点aを固定接点bに接続し、負荷3−1〜3−nに駆動電源2を接続する(ステップS3−16,S3−17)。
なお、検査後、切換手段13の可動接点aを固定接点bに接続され、負荷3−1〜3−nに駆動電源2を接続されると、抵抗測定装置12は負荷3−1〜3−nから切断され、負荷3−1〜3−nの抵抗は測定できなくなる。
【0013】
【発明が解決しようとする課題】
しかるに、従来の駆動出力監視回路1では、駆動電源2と負荷3−1〜3−nとが接続されている状態では、抵抗測定装置12が負荷3−1〜3−nから切断されるため、動作後は負荷3−1〜3−nの監視が行えず、動作後の異常は検出できない等の問題点があった。
【0014】
本発明は上記の点に鑑みてなされたもので、動作開始時には負荷毎に、また、動作後でも常時負荷の監視が可能となる駆動出力監視回路を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明の請求項1は、駆動電源により駆動される負荷の状態を監視する駆動出力監視回路において、
前記駆動電源と前記負荷との間に接続され、前記負荷に供給される電流を測定する電流測定手段と、
前記負荷に前記電流測定手段を介して測定電流を供給する測定電源と、
前記負荷に前記電流測定手段を介して供給する電源を前記駆動電源と前記測定電源とのいずれか一方から選択する切換手段と、
前記駆動電源を前記負荷に供給する前に、前記負荷に前記測定電源が供給されるように前記切換手段を切り換え、前記電流測定手段により前記測定電源から供給される電流値を測定し、その測定結果に応じて異常又は正常判定を行い、異常判定されたときには負荷への前記電源供給を停止し、正常判定されたときには前記負荷に前記駆動電源が供給されるように前記切換手段を切り換え、前記駆動電源により前記負荷を駆動させ、前記電流測定手段により前記駆動電源から供給される電流値を測定し、その測定結果、前記駆動電源から供給される電流値が所定範囲内の値でなくなったときには、前記負荷への電源供給を停止する制御判断手段を有することを特徴とする。
【0016】
請求項1によれば、駆動電源を前記負荷に供給する前に、負荷に測定電源を供給し、負荷に測定電源から供給される電流値を測定し、その測定結果に応じて異常又は正常判定を行い、異常判定されたときには負荷への電源供給を停止し、正常判定されたときには負荷に駆動電源を供給し、負荷を駆動しつつ、電流測定手段により負荷に駆動電源から供給される電流値を測定し、その測定結果、駆動電源から負荷に供給される電流値が所定範囲内の値でなくなったときには、負荷への電源供給を停止することにより、負荷の状態監視を常時監視して、負荷への電源供給を停止できる。
【0017】
請求項2は、駆動電源により駆動される複数の負荷の状態を監視する駆動出力監視回路において、
前記駆動電源と前記複数の負荷との間に接続され、前記複数の負荷に供給される電流を測定する電流測定手段と、
前記複数の負荷から所望の負荷を選択的に前記電流測定手段に接続する負荷選択手段と、前記複数の負荷に前記電流測定手段を介して測定電流を供給する測定電源と
前記複数の負荷に前記電流測定手段を介して供給する電源を前記駆動電源と前記測定電源とのいずれか一方から選択する切換手段と、
前記駆動電源を前記複数の負荷に供給する前に、前記複数の負荷に前記測定電源が供給されるように前記切換手段を切り換え、前記電流測定手段により前記測定電源から供給される電流値を測定し、その測定結果に応じて前記複数の負荷各々の異常又は正常判定を行い、前記複数の負荷のうち異常判定された負荷への前記駆動電源の供給は行なわず、正常判定された負荷に前記駆動電源が供給されるように前記切換手段を切り換え、前記駆動電源により前記負荷を駆動させ、前記電流測定手段により前記駆動電源から供給される電流値を測定し、その測定結果、前記駆動電源から供給される電流値が所定範囲内の値でなくなったときには、前記複数の負荷すべてへの電源供給を停止する制御判断手段を有することを特徴とする。
【0018】
請求項2によれば、駆動電源を前記複数の負荷に供給する前に、複数の負荷に測定電源を供給し、その測定結果に応じて複数の負荷各々の異常又は正常判定を行い、複数の負荷のうち異常判定された負荷への駆動電源の供給を停止し、正常判定された負荷にのみ駆動電源を供給し、駆動電源が負荷に供給された後は、駆動電源から各負荷に供給される電流値を測定し、その測定結果、駆動電源から供給される電流値が所定範囲内の値でなくなったときには、複数の負荷すべてへの電源供給を停止することにより、負荷の状態監視を常時監視して、負荷への電源供給を停止できる。
【0019】
請求項3は、前記制御判断手段が、前記駆動電源を前記複数の負荷に供給する際に、前記駆動電源を前記負荷に供給する前の前記複数の負荷それぞれに対する検査で異常が検出された負荷に応じて前記複数の負荷への前記駆動電源の供給を制御することを特徴とする。
請求項3によれば、駆動電源を複数の負荷に供給する際に、駆動電源を負荷に供給する前の複数の負荷それぞれに対する検査で異常が検出された負荷に応じて複数の負荷への駆動電源の供給を制御することにより、正常な動作が可能な動作を停止させることなく行わせることができる。
【0020】
【発明の実施の形態】
図1に本発明の駆動出力監視回路の一実施例のブロック構成図を示す。
本実施例の駆動出力監視回路100は、負荷3−1〜3−nの接続を制御する負荷選択回路110、負荷3−1〜3−nに供給される電流を測定する電流測定装置120、動作開始時に負荷3−1〜3−nに測定電流を供給する測定用電源130、負荷3−1〜3−nの電源を駆動電源2又は測定電源130に切り換える切換手段140、後述するように動作開始時に負荷選択回路110及び切換手段140を制御し、電流測定回路110で検出された各負荷3−1〜3−nに流れる電流に応じて各負荷3−1〜3−nの状態を判断するとともに、動作後は負荷3−1〜3−nに流れる電流を電流測定回路110により常時検出して、負荷3−1〜3−nの状態を判断する制御判断部150、制御判断部150での判断結果を表示する表示部160、動作開始を指示する動作開始スイッチ170から構成される。
【0021】
負荷選択回路110は、負荷3−1〜3−nに対応して設けられたNPNトランジスタQ1〜Qnから構成される。トランジスタQ1は、コレクタが負荷3−1の接地側端子に接続され、エミッタが接地され、ベースが制御判断部150に接続される。同様にトランジスタQ2〜Qnは、コレクタが負荷3−2〜3−nの接地側端子に接続され、エミッタが接地され、ベースが制御判断部150に接続される。
【0022】
トランジスタQ1〜Qnは、制御判断部150によりそれぞれのベース電位が制御され、スイッチングされる。トランジスタQ1〜Qnが選択的にオンされることにより、負荷3−1〜3−nの接地側端子が接地され、負荷3−1〜3−nに選択的に測定電流が供給されることになる。
電流測定装置120は、一端に負荷3−1〜3−nの電源端子が共通に接続された共通電源ラインL0 に直列に接続され、共通電源ラインL0 に流れる電流を測定し、ディジタルデータに変換して、制御判断部150に供給する。
【0023】
共通電源ラインL0 の他端は切換手段140の可動接点aに接続される。切換手段140は、リレーから構成され、可動接点aが共通電源ラインL0 に接続され、固定接点bが駆動電源2に接続され、固定接点cが測定電源回路130に接続される。
切換手段140は、制御判断部150から供給される切換信号に応じて可動接点aが固定接点b又はcに接続され、共通電源ラインL0 に供給される電流の供給元を切り換える。測定電源回路130は、定電圧源130a及び抵抗R0 から構成され、切換手段140の可動接点aが固定接点cに接続されたとき、共通電源ラインL0 に測定用電流Im を供給する。
【0024】
また、駆動電源2は、正極側が切換手段140の固定接点bに接続され、負極側が接続され、切換手段140の可動接点aが固定接点bに接続されたとき、共通電源ラインL0 に負荷3−1〜3−nを駆動するための駆動電流ID を供給する。
制御判断部150は、動作開始スイッチ170の操作を検出することにより動作開始を検出し、切換手段140及び負荷選択回路110を制御して、各負荷3−1〜3−nの状態を検査し、異常の有無を検出する。
【0025】
図2に本発明の駆動出力監視回路の一実施例の制御判断部のフローチャートを示す。
制御判断部150は、動作開始スイッチ170の操作を検出すると、まず、切換手段140の可動接点aを固定接点cに接続し、共通電源ラインL0 を測定用電源回路130に接続する(ステップS1−1,S1−2)。
【0026】
次に、制御判断部150は、負荷3−1〜3−nを選択する負荷選択番号Nを「1」にリセットする(ステップS1−3)。次に、制御判断部150は、負荷選択回路110のステップS1−3で選択された選択番号Nに対応するトランジスタQN をオンし、他のトランジスタをオフする(ステップS1−4)。ステップ1−4により、負荷3−Nに測定用電源回路130から測定用電流Im が供給される。
【0027】
制御判断部150は、このとき、電流測定装置120で検出され、ディジタルデータに変換された測定電流値Is を入力し、内部に予め設定された上限値L1及び下限値L2と比較する(ステップS1−5,S1−6,S1−7)。
ステップS1−6で、測定電流値Is が上限値L1 より大きいと判断された場合には、負荷3−Nに所定値以上の電流が流れているので、負荷3−Nが短絡していると判断する(ステップS1−8)。
【0028】
また、ステップS1−7で、測定電流値Is が下限値L2より小さいと判断された場合には、負荷3−Nに所定値以下の電流しか流れないので、負荷3−Nが切断していると判断する(ステップS1−9)。
さらに、ステップS1−6,S1−7で、測定電流値Is が上限値L1と下限値L2との間にあると判断された場合には、次に、測定電流値Is が所定の範囲(L0 −ΔL3 )<Is <(L0 +ΔL3 )内にあるか否かが判断される(ステップS1−10)。
【0029】
ステップS1−10で、測定電流値Is が所定の範囲(L0 −ΔL3 )<Is <(L0 +ΔL3 )内にあれば、負荷Nは正常であると判断され(ステップS1−11)、測定電流値Is が所定の範囲(L0 −ΔL3 )<Is <(L0 +ΔL3 )内になければ、負荷Nは抵抗値に異常があると判断される(ステップS1−12)。
【0030】
次に、上記のステップS1−6〜S1−12での判定結果を表示部160に表示する(ステップS1−13)。このとき、表示部160には、負荷3−1〜3−nを識別するための負荷番号N及び負荷番号Nに対応する判定結果が表示され、どの負荷にどんな異常があるかが容易にわかるような表示が行われる。
上記ステップS1−4〜S1−13が負荷の数n回繰り返し行われ、負荷3−1〜3−Nそれぞれの状態が検出される(ステップS1−14,S1−15)。
【0031】
以上により、動作開始時の検査処理が終了する。
次に、制御判断部150は、負荷選択回路110のトランジスタQ1〜QNのうち、上記ステップS1−4〜S1−15で異常判定された負荷及びそれに関連する負荷に対応するトランジスタをオンにしない、すなわち、ディセーブルし、正常判定され、かつ、異常判定された負荷と関連して動作しない負荷に対応するトランジスタをオンにできる設定を行った後、切換手段140の可動接点aを固定接点bに接続し、動作可能な負荷に駆動電源2を印加して、動作を行わせる(ステップS1−16,S1−17)。
【0032】
制御判断部150は、動作後、動作停止操作が行われるまで、電流測定装置120により測定される測定電流Is ’を監視して常時監視処理を行う(ステップS1−18,S1−19)。
ここで、ステップS1−18の動作後の監視処理について図面とともに説明する。図3に本発明の一実施例の制御判断部の監視処理のフローチャートを示す。
【0033】
監視処理では、まず、電流測定装置120により測定される負荷3−1〜3−Nのうち動作中の負荷に供給される電流Is ’を入力する(ステップS2−1)。
制御判断部150は、入力された測定電流値Is ’を内部に予め設定された上限値LS11 及び下限値LS12 と比較する(ステップS2−2)。
【0034】
ステップS2−2で、測定電流値Is ’が所定の範囲LS11 <Is ’<LS12 内にあれば、負荷Nは正常であると判断され、ステップS2−1に戻って、動作が続行される。また、測定電流値Is ’が所定の範囲LS11 <Is ’<LS12 内になければ、動作中の負荷のいずれかに抵抗値に異常があると判断される(ステップS2−3)。
【0035】
ステップS2−2で動作中の負荷に異常が生じた場合には、負荷選択回路110のトランジスタQ1〜Qnを全てオフして、負荷3−1〜3−nへの電流の供給を停止して、判定結果を表示部160に表示させる(ステップS2−4,S2−5)。
以上本実施例によれば、動作開始時には負荷選択回路110により負荷3−1〜3−nを順次選択して、負荷3−1〜3−nに共通に接続された共通電源ラインL0 に直列に接続された電流測定装置120により各負荷に供給される電流を検出し、各負荷の短絡、切断、抵抗値異常等の状態を検出し、警告を発することができる。
【0036】
また、駆動電源2を負荷3−1〜3−nに接続した後でも、電流測定装置120は、共通電源ラインL0 に直列に接続されているので、駆動電源2から動作中の負荷に供給される電流を電流測定装置120により測定できる。このため、動作後の負荷の異常を検出できる。
【0037】
【発明の効果】
上述の如く、本発明の請求項1によれば、駆動電源を前記負荷に供給する前に、負荷に測定電源を供給し、負荷に測定電源から供給される電流値を測定し、その測定結果に応じて異常又は正常判定を行い、異常判定されたときには負荷への電源供給を停止し、正常判定されたときには負荷に駆動電源を供給し、負荷を駆動しつつ、電流測定手段により負荷に駆動電源から供給される電流値を測定し、その測定結果、駆動電源から負荷に供給される電流値が所定範囲内の値でなくなったときには、負荷への電源供給を停止することにより、負荷の状態監視を常時監視して、負荷への電源供給を停止できる等の特長を有する。
【0038】
請求項2によれば、駆動電源を前記複数の負荷に供給する前に、複数の負荷に測定電源を供給し、その測定結果に応じて複数の負荷各々の異常又は正常判定を行い、複数の負荷のうち異常判定された負荷への駆動電源の供給を停止し、正常判定された負荷にのみ駆動電源を供給し、駆動電源が負荷に供給された後は、駆動電源から各負荷に供給される電流値を測定し、その測定結果、駆動電源から供給される電流値が所定範囲内の値でなくなったときには、複数の負荷すべてへの電源供給を停止することにより、負荷の状態監視を常時監視して、負荷への電源供給を停止できる等の特長を有する。
【0039】
請求項3によれば、駆動電源を複数の負荷に供給する際に、駆動電源を負荷に供給する前の複数の負荷それぞれに対する検査で異常が検出された負荷に応じて複数の負荷への駆動電源の供給を制御することにより、正常な動作が可能な動作を停止させることなく行わせることができる等の特長を有する。
【図面の簡単な説明】
【図1】本発明の駆動出力監視回路の一実施例のブロック構成図である。
【図2】本発明の駆動出力監視回路の一実施例の制御判断部の動作フローチャートである。
【図3】本発明の駆動出力監視回路の一実施例の制御判断部の監視処理のフローチャートである。
【図4】従来の駆動出力監視回路の一例のブロック構成図である。
【図5】従来の駆動出力監視回路の一例の制御判断部の動作フローチャートである。
【符号の説明】
2 駆動電源
3−1〜3−n 負荷
100 駆動出力監視回路
110 負荷選択回路
120 スイッチ
130 測定用電源回路
140 電流測定回路
150 制御判断部
160 表示部
Q1〜Qn NPNトランジスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drive output monitoring circuit, and more particularly to a drive output monitoring circuit that detects the state of a load at the start of operation and monitors the drive output.
[0002]
[Prior art]
FIG. 4 is a block diagram showing an example of a conventional drive output monitoring circuit.
The conventional drive output monitoring circuit 1 is connected between the drive power supply 2 and the loads 3-1 to 3-n and measures the resistance of the load 3-3 by measuring the resistance of the loads 3-1 to 3-n at the start of operation. Each state 1-3 is detected.
[0003]
The drive output monitoring circuit 1 includes a load selection circuit 11 that selects one of the loads 3-1 to 3 -n, a resistance measurement device 12 that measures the resistance of the loads 3-1 to 3 -n, and the loads 3-1 to 3. Switch 13 for switching connection to -n to drive power supply 2 or resistance measuring device 12, load selection circuit 11 and switch 13 are controlled at the start of operation, and each load 3-1 to 3- The control determination unit 14 determines the state of each of the loads 3-1 to 3-n according to the measured resistance of n, and the display unit 15 displays the determination result of the control determination unit 14.
[0004]
The load selection circuit 11 includes NPN transistors Q1 to Qn. NPN transistors Q1 to Qn have collectors connected to the ground terminals of the loads 3-1 to 3-n, emitters grounded, and bases connected to the control determination unit 14. The transistors Q1 to Qn are switched according to a control signal from the control determination unit 14, and select a load connected to the resistance measuring device 12 from the loads 3-1 to 3-n.
[0005]
The power supply terminals of the loads 3-1 to 3-n are connected to the common power supply line L0. The common power supply line L0 is connected to the movable contact a of the switching means 13.
The fixed contact b of the switching means 13 is connected to the drive power source 2, and the fixed contact c is connected to the resistance measuring device 12. The movable contact a of the switching means 13 is switched according to a control signal from the control determination unit 14.
[0006]
The resistance measuring device 12 supplies a minute current to each of the loads 3-1 to 3-n and detects the resistance value of each of the loads 3-1 to 3-n. The resistance measurement device 12 converts the detected resistance values of the loads 3-1 to 3-n into digital data and supplies the digital data to the control determination unit 14.
The control determination unit 14 detects a state such as a short circuit, a disconnection, an abnormal resistance value, or the like of each of the loads 3-1 to 3-n according to the digital data supplied from the resistance measurement device 12 and displays the detected state on the display unit 15. .
[0007]
FIG. 5 shows a flowchart of a control determination unit of an example of a conventional drive output monitoring apparatus. At the start of operation, the control determination unit 14 first connects the movable contact a of the switching means 13 to the fixed contact c, and connects the resistance measuring device 12 to the common power supply line L0 (steps S3-1 and S3-2).
Next, the control determination unit 14 resets the load selection number N for selecting the loads 3-1 to 3-n to “1” (step S3-3). Next, the control determination unit 14 turns on the transistor QN corresponding to the selection number N selected in step S3-3 of the load selection circuit 11, and turns off the other transistors (step S3-4). In Step 3-4, the measurement minute current Im is supplied from the resistance measuring device 12 to the load 3-N.
[0008]
At this time, the control determination unit 14 inputs the measured resistance value Rs detected by the resistance measuring device 12 and compares the measured resistance value Rs with the upper limit value R1 and the lower limit value R2 set in advance therein (steps S3-6, S3-7). ).
When it is determined in step S3-6 that the measured resistance value Rs is smaller than the lower limit resistance value R1, it is determined that the load 3-N is short-circuited (step S3-8).
[0009]
If it is determined in step S3-7 that the measured resistance value Rs is greater than the upper limit resistance value R2, it is determined that the load 3-N is disconnected (step S3-9).
Furthermore, if it is determined in steps S3-6 and S3-7 that the measured resistance value Rs is between the lower limit resistance value R1 and the upper limit resistance value R2, then the measured resistance value Rs is within a predetermined range. It is determined whether or not it is within (R0−ΔR3) <Rs <(R0 + ΔR3) (step S3-10).
[0010]
If the measured resistance value Rs is within the predetermined range (R0−ΔR3) <Rs <(R0 + ΔR3) in step S3-10, it is determined that the load N is normal (step S3-11), and the measured resistance value. If Rs is not within the predetermined range (R0−ΔR3) <Rs <(R0 + ΔR3), it is determined that the load N has an abnormal resistance value (step S3-12).
[0011]
Next, the determination results in steps S3-6 to S3-12 are displayed on the display unit 15 (step S3-13). At this time, the display unit 15 displays the load number N for identifying the loads 3-1 to 3-n and the determination result corresponding to the load number N, so that it can be easily understood which load has what kind of abnormality. Is displayed.
Steps S3-4 to S3-13 are repeated n times as many times as the load, and the respective states of the loads 3-1 to 3-N are detected (steps S3-14 and S3-15).
[0012]
Thus, the inspection process at the start of the operation ends.
If all the loads 3-1 to 3-n are normal after the inspection of the loads 3-1 to 3-n, the movable contact a of the switching means 13 is connected to the fixed contact b, and the loads 3-1 to 3- The drive power supply 2 is connected to n (steps S3-16, S3-17).
After the inspection, when the movable contact a of the switching means 13 is connected to the fixed contact b, and the drive power source 2 is connected to the loads 3-1 to 3 -n, the resistance measuring device 12 is connected to the loads 3-1 to 3-. The resistance of the loads 3-1 to 3-n cannot be measured.
[0013]
[Problems to be solved by the invention]
However, in the conventional drive output monitoring circuit 1, the resistance measuring device 12 is disconnected from the loads 3-1 to 3-n when the drive power supply 2 and the loads 3-1 to 3-n are connected. After the operation, the loads 3-1 to 3-n cannot be monitored, and there is a problem that an abnormality after the operation cannot be detected.
[0014]
The present invention has been made in view of the above points, and an object of the present invention is to provide a drive output monitoring circuit that can always monitor a load for each load at the start of operation and even after the operation.
[0015]
[Means for Solving the Problems]
Claim 1 of the present invention is a drive output monitoring circuit for monitoring the state of a load driven by a drive power supply.
Current measuring means connected between the drive power supply and the load and measuring a current supplied to the load;
A measurement power source for supplying a measurement current to the load via the current measurement means;
Switching means for selecting a power supply to be supplied to the load via the current measurement means from either the drive power supply or the measurement power supply;
Before supplying the drive power to the load, the switching means is switched so that the measurement power is supplied to the load, and the current value supplied from the measurement power is measured by the current measurement means, and the measurement is performed. An abnormality or normality is determined according to a result, and when the abnormality is determined, the power supply to the load is stopped, and when the normality is determined, the switching unit is switched so that the driving power is supplied to the load, When the load is driven by the driving power source, the current value supplied from the driving power source is measured by the current measuring unit, and when the current value supplied from the driving power source is not within a predetermined range as a result of the measurement And control determining means for stopping power supply to the load .
[0016]
According to claim 1, before supplying drive power to the load, measurement power is supplied to the load, current value supplied from the measurement power supply to the load is measured, and abnormality or normality is determined according to the measurement result When the abnormality is determined, the power supply to the load is stopped. When the abnormality is determined, the drive power is supplied to the load. While driving the load, the current value supplied from the drive power to the load by the current measuring means When the current value supplied to the load from the drive power supply is no longer within the predetermined range, the load status monitoring is constantly monitored by stopping the power supply to the load, The power supply to the load can be stopped.
[0017]
Claim 2 is a drive output monitoring circuit for monitoring the state of a plurality of loads driven by a drive power supply.
A current measuring means connected between the drive power supply and the plurality of loads, and measuring a current supplied to the plurality of loads;
A load selection unit that selectively connected to the current measuring means a desired load from said plurality of loads, the measured supply that measured current through the current measuring means to the plurality of loads,
Switching means for selecting a power supply to be supplied to the plurality of loads via the current measurement means from either the drive power supply or the measurement power supply;
Before supplying the drive power to the plurality of loads, the switching unit is switched so that the measurement power is supplied to the plurality of loads, and the current value supplied from the measurement power by the current measurement unit is measured. And determining whether each of the plurality of loads is abnormal or normal according to the measurement result, and not supplying the drive power to the load determined to be abnormal among the plurality of loads, The switching means is switched so that driving power is supplied, the load is driven by the driving power, the current value supplied from the driving power by the current measuring means is measured, and the measurement result is obtained from the driving power. when the current value supplied is no longer the value of the predetermined range, and having a control determining means for stopping the power supply to all the plurality of loads.
[0018]
According to claim 2, before supplying drive power to the plurality of loads, measurement power is supplied to the plurality of loads, and abnormality or normality of each of the plurality of loads is determined according to the measurement result, Stop supplying the drive power to the load determined to be abnormal among the loads, supply the drive power only to the load determined to be normal, and after the drive power is supplied to the load, the drive power is supplied to each load. When the current value supplied from the drive power supply is no longer within the specified range, the power supply to all of the multiple loads is stopped to constantly monitor the load status. The power supply to the load can be stopped by monitoring.
[0019]
According to a third aspect of the present invention, when the control determination unit supplies the drive power to the plurality of loads, the load in which an abnormality is detected in the inspection of each of the plurality of loads before supplying the drive power to the load. And controlling the supply of the drive power to the plurality of loads according to the control.
According to claim 3, when driving power is supplied to a plurality of loads, driving to the plurality of loads is performed according to the load in which an abnormality is detected in each of the plurality of loads before supplying the driving power to the load. By controlling the supply of power, an operation capable of normal operation can be performed without stopping.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a block diagram of an embodiment of the drive output monitoring circuit of the present invention.
The drive output monitoring circuit 100 according to the present embodiment includes a load selection circuit 110 that controls connection of loads 3-1 to 3-n, a current measurement device 120 that measures current supplied to the loads 3-1 to 3-n, Measurement power supply 130 for supplying a measurement current to loads 3-1 to 3-n at the start of operation, switching means 140 for switching the power supply of loads 3-1 to 3-n to drive power supply 2 or measurement power supply 130, as will be described later At the start of operation, the load selection circuit 110 and the switching means 140 are controlled, and the state of each load 3-1 to 3-n is determined according to the current flowing through each load 3-1 to 3-n detected by the current measurement circuit 110. The control determination unit 150 and the control determination unit determine the state of the loads 3-1 to 3-n by always detecting the current flowing through the loads 3-1 to 3-n by the current measurement circuit 110 after the operation. Display unit for displaying the determination result at 150 60, it consists of the operation start switch 170 for instructing the start of operation.
[0021]
The load selection circuit 110 includes NPN transistors Q1 to Qn provided corresponding to the loads 3-1 to 3-n. The transistor Q1 has a collector connected to the ground-side terminal of the load 3-1, an emitter grounded, and a base connected to the control determination unit 150. Similarly, in the transistors Q2 to Qn, the collector is connected to the ground side terminals of the loads 3-2 to 3 -n, the emitter is grounded, and the base is connected to the control determination unit 150.
[0022]
The transistors Q <b> 1 to Qn are switched with their respective base potentials controlled by the control determination unit 150. By selectively turning on the transistors Q1 to Qn, the ground-side terminals of the loads 3-1 to 3-n are grounded, and the measurement current is selectively supplied to the loads 3-1 to 3-n. Become.
The current measuring device 120 is connected in series to a common power supply line L0 having one end connected to the power supply terminals of the loads 3-1 to 3-n in common, measures the current flowing through the common power supply line L0, and converts it into digital data. Then, the data is supplied to the control determination unit 150.
[0023]
The other end of the common power supply line L0 is connected to the movable contact a of the switching means 140. The switching means 140 is composed of a relay, the movable contact a is connected to the common power supply line L0, the fixed contact b is connected to the drive power supply 2, and the fixed contact c is connected to the measurement power supply circuit 130.
In the switching means 140, the movable contact a is connected to the fixed contact b or c in accordance with the switching signal supplied from the control determination unit 150, and switches the supply source of the current supplied to the common power supply line L0. The measurement power supply circuit 130 includes a constant voltage source 130a and a resistor R0, and supplies a measurement current Im to the common power supply line L0 when the movable contact a of the switching unit 140 is connected to the fixed contact c.
[0024]
The drive power source 2 has a positive side connected to the fixed contact b of the switching unit 140, a negative side connected, and the movable contact a of the switching unit 140 connected to the fixed contact b. A drive current ID for driving 1 to 3-n is supplied.
The control determination unit 150 detects the start of operation by detecting the operation of the operation start switch 170, controls the switching means 140 and the load selection circuit 110, and checks the state of each of the loads 3-1 to 3-n. Detect the presence or absence of abnormalities.
[0025]
FIG. 2 shows a flowchart of the control determination unit of an embodiment of the drive output monitoring circuit of the present invention.
When the control determination unit 150 detects the operation of the operation start switch 170, first, the movable contact a of the switching unit 140 is connected to the fixed contact c, and the common power supply line L0 is connected to the measurement power supply circuit 130 (step S1- 1, S1-2).
[0026]
Next, the control determination unit 150 resets the load selection number N for selecting the loads 3-1 to 3-n to “1” (step S1-3). Next, the control determination unit 150 turns on the transistor QN corresponding to the selection number N selected in step S1-3 of the load selection circuit 110 and turns off the other transistors (step S1-4). In step 1-4, the measurement current Im is supplied from the measurement power supply circuit 130 to the load 3-N.
[0027]
At this time, the control determination unit 150 inputs the measured current value Is detected by the current measuring device 120 and converted into digital data, and compares it with the upper limit value L1 and the lower limit value L2 set in advance therein (step S1). -5, S1-6, S1-7).
If it is determined in step S1-6 that the measured current value Is is greater than the upper limit value L1, a current greater than or equal to a predetermined value flows through the load 3-N, so that the load 3-N is short-circuited. Judgment is made (step S1-8).
[0028]
If it is determined in step S1-7 that the measured current value Is is smaller than the lower limit value L2, only a current equal to or less than a predetermined value flows through the load 3-N, so the load 3-N is disconnected. (Step S1-9).
Furthermore, if it is determined in steps S1-6 and S1-7 that the measured current value Is is between the upper limit value L1 and the lower limit value L2, then the measured current value Is is within a predetermined range (L0). It is determined whether or not −ΔL3) <Is <(L0 + ΔL3) (step S1-10).
[0029]
If the measured current value Is is within the predetermined range (L0−ΔL3) <Is <(L0 + ΔL3) in step S1-10, it is determined that the load N is normal (step S1-11), and the measured current value is determined. If Is is not within the predetermined range (L0−ΔL3) <Is <(L0 + ΔL3), it is determined that the load N has an abnormal resistance value (step S1-12).
[0030]
Next, the determination results in steps S1-6 to S1-12 are displayed on display unit 160 (step S1-13). At this time, the display unit 160 displays the load number N for identifying the loads 3-1 to 3-n and the determination result corresponding to the load number N, so that it can be easily understood which load has what kind of abnormality. Is displayed.
The above steps S1-4 to S1-13 are repeated n times as many times as the load, and the respective states of the loads 3-1 to 3-N are detected (steps S1-14 and S1-15).
[0031]
Thus, the inspection process at the start of the operation ends.
Next, among the transistors Q1 to QN of the load selection circuit 110, the control determination unit 150 does not turn on the transistors corresponding to the loads determined to be abnormal in the above steps S1-4 to S1-15 and the loads related thereto. That is, after the setting is made so that the transistor corresponding to the load that is disabled and is normally determined and does not operate in relation to the load that is determined to be abnormal can be turned on, the movable contact a of the switching unit 140 is changed to the fixed contact b. The drive power supply 2 is applied to the operable load and operated, and the operation is performed (steps S1-16 and S1-17).
[0032]
After the operation, the control determination unit 150 monitors the measured current Is ′ measured by the current measuring device 120 and performs a constant monitoring process until an operation stop operation is performed (steps S1-18 and S1-19).
Here, the monitoring process after the operation of step S1-18 will be described with reference to the drawings. FIG. 3 shows a flowchart of the monitoring process of the control determination unit of one embodiment of the present invention.
[0033]
In the monitoring process, first, the current Is ′ supplied to the operating load among the loads 3-1 to 3-N measured by the current measuring device 120 is input (step S2-1).
The control determination unit 150 compares the input measured current value Is ′ with an upper limit value LS11 and a lower limit value LS12 set in advance inside (step S2-2).
[0034]
If the measured current value Is ′ is within the predetermined range LS11 <Is ′ <LS12 in step S2-2, it is determined that the load N is normal, the process returns to step S2-1, and the operation is continued. If the measured current value Is ′ is not within the predetermined range LS11 <Is ′ <LS12, it is determined that one of the operating loads has an abnormality in resistance value (step S2-3).
[0035]
If an abnormality occurs in the operating load in step S2-2, all the transistors Q1 to Qn of the load selection circuit 110 are turned off, and the current supply to the loads 3-1 to 3-n is stopped. The determination result is displayed on the display unit 160 (steps S2-4 and S2-5).
As described above, according to the present embodiment, when the operation is started, the loads 3-1 to 3-n are sequentially selected by the load selection circuit 110 and are connected in series to the common power supply line L0 commonly connected to the loads 3-1 to 3-n. The current supplied to each load is detected by the current measuring device 120 connected to the, and it is possible to detect a state such as a short circuit, a disconnection, a resistance value abnormality, etc. of each load and issue a warning.
[0036]
Even after the drive power supply 2 is connected to the loads 3-1 to 3-n, the current measuring device 120 is connected in series to the common power supply line L0, so that it is supplied from the drive power supply 2 to the operating load. Current can be measured by the current measuring device 120. For this reason, it is possible to detect a load abnormality after the operation.
[0037]
【The invention's effect】
As described above, according to claim 1 of the present invention , the measurement power supply is supplied to the load before the drive power supply is supplied to the load, the current value supplied from the measurement power supply to the load is measured, and the measurement result The power supply to the load is stopped when the abnormality is determined, the drive power is supplied to the load when the abnormality is determined, and the load is driven by the current measuring means while driving the load. When the current value supplied from the power supply is measured, and the current value supplied from the drive power supply to the load is no longer within the specified range, the power supply to the load is stopped. It has features such as being able to stop monitoring and constantly stop power supply to the load.
[0038]
According to claim 2, before supplying drive power to the plurality of loads, measurement power is supplied to the plurality of loads, and abnormality or normality of each of the plurality of loads is determined according to the measurement result, Stops supplying the drive power to the load determined to be abnormal among the loads, supplies the drive power only to the load determined to be normal, and after the drive power is supplied to the load, it is supplied from the drive power to each load. When the current value supplied from the drive power supply is no longer within the specified range, the power supply to all of the multiple loads is stopped to constantly monitor the load status. It has features such as monitoring and stopping power supply to the load.
[0039]
According to claim 3, when driving power is supplied to a plurality of loads, driving to the plurality of loads is performed according to the load in which an abnormality is detected in each of the plurality of loads before supplying the driving power to the load. By controlling the supply of power, an operation capable of normal operation can be performed without stopping.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of a drive output monitoring circuit of the present invention.
FIG. 2 is an operation flowchart of a control determination unit of an embodiment of the drive output monitoring circuit of the present invention.
FIG. 3 is a flowchart of a monitoring process of a control determination unit of an embodiment of the drive output monitoring circuit of the present invention.
FIG. 4 is a block diagram of an example of a conventional drive output monitoring circuit.
FIG. 5 is an operation flowchart of a control determination unit of an example of a conventional drive output monitoring circuit.
[Explanation of symbols]
2 Drive power supply 3-1 to 3-n Load 100 Drive output monitoring circuit 110 Load selection circuit 120 Switch 130 Power supply circuit for measurement 140 Current measurement circuit 150 Control judgment unit 160 Display unit Q1 to Qn NPN transistor

Claims (3)

駆動電源により駆動される負荷の状態を監視する駆動出力監視回路において、
前記駆動電源と前記負荷との間に接続され、前記負荷に供給される電流を測定する電流測定手段と、
前記負荷に前記電流測定手段を介して測定電流を供給する測定電源と、
前記負荷に前記電流測定手段を介して供給する電源を前記駆動電源と前記測定電源とのいずれか一方から選択する切換手段と、
前記駆動電源を前記負荷に供給する前に、前記負荷に前記測定電源が供給されるように前記切換手段を切り換え、前記電流測定手段により前記測定電源から供給される電流値を測定し、その測定結果に応じて異常又は正常判定を行い、異常判定されたときには負荷への前記電源供給を停止し、正常判定されたときには前記負荷に前記駆動電源が供給されるように前記切換手段を切り換え、前記駆動電源により前記負荷を駆動させ、前記電流測定手段により前記駆動電源から供給される電流値を測定し、その測定結果、前記駆動電源から供給される電流値が所定範囲内の値でなくなったときには、前記負荷への電源供給を停止する制御判断手段を有することを特徴とする駆動出力監視回路。
In the drive output monitoring circuit that monitors the state of the load driven by the drive power supply,
Current measuring means connected between the drive power supply and the load and measuring a current supplied to the load;
A measurement power source for supplying a measurement current to the load via the current measurement means;
Switching means for selecting a power supply to be supplied to the load via the current measurement means from either the drive power supply or the measurement power supply;
Before supplying the drive power to the load, the switching means is switched so that the measurement power is supplied to the load, and the current value supplied from the measurement power is measured by the current measurement means, and the measurement is performed. An abnormality or normality is determined according to a result, and when the abnormality is determined, the power supply to the load is stopped, and when the normality is determined, the switching unit is switched so that the driving power is supplied to the load, When the load is driven by the driving power source, the current value supplied from the driving power source is measured by the current measuring unit, and when the current value supplied from the driving power source is not within a predetermined range as a result of the measurement A drive output monitoring circuit comprising control judgment means for stopping power supply to the load .
駆動電源により駆動される複数の負荷の状態を監視する駆動出力監視回路において、
前記駆動電源と前記複数の負荷との間に接続され、前記複数の負荷に供給される電流を測定する電流測定手段と、
前記複数の負荷から所望の負荷を選択的に前記電流測定手段に接続する負荷選択手段と、前記複数の負荷に前記電流測定手段を介して測定電流を供給する測定電源と
前記複数の負荷に前記電流測定手段を介して供給する電源を前記駆動電源と前記測定電源とのいずれか一方から選択する切換手段と、
前記駆動電源を前記複数の負荷に供給する前に、前記複数の負荷に前記測定電源が供給されるように前記切換手段を切り換え、前記電流測定手段により前記測定電源から供給される電流値を測定し、その測定結果に応じて前記複数の負荷各々の異常又は正常判定を行い、前記複数の負荷のうち異常判定された負荷への前記駆動電源の供給は行なわず、正常判定された負荷に前記駆動電源が供給されるように前記切換手段を切り換え、前記駆動電源により前記負荷を駆動させ、前記電流測定手段により前記駆動電源から供給される電流値を測定し、その測定結果、前記駆動電源から供給される電流値が所定範囲内の値でなくなったときには、前記複数の負荷すべてへの電源供給を停止する制御判断手段を有することを特徴とする駆動出力監視回路。
In a drive output monitoring circuit that monitors the state of a plurality of loads driven by a drive power supply,
Current measuring means connected between the drive power supply and the plurality of loads, and measuring current supplied to the plurality of loads;
A load selection unit that selectively connected to the current measuring means a desired load from said plurality of loads, the measured supply that measured current through the current measuring means to the plurality of loads,
Switching means for selecting a power supply to be supplied to the plurality of loads via the current measurement means from either the drive power supply or the measurement power supply;
Before supplying the drive power to the plurality of loads, the switching unit is switched so that the measurement power is supplied to the plurality of loads, and the current value supplied from the measurement power by the current measurement unit is measured. And determining whether each of the plurality of loads is abnormal or normal according to the measurement result, and not supplying the drive power to the load determined to be abnormal among the plurality of loads, The switching means is switched so that driving power is supplied, the load is driven by the driving power, the current value supplied from the driving power by the current measuring means is measured, and the measurement result is obtained from the driving power. when the current value supplied is no longer the value of the predetermined range, driving output monitoring, characterized in that a control determination unit that stops supplying power to all the plurality of loads Road.
前記制御判断手段は、前記駆動電源を前記複数の負荷に供給する際に、前記駆動電源を前記負荷に供給する前の前記複数の負荷それぞれに対する検査で異常が検出された負荷に応じて前記複数の負荷への前記駆動電源の供給を制御することを特徴とする請求項2記載の駆動出力監視回路。The control determining means, when supplying the drive power to the plurality of loads, the plurality of the plurality of loads according to the load in which an abnormality is detected in the inspection of each of the plurality of loads before supplying the drive power to the loads. The drive output monitoring circuit according to claim 2, wherein the drive power supply to the load is controlled.
JP20505897A 1997-07-30 1997-07-30 Drive output monitoring circuit Expired - Fee Related JP3627458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20505897A JP3627458B2 (en) 1997-07-30 1997-07-30 Drive output monitoring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20505897A JP3627458B2 (en) 1997-07-30 1997-07-30 Drive output monitoring circuit

Publications (2)

Publication Number Publication Date
JPH1153037A JPH1153037A (en) 1999-02-26
JP3627458B2 true JP3627458B2 (en) 2005-03-09

Family

ID=16500747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20505897A Expired - Fee Related JP3627458B2 (en) 1997-07-30 1997-07-30 Drive output monitoring circuit

Country Status (1)

Country Link
JP (1) JP3627458B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004003913A1 (en) 2002-06-28 2005-11-04 富士通株式会社 Information storage device
JP5891056B2 (en) * 2012-02-07 2016-03-22 株式会社京三製作所 Ground unit monitoring device
JP6725309B2 (en) * 2016-04-28 2020-07-15 リンナイ株式会社 Power supply

Also Published As

Publication number Publication date
JPH1153037A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
JP3627458B2 (en) Drive output monitoring circuit
US7486333B2 (en) Battery remaining amount warning apparatus
EP1372257B1 (en) Diagnostic device for electric mechanism drive circuits
JP3161487B2 (en) Display device of multi-point input / output device
JP4651224B2 (en) Piezoelectric actuator drive circuit with life judgment circuit
JP2005323107A (en) Electronic equipment and image forming apparatus
JP2007512527A (en) Portable electrical test equipment
JPS6343825Y2 (en)
JPH0720614Y2 (en) Current detection circuit
KR0175828B1 (en) Load self-testing apparatus
JP3066201U (en) Contact abnormality detector
JPH09243719A (en) Method of displaying residual capacity of battery, and device therefor
JP2672343B2 (en) Measuring device using immobilized enzyme working electrode with abnormal condition detector
JPH1199938A (en) Constant current controller
JP3352532B2 (en) Energization detection device for switching power supply
JPH0425141Y2 (en)
JPH0622361B2 (en) Electric vehicle control device with failure diagnosis function
JPS6095610A (en) Electromagnetic driven controlling electronic system provided with self-diagnostic function
JPS6353459A (en) Abnormality detector for moisture meter
JP2549954B2 (en) Driving device for light emitting diode
JPS6314563B2 (en)
JP2561076Y2 (en) Resistance measuring device
KR20010026777A (en) idustrial vehicles having a character display function and character display method
JPH1169642A (en) Battery discharge and life-warning apparatus
JPH06285242A (en) Detection of abnormality in a plurality of son machines

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees