JP3627356B2 - Magnetoelectric conversion element, method for producing magnetoelectric conversion element, and magnetic sensor using magnetoelectric conversion element - Google Patents

Magnetoelectric conversion element, method for producing magnetoelectric conversion element, and magnetic sensor using magnetoelectric conversion element Download PDF

Info

Publication number
JP3627356B2
JP3627356B2 JP06306596A JP6306596A JP3627356B2 JP 3627356 B2 JP3627356 B2 JP 3627356B2 JP 06306596 A JP06306596 A JP 06306596A JP 6306596 A JP6306596 A JP 6306596A JP 3627356 B2 JP3627356 B2 JP 3627356B2
Authority
JP
Japan
Prior art keywords
conversion element
magnetoelectric conversion
magnetic substrate
film
hard magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06306596A
Other languages
Japanese (ja)
Other versions
JPH09257898A (en
Inventor
修一 本多
健治 戸蒔
耕二 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP06306596A priority Critical patent/JP3627356B2/en
Publication of JPH09257898A publication Critical patent/JPH09257898A/en
Application granted granted Critical
Publication of JP3627356B2 publication Critical patent/JP3627356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は磁電変換素子およびそれを用いた磁気センサに関する。
【0002】
【従来の技術】
従来の磁電変換素子およびそれを用いた磁気センサを、図3、4を用いて説明する。図3は従来の磁電変換素子30の断面図、図4はその磁電変換素子30を用いた磁気センサ40の部分断面図である。
【0003】
従来の磁電変換素子30は、図3に示すように、磁気抵抗効果膜1を有し、磁気抵抗効果膜1の一方の主面が樹脂層4により軟質磁性体基板5に接着され、磁気抵抗効果膜1の他方の主面に複数個の短絡膜2、2...2が形成され、磁気抵抗効果膜1と複数個の短絡膜2、2...2の上面に保護膜3が形成され、さらに保護膜3に軟質磁性体板5が樹脂層4により接着され、磁気抵抗効果膜1の両端に抵抗値変化を取り出すための入力電極7aおよび出力電極7bがそれぞれ接続されて構成されている。
【0004】
なお磁気抵抗効果膜1は、薄膜形成技術により形成され、その厚みは100μm以下なので強度が非常に小さい。この薄膜の磁気抵抗効果膜1を補強するために、磁気抵抗効果膜1は上述したように軟質磁性体基板5に接着される。この軟質磁性体基板5の厚みは500μm以上のものが用いられる。また磁場を磁気抵抗効果膜1に集中するために2枚の軟質磁性体板5によって磁気抵抗効果膜1を挟む構成になっている。
【0005】
磁気センサ40は、図4に示すように、板状の保持部11の両主面に、それぞれ磁石8aと8bとを接着剤14によって取り付け、さらに磁石8a、8bのそれぞれの外側の主面に、それぞれ磁電変換素子30、30を接着剤14によって取り付け、全体をケ−ス15に収容したのち、樹脂17を封入した構造を有している。
【0006】
2個の磁電変換素子30のそれぞれの電極7a、7bには、それぞれリ−ド線13、13、13、13が接続されている。
【0007】
磁石8a、8bはストロンチウムフェライトなどの酸化物系フェライト材料からなり、磁電変換素子30、30に十分大きなバイアス磁界を印加し、さらに減磁しないために、パ−ミアンス係数を大きくする必要があるために、その厚みの大きいものが用いられる。
【0008】
この磁気センサ40は、例えば、原子力発電設備の熱交換機等に用いられる細管の内壁の腐食状態を調べるために使用される。以下に、その使用方法を説明する。
【0009】
まず、細管に磁気センサ40を挿入し、各磁電変換素子30の抵抗値を測定する。その測定値から、各磁電変換素子30と被測定物である磁性体金属との間の距離を算出する。なお、細管の内壁が腐食していない場合は細管の内壁(磁性体金属からなる)自体が被測定物となり、細管の内壁が腐食している場合は細管の中心に向って膨らんできた腐食物(磁性体金属からなる)が被測定物となる。
【0010】
このようにして磁電変換素子の抵抗値から測定された、一方の磁電変換素子30と、この磁電変換素子30の近傍に位置する被測定物との間の距離と、他方の磁電変換素子30とこの磁電変換素子30の近傍に位置する被測定物との間の距離と、あらかじめ判っている両方の磁電変換素子30の間の距離とを足し合わせることによって、細管内の機能している部分の内径すなわち、熱交換器等において水などの液体を通すように機能している内径を算出することができる。すなわち、細管の内壁が腐食していない場合は、細管内の機能している部分の内径は細管の内径と一致し、細管の内壁が腐食し腐食物が細管の中心に向かって膨らんでいる場合は、細管内の機能している部分の内径は細管の内径よりも小さくなる。この細管の機能している部分の内径を算出することにより、細管の中心に向かって膨らんだ腐食物の厚みを認知することができる。
【0011】
なお、原子力発電設備の熱交換機等に用いられる細管は、その内壁の腐食物が一定の厚み以上になると、新しいものに交換される。
【0012】
【発明が解決しようとする課題】
しかしながら、従来の磁気センサ40は、ストロンチウムフェライトなどの酸化物系フェライト材料からなる2個の磁石8a、8bが、磁電変換素子30とともに、ケ−ス15に収容された構成しているため、形状が大型であるという問題があった。したがって、原子炉の熱交換器等に用いられるような細管を、被検知物とすることができなかった。
【0013】
【課題を解決するための手段】
本発明の請求項1に記載の磁電変換素子は磁気抵抗効果膜上に、複数の短絡膜を断続的に形成した検知部分を2組有してなる磁電変換素子において、上記2組の検知部分を、希土類磁石からなる硬質磁性体基板の表面と裏面にそれぞれ配置したことを特徴とする。
【0014】
本発明の請求項2に記載の磁電変換素子の製造方法は、磁気抵抗効果膜上に、複数の短絡膜を断続的に形成してなる2組の検知部分を、希土類磁石からなる硬質磁性体基板の表面と裏面にそれぞれ配置してなる磁電変換素子の製造方法において、希土類磁石からなる硬質磁性体基板の表面と裏面にそれぞれ検知部分を配置した後に、希土類磁石からなる硬質磁性体基板を着磁したことを特徴とする。
【0015】
本発明の請求項3に記載の磁気センサは、請求項1記載の磁電変換素子をケ−スに収容してなることを特徴とする。
【0016】
【発明の実施の形態】
本発明の磁電変換素子およびそれを用いた磁気センサを図1、2を用いて説明する。図1は磁電変換素子20の断面図、図2は磁気センサ50の部分断面図である。なお従来例と同一の部分については同一の符号を用いその説明を省略する。
【0017】
本発明の磁電変換素子20は、図1に示すように、硬質磁性体基板6の一方の主面に、軟質磁性体基板5に樹脂層4により磁気抵抗効果膜1の一方の主面が接着され、磁気抵抗効果膜1の他方の主面に断続的に複数個の短絡膜2、2...2が形成され、磁気抵抗効果膜1と複数個の短絡膜2、2...2とを保護するための保護膜3が形成され、保護膜3に樹脂層4により金属磁性体基板9が接着されたものが樹脂層4により接着されている。
【0018】
また硬質磁性体基板6の他方の主面にも、上述した順番とは逆に、金属磁性体基板9、保護膜3、複数個の短絡膜2、2...2、磁気抵抗効果膜1、軟質磁性体基板5が樹脂層4を介して接着されている。
【0019】
さらにまた金属磁性体基板9、9と磁気抵抗効果膜1、1の端面にはそれぞれ絶縁層10、10が設けられ、一方の磁気抵抗効果膜1の両端にそれぞれ電気的に接続する入力電極7a、出力電極7bが、他方の磁気抵抗効果膜1の両端にもそれぞれ電気的に接続する入力電極7c、出力電極7dが形成されている。
【0020】
金属磁性体板9は、ケイ素鋼板や純鉄、軟鉄等からなる低保磁力磁性体であるため、硬質磁性体6の着磁の際、磁場を集中する効果がある。したがって磁気抵抗効果素子を希土類の硬質磁性体基板上に直接積層するよりも金属磁性体9を介して積層したほうが出力が大きくなる。これは硬質磁性体基板の着磁面よりも設定した距離に素子が位置した方が、磁束密度の変化量が大きくなることによる。
【0021】
金属磁性体基板9と硬質磁性体基板6とは、電気伝導性を有するので、それぞれの端面に絶縁層10、10が必要である。
【0022】
次に、磁電変換素子20の製造方法を説明する。
【0023】
まず、軟質磁性体基板5に、InSb等からなるバルクを樹脂層4により接着し、そのバルクを研磨し、所定の形状に加工して磁気抵抗効果膜1を形成し、その磁気抵抗効果膜1の表面に断続的に短絡膜2、2...2を形成し、その磁気抵抗効果膜1、短絡膜2、2...2の上に保護膜3を形成し、その保護膜3上に樹脂層4により金属磁性体基板9を接着したものを2組用意する。
【0024】
次に、これらを硬質磁性体基板6の表裏面に樹脂層4により接着する。
【0025】
次に、絶縁層10、10および、入力電極7a、7c、出力電極7b、7dを形成する。
【0026】
次に、硬質磁性体基板6を着磁して、磁電変換素子20が製造される。
【0027】
本発明の磁電変換素子20を構成する硬質磁性体基板6は、希土類磁石であるたとえばサマリウムコバルト等から形成されており、酸化物系フェライト材料に比べてパ−ミアンス係数が大きく、最大エネルギ−積も高いので、その厚みを薄くしても減磁せず、磁気抵抗効果膜1に十分大きなバイアス磁界を印加できる。したがってバイアス磁界を印加するための硬質磁性体基板6を含む磁電変換素子20の厚みを小さくできる。
【0028】
本発明の磁電変換素子20を用いた磁気センサ50を、図2の部分断面図を用いて説明する。
【0029】
磁気センサ50は、図示するように、磁電変換素子20が保持部12に載置され、保持部12とともに、円柱形状を有するケ−ス16の中央に挿入され、樹脂17が封入された構成を有している。さらに磁電変換素子20の端面に形成された入力電極7a、出力電極7b、入力電極7c、出力電極7dには、それぞれリ−ド線13、13、13、13が取り付けられている。
【0030】
磁気センサ50は、厚みの小さな磁電変換素子20を用いているため、外径が小さい。したがって、従来は測定できなかった、たとえば原子炉の熱交換器に用いられる細管の内径を測定するために用いることができる。
【0031】
本発明の磁電変換素子20は、上述したように硬質磁性体基板6、およびそれぞれ1個づつの磁気抵抗効果膜1と、軟質磁性体基板5と、金属磁性体基板9とを2組有しているが、磁気抵抗効果膜1と軟質磁性体基板5とが2組に限定されるわけではない。
【0032】
たとえば1個の硬質磁性体基板の一方の主面に複数の軟質磁性体基板と複数の磁気抵抗効果膜とを互いに接着し、それぞれの磁気抵抗効果膜を端面に形成した電極により電気的に接続し、同様に硬質磁性体基板の他方の主面にも、同一枚数で同一形状の磁気抵抗効果膜を形成すれば、厚みをあまり厚くすることなく抵抗値変化が大きい磁電変換素子が構成できる。なお上記複数の軟質磁性体基板の一部を絶縁層としてはたらく樹脂にかえてもよい。
【0033】
さらに複数の磁気抵抗効果膜を、互いに電気的に独立して形成すれば、複数の電気信号を取り出すことができる磁気センサを構成できる。
【0034】
本発明の磁電変換素子の製造方法は、磁気抵抗効果膜がバイアス磁界を印加するための硬質磁性体基板に接着されたのちに、硬質磁性体基板が着磁される。そのために磁気抵抗効果膜に対して、バイアス磁界の位置を高精度に保って印加できるため、出力電圧のバラツキが小さくなる。また硬質磁性体基板が希土類磁石からなるので、硬質磁性体基板を薄くできるため、磁界の変化に対する磁気抵抗効果膜の抵抗値の変化量を低下させることなく薄型化でき、磁気センサを構成する場合に、薄型化や小形化が容易になる。
【0035】
【発明の効果】
本発明の磁電変換素子は、バイアス磁界を印加するための硬質磁性体基板に、磁気抵抗効果膜が形成された軟質磁性体基板を接着して構成されているので、厚みを小さくできる。さらに前記磁電変換素子を用いて、外径の小さい磁気センサを構成することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の磁電変換素子の断面図である。
【図2】本発明の一実施例の磁気センサの部分断面図である。
【図3】従来の磁電変換素子の断面図である。
【図4】従来の磁気センサの部分断面図である。
【符号の説明】
1 磁気抵抗効果膜
2 短絡膜
3 保護膜
4 樹脂層
5 軟質磁性体基板
6 硬質磁性体基板
7a、7c 入力電極
7b、7d 出力電極
8a、8b 磁石
9 金属磁性体基板
10 絶縁層
11、12 保持部
13 リ−ド線
14 樹脂層
15、16 ケ−ス
17 樹脂
20、30 磁電変換素子
40、50 磁気センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetoelectric transducer and a magnetic sensor using the same.
[0002]
[Prior art]
A conventional magnetoelectric transducer and a magnetic sensor using the same will be described with reference to FIGS. FIG. 3 is a cross-sectional view of a conventional magnetoelectric conversion element 30, and FIG. 4 is a partial cross-sectional view of a magnetic sensor 40 using the magnetoelectric conversion element 30.
[0003]
As shown in FIG. 3, the conventional magnetoelectric conversion element 30 has a magnetoresistive effect film 1, and one main surface of the magnetoresistive effect film 1 is bonded to a soft magnetic substrate 5 by a resin layer 4. A plurality of short-circuit films 2, 2. . . 2 is formed, and the magnetoresistive film 1 and a plurality of short-circuit films 2, 2. . . The protective film 3 is formed on the upper surface of the substrate 2, and the soft magnetic plate 5 is bonded to the protective film 3 with the resin layer 4. An input electrode 7 a and an output electrode for extracting a change in resistance value at both ends of the magnetoresistive film 1. 7b are connected to each other.
[0004]
The magnetoresistive effect film 1 is formed by a thin film forming technique and has a very small strength because its thickness is 100 μm or less. In order to reinforce the thin magnetoresistive film 1, the magnetoresistive film 1 is bonded to the soft magnetic substrate 5 as described above. The soft magnetic substrate 5 having a thickness of 500 μm or more is used. Further, in order to concentrate the magnetic field on the magnetoresistive effect film 1, the magnetoresistive effect film 1 is sandwiched between two soft magnetic plates 5.
[0005]
As shown in FIG. 4, in the magnetic sensor 40, magnets 8a and 8b are attached to both main surfaces of the plate-like holding part 11 with an adhesive 14, respectively, and further on each outer main surface of the magnets 8a and 8b. Each of the magnetoelectric conversion elements 30 and 30 is attached with an adhesive 14, and the whole is accommodated in a case 15, and then a resin 17 is enclosed.
[0006]
Lead wires 13, 13, 13 and 13 are connected to the electrodes 7 a and 7 b of the two magnetoelectric conversion elements 30, respectively.
[0007]
The magnets 8a and 8b are made of an oxide-based ferrite material such as strontium ferrite, and it is necessary to increase the permeance coefficient in order to apply a sufficiently large bias magnetic field to the magnetoelectric conversion elements 30 and 30 and to prevent further demagnetization. In addition, a material having a large thickness is used.
[0008]
This magnetic sensor 40 is used, for example, for examining the corrosion state of the inner wall of a thin tube used in a heat exchanger of a nuclear power generation facility. Below, the usage method is demonstrated.
[0009]
First, the magnetic sensor 40 is inserted into the thin tube, and the resistance value of each magnetoelectric conversion element 30 is measured. From the measured value, the distance between each magnetoelectric conversion element 30 and the magnetic metal that is the object to be measured is calculated. If the inner wall of the thin tube is not corroded, the inner wall of the thin tube (made of a magnetic metal) itself becomes the object to be measured, and if the inner wall of the thin tube is corroded, the corroded material swells toward the center of the thin tube (Made of a magnetic metal) is the object to be measured.
[0010]
Thus, the distance between one magnetoelectric conversion element 30 measured from the resistance value of the magnetoelectric conversion element and the object to be measured located in the vicinity of the magnetoelectric conversion element 30, and the other magnetoelectric conversion element 30 By adding the distance between the object to be measured located in the vicinity of the magnetoelectric conversion element 30 and the distance between both of the magnetoelectric conversion elements 30 known in advance, the functioning portion in the capillary tube It is possible to calculate the inner diameter, that is, the inner diameter that functions to pass a liquid such as water in a heat exchanger or the like. That is, when the inner wall of the narrow tube is not corroded, the inner diameter of the functioning part in the narrow tube matches the inner diameter of the narrow tube, and the inner wall of the narrow tube corrodes and the corroded material swells toward the center of the narrow tube The inner diameter of the functioning part in the narrow tube is smaller than the inner diameter of the narrow tube. By calculating the inner diameter of the functioning portion of the thin tube, the thickness of the corroded material swelled toward the center of the thin tube can be recognized.
[0011]
In addition, the thin tube used for the heat exchanger etc. of a nuclear power generation facility will be replaced | exchanged for a new thing, when the corrosive substance of the inner wall becomes more than fixed thickness.
[0012]
[Problems to be solved by the invention]
However, the conventional magnetic sensor 40 has a configuration in which two magnets 8 a and 8 b made of an oxide-based ferrite material such as strontium ferrite are housed in the case 15 together with the magnetoelectric conversion element 30. There was a problem that was large. Therefore, a thin tube used for a heat exchanger of a nuclear reactor or the like cannot be used as an object to be detected.
[0013]
[Means for Solving the Problems]
The magnetoelectric conversion element according to claim 1 of the present invention is a magnetoelectric conversion element having two detection portions in which a plurality of short-circuit films are intermittently formed on a magnetoresistive effect film. Are arranged on the front surface and the back surface of a hard magnetic substrate made of rare earth magnets, respectively.
[0014]
According to a second aspect of the present invention, there is provided a method of manufacturing a magnetoelectric conversion element comprising: a hard magnetic body comprising a rare earth magnet and two detection portions formed by intermittently forming a plurality of short-circuit films on a magnetoresistive film. In a method for manufacturing a magnetoelectric transducer that is disposed on the front surface and the back surface of a substrate, after detecting portions are respectively disposed on the front and back surfaces of a hard magnetic substrate made of a rare earth magnet, a hard magnetic substrate made of a rare earth magnet is attached. Characterized by magnetism.
[0015]
A magnetic sensor according to a third aspect of the present invention is characterized in that the magnetoelectric conversion element according to the first aspect is accommodated in a case.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A magnetoelectric conversion element of the present invention and a magnetic sensor using the same will be described with reference to FIGS. FIG. 1 is a cross-sectional view of the magnetoelectric transducer 20, and FIG. 2 is a partial cross-sectional view of the magnetic sensor 50. In addition, the same code | symbol is used about the same part as a conventional example, and the description is abbreviate | omitted.
[0017]
As shown in FIG. 1, the magnetoelectric conversion element 20 of the present invention has one main surface of the magnetoresistive film 1 bonded to one main surface of the hard magnetic substrate 6 and the soft magnetic substrate 5 by the resin layer 4. A plurality of short-circuit films 2, 2. . . 2 is formed, and the magnetoresistive film 1 and a plurality of short-circuit films 2, 2. . . 2, a protective film 3 is formed on the protective film 3, and a metal magnetic substrate 9 bonded to the protective film 3 with a resin layer 4 is bonded to the protective film 3 with the resin layer 4.
[0018]
Further, on the other main surface of the hard magnetic substrate 6, the metal magnetic substrate 9, the protective film 3, the plurality of short-circuit films 2, 2. . . 2, the magnetoresistive effect film 1 and the soft magnetic substrate 5 are bonded via the resin layer 4.
[0019]
Furthermore, insulating layers 10 and 10 are provided on the end surfaces of the metal magnetic substrates 9 and 9 and the magnetoresistive effect films 1 and 1, respectively, and input electrodes 7 a electrically connected to both ends of one magnetoresistive effect film 1, respectively. The input electrode 7c and the output electrode 7d are formed so that the output electrode 7b is electrically connected to both ends of the other magnetoresistive film 1, respectively.
[0020]
Since the metal magnetic plate 9 is a low coercive force magnetic material made of silicon steel plate, pure iron, soft iron or the like, there is an effect of concentrating the magnetic field when the hard magnetic material 6 is magnetized. Therefore, the output is larger when the magnetoresistive effect element is laminated via the metal magnetic body 9 than when the magnetoresistive effect element is laminated directly on the rare earth hard magnetic substrate. This is because the amount of change in magnetic flux density increases when the element is located at a set distance from the magnetized surface of the hard magnetic substrate.
[0021]
Since the metal magnetic substrate 9 and the hard magnetic substrate 6 have electrical conductivity, the insulating layers 10 and 10 are required on the respective end faces.
[0022]
Next, a method for manufacturing the magnetoelectric conversion element 20 will be described.
[0023]
First, a bulk made of InSb or the like is bonded to the soft magnetic substrate 5 with the resin layer 4, the bulk is polished, processed into a predetermined shape to form the magnetoresistive effect film 1, and the magnetoresistive effect film 1 The short-circuit film 2, 2 and 2. . . 2, the magnetoresistive effect film 1, the short-circuit film 2, 2. . . Two sets of the protective film 3 formed on the substrate 2 and the metal magnetic substrate 9 bonded to the protective film 3 with the resin layer 4 are prepared.
[0024]
Next, these are bonded to the front and back surfaces of the hard magnetic substrate 6 by the resin layer 4.
[0025]
Next, the insulating layers 10 and 10, the input electrodes 7a and 7c, and the output electrodes 7b and 7d are formed.
[0026]
Next, the magnetoelectric conversion element 20 is manufactured by magnetizing the hard magnetic substrate 6.
[0027]
The hard magnetic substrate 6 constituting the magnetoelectric conversion element 20 of the present invention is made of a rare earth magnet, such as samarium cobalt, and has a larger permeance coefficient than the oxide ferrite material and a maximum energy product. Therefore, even if the thickness is reduced, demagnetization is not caused and a sufficiently large bias magnetic field can be applied to the magnetoresistive film 1. Therefore, the thickness of the magnetoelectric conversion element 20 including the hard magnetic substrate 6 for applying the bias magnetic field can be reduced.
[0028]
A magnetic sensor 50 using the magnetoelectric transducer 20 of the present invention will be described with reference to a partial sectional view of FIG.
[0029]
As shown in the figure, the magnetic sensor 50 has a configuration in which the magnetoelectric conversion element 20 is placed on the holding portion 12 and is inserted into the center of the cylindrical case 16 together with the holding portion 12 and the resin 17 is enclosed. Have. Further, lead wires 13, 13, 13, and 13 are attached to the input electrode 7a, output electrode 7b, input electrode 7c, and output electrode 7d formed on the end face of the magnetoelectric conversion element 20, respectively.
[0030]
Since the magnetic sensor 50 uses the magnetoelectric transducer 20 having a small thickness, the outer diameter is small. Therefore, it can be used to measure the inner diameter of a thin tube used in, for example, a reactor heat exchanger, which could not be measured conventionally.
[0031]
As described above, the magnetoelectric conversion element 20 of the present invention has two sets of the hard magnetic substrate 6, the magnetoresistive effect film 1, the soft magnetic substrate 5, and the metal magnetic substrate 9. However, the magnetoresistive film 1 and the soft magnetic substrate 5 are not limited to two sets.
[0032]
For example, a plurality of soft magnetic substrates and a plurality of magnetoresistive films are bonded to one main surface of one hard magnetic substrate, and each magnetoresistive film is electrically connected by electrodes formed on the end surfaces. Similarly, if the same number of magnetoresistive films having the same shape are formed on the other main surface of the hard magnetic substrate, a magnetoelectric conversion element having a large resistance change can be formed without increasing the thickness. A part of the plurality of soft magnetic substrates may be replaced with a resin serving as an insulating layer.
[0033]
Furthermore, if a plurality of magnetoresistive films are formed electrically independent from each other, a magnetic sensor capable of extracting a plurality of electrical signals can be configured.
[0034]
In the method for manufacturing a magnetoelectric conversion element of the present invention, after the magnetoresistive film is bonded to the hard magnetic substrate for applying a bias magnetic field, the hard magnetic substrate is magnetized. For this reason, the bias magnetic field can be applied to the magnetoresistive film with high accuracy, so that variations in output voltage are reduced. In addition, since the hard magnetic substrate is made of a rare earth magnet, the hard magnetic substrate can be made thin, so that the thickness of the magnetoresistive film can be reduced without lowering the amount of change in the resistance value of the magnetoresistive effect film. In addition, it is easy to reduce the thickness and size.
[0035]
【The invention's effect】
Since the magnetoelectric conversion element of the present invention is configured by adhering a soft magnetic substrate on which a magnetoresistive film is formed to a hard magnetic substrate for applying a bias magnetic field, the thickness can be reduced. Furthermore, a magnetic sensor having a small outer diameter can be configured using the magnetoelectric transducer.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a magnetoelectric conversion element according to an embodiment of the present invention.
FIG. 2 is a partial cross-sectional view of a magnetic sensor according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a conventional magnetoelectric conversion element.
FIG. 4 is a partial cross-sectional view of a conventional magnetic sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magnetoresistance effect film | membrane 2 Short circuit film 3 Protective film 4 Resin layer 5 Soft magnetic substrate 6 Hard magnetic substrate 7a, 7c Input electrode 7b, 7d Output electrode 8a, 8b Magnet 9 Metal magnetic substrate 10 Insulating layers 11, 12 Holding Part 13 Lead wire 14 Resin layer 15, 16 Case 17 Resin 20, 30 Magnetoelectric conversion element 40, 50 Magnetic sensor

Claims (3)

磁気抵抗効果膜上に、複数の短絡膜を断続的に形成した検知部分を2組有してなる磁電変換素子において、
上記2組の検知部分を、希土類磁石からなる硬質磁性体基板の表面と裏面にそれぞれ配置したことを特徴とする磁電変換素子。
In the magnetoelectric conversion element having two sets of detection portions in which a plurality of short-circuit films are intermittently formed on the magnetoresistive film,
2. The magnetoelectric conversion element according to claim 1, wherein the two sets of detection portions are respectively arranged on the front and back surfaces of a hard magnetic substrate made of a rare earth magnet.
磁気抵抗効果膜上に、複数の短絡膜を断続的に形成してなる2組の検知部分を、希土類磁石からなる硬質磁性体基板の表面と裏面にそれぞれ配置してなる磁電変換素子の製造方法において、
希土類磁石からなる硬質磁性体基板の表面と裏面にそれぞれ検知部分を配置した後に、希土類磁石からなる硬質磁性体基板を着磁したことを特徴とする磁電変換素子の製造方法。
Magnetoelectric conversion element manufacturing method in which two sets of detection portions formed by intermittently forming a plurality of short-circuit films on a magnetoresistive film are disposed on the front and back surfaces of a hard magnetic substrate made of a rare earth magnet, respectively. In
A method for manufacturing a magnetoelectric conversion element, comprising: detecting portions on a front surface and a back surface of a hard magnetic substrate made of a rare earth magnet; and then magnetizing the hard magnetic substrate made of a rare earth magnet.
請求項1記載の磁電変換素子をケ−スに収容してなることを特徴とする磁気センサ。A magnetic sensor comprising the magnetoelectric conversion element according to claim 1 housed in a case.
JP06306596A 1996-03-19 1996-03-19 Magnetoelectric conversion element, method for producing magnetoelectric conversion element, and magnetic sensor using magnetoelectric conversion element Expired - Fee Related JP3627356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06306596A JP3627356B2 (en) 1996-03-19 1996-03-19 Magnetoelectric conversion element, method for producing magnetoelectric conversion element, and magnetic sensor using magnetoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06306596A JP3627356B2 (en) 1996-03-19 1996-03-19 Magnetoelectric conversion element, method for producing magnetoelectric conversion element, and magnetic sensor using magnetoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH09257898A JPH09257898A (en) 1997-10-03
JP3627356B2 true JP3627356B2 (en) 2005-03-09

Family

ID=13218579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06306596A Expired - Fee Related JP3627356B2 (en) 1996-03-19 1996-03-19 Magnetoelectric conversion element, method for producing magnetoelectric conversion element, and magnetic sensor using magnetoelectric conversion element

Country Status (1)

Country Link
JP (1) JP3627356B2 (en)

Also Published As

Publication number Publication date
JPH09257898A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
US6640652B2 (en) Rotation angle sensor capable of accurately detecting rotation angle
US6437558B2 (en) Passive solid-state magnetic field sensors and applications therefor
EP3026451B1 (en) Single magnetoresistor tmr magnetic field sensor chip and magnetic currency detector head
KR100687513B1 (en) Thin-film magnetic field sensor
US6472868B1 (en) Magnetic impedance element having at least two thin film-magnetic cores
US20060061350A1 (en) Inverted magnetic isolator
EP1770371B1 (en) Magnetic encoder
CN102428380A (en) Flux gate sensor and electronic azimuth indicator making use thereof
KR920010551B1 (en) Distortion measuring method and apparatus
GB2047943A (en) Combined inductive and magnetoresistive transducer
JP3549539B2 (en) Magneto-elastic non-contact torque transducer
JP2012039010A (en) Magnetic sensor and magnetic detection apparatus
CN110794346A (en) Magnetic field sensor based on magnetic torsional electric effect and manufacturing method thereof
JP3260921B2 (en) Movable body displacement detection device
JP3494921B2 (en) Magnetoelectric conversion element and method of manufacturing the same
JPH05297083A (en) Magnetic field-sensitive apparatus
RU2436200C1 (en) Magnetoresistive sensor
JP2014089088A (en) Magnetoresistive effect element
JP3627356B2 (en) Magnetoelectric conversion element, method for producing magnetoelectric conversion element, and magnetic sensor using magnetoelectric conversion element
JP2000193407A (en) Magnetic positioning device
JPH11101861A (en) Magneto-resistance effect type sensor
JP2002131407A5 (en)
JP2002131407A (en) Thin film magnetic field sensor
JP2004184098A (en) Magnetic sensor element and its manufacturing method
JPH09106913A (en) Magnetoelectric transducer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees