JP3627106B2 - Method for producing hafnium silicate thin film by atomic layer adsorption deposition - Google Patents

Method for producing hafnium silicate thin film by atomic layer adsorption deposition Download PDF

Info

Publication number
JP3627106B2
JP3627106B2 JP2002191265A JP2002191265A JP3627106B2 JP 3627106 B2 JP3627106 B2 JP 3627106B2 JP 2002191265 A JP2002191265 A JP 2002191265A JP 2002191265 A JP2002191265 A JP 2002191265A JP 3627106 B2 JP3627106 B2 JP 3627106B2
Authority
JP
Japan
Prior art keywords
thin film
hafnium silicate
hafnium
silicate thin
atomic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002191265A
Other languages
Japanese (ja)
Other versions
JP2003347297A (en
Inventor
三紀子 安原
秀公 門倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP2002191265A priority Critical patent/JP3627106B2/en
Publication of JP2003347297A publication Critical patent/JP2003347297A/en
Application granted granted Critical
Publication of JP3627106B2 publication Critical patent/JP3627106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02148Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing hafnium, e.g. HfSiOx or HfSiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置のゲート絶縁膜であるハフニウムシリケート膜を製造する方法に関する。
【0002】
【従来の技術】
半導体装置のゲート絶縁膜として、現在のところ二酸化ケイ素が主要材料として用いられている。しかし、ゲート長の微細化に伴い、ゲート絶縁膜もさらなる薄膜化が要求されている。その解決法として、二酸化ケイ素よりも高誘電率の材料が求められており、二酸化ケイ素を用いることによる限界が近づいている。
二酸化ケイ素に替わる絶縁膜材料として、二酸化ケイ素よりも高誘電率であるハフニウムシリケート、ジルコニウムシリケート、酸化ハフニウム、酸化ジルコニウム、酸化ランタン、酸化プラセオジム等が検討されている。このうちハフニウムシリケートは、高温までアモルファス状態が保たれ、膜質が良く、リークが少ない膜として最も期待されている。
【0003】
ゲート絶縁膜の薄膜方法としては、スパッタ法、MOCVD法が挙げられるが、さらなる薄膜化に応えられるものではない。この薄膜化に応える手段として、原子及び分子レベルの膜厚を制御できるALD法が有望視されている。
ALD法は、各原料ガスを同時ではなく交互に供給することで、CVDの素過程である各原料ガスの表面吸着と表面反応を単分子層レベルで制御して、原子層あるいは分子層を一層毎に成長させる方法である。よって、ALD法用の原料として特に求められることは、蒸気圧が高く、分子サイズが小さく、酸素供給源やケイ素供給源と反応しやすいことが挙げられる。分子サイズが小さいと単分子層の吸着モル量が増すので、装置のスループットが上がる。
【0004】
MOCVD法ではシリコン基板上にゲート絶縁膜を堆積する際、比較的高温が必要であるため、主な酸素供給源である酸素、オゾンによってシリコン基板が酸化され、界面層が形成し、膜が厚くなってしまうという問題がある。すなわち、酸素供給剤としてオゾンや酸素を用いた場合、各原料ガスが同時供給されるために、むき出しの基板表面にオゾンが接触し、表面を酸化、界面層が形成されてしまう。よってMOCVD法でシリコン基板上にゲート絶縁膜を堆積する場合、酸素供給剤にオゾンや酸素を用いることは困難であり、また薄膜化も期待できない。
しかし、各原料ガスを交互供給し、各原料ガスの基板への表面吸着と表面反応を制御するALD法では、基板表面に原料ガスを吸着させた後に酸素供給剤を供給するため、酸素供給剤が基板表面に接触せず、界面層を形成しない。ALD法にて有望視されている酸素供給源として、水や過酸化水素、オゾン、金属アルコキシドが挙げられる。
【0005】
一般に量産用ALD用の原料化合物が持つべき、供給時の好ましい性質としては、分子サイズが小さく、酸素供給源である水や金属アルコキシドと容易に反応し、純品で高い蒸気圧を持ち、供給時における温度にて安定で、室温付近、少なくとも使用ソース温度で液体であることが挙げられる。
【0006】
ALD法ではないが、第62回応用物理学会学術講演会予稿集12p−C−11(2001)では、Hf源であるテトラキス(ジエチルアミノ)ハフニウム
Hf[N(Cとケイ素源としてトリス(ジエチルアミノ)シランSi[N(CHおよび酸素を用いて、ハフニウムシリケート薄膜をMOCVD法にて形成している。しかしHf[N(Cの蒸気圧は、本発明者らの測定では90℃/0.1Torrで低い。また温度を上げるとシリンダー内で変質しやすいことが分かっている。さらには分子サイズが大きく、単分子層を吸着させることが求められるALD法に好適な原料であるとは言い難い。
【0007】
塩化ハフニウムHfClは固体であり、蒸気圧が低く、また膜中に塩素が含まれるという問題がある。
【0008】
テトラターシャリーブトキシハフニウムHf(O−t−Cは、蒸気圧は高いが、分子サイズが大きい。Chem.Vap.Deposition,2000,6,297では、Hf(O−t−Cの類似化合物であるテトラターシャリーブトキシジルコニウムZr(O−t−Cおよび水を用い、ALD法にて酸化ジルコニウム膜を形成している。しかしZr(O−t−Cは、熱により自己反応が起こり、連鎖的に膜が堆積されることが明らかになっており、Hf(O−t−Cも同様な現象が起きると予想される。
よって、各原料ガスの表面吸着と表面反応を単分子層レベルで制御することが求められるALD法に好適な原料であるとは言い難い。
【0009】
Chem.Mater.,2001,13,2463では、テトラキス(ジメチルアミノ)ハフニウムHf[N(CH、トリス(ターシャリーブトキシ)シラノールSi(O−t−COHを溶媒であるテトラデカンに溶かして、ALD法にてハフニウムシリケート薄膜を形成している。この反応はHf[N(CHとSi(O−t−COHのALDであり、水を使用していない。しかしsi(O−t−COHは分子サイズが大きく、またHf[N(CHとの反応性は比較的低く、且つ自己分解し、膜中に炭素が残る可能性がある。さらには溶媒を使用しているため、膜中に炭素等が残留する可能性がある。またSi(O−t−COHは、融点が65℃の固体でやや扱いにくい。
【0010】
【発明が解決しようとする課題】
本発明は、ALD法によるハフニウムシリケート薄膜の製造方法に関する。さらに詳しくは、ALD法用の原料として特に求められている、蒸気圧が高く、分子サイズが小さく、酸素供給源やケイ素供給源と反応しやすい原料を提供し、且つそれを用いてALD法にてハフニウムシリケート薄膜を製造する方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者らは、Hf[N(CHの融点が28℃で、金属有機化合物のうちで最も分子サイズが小さく、蒸気圧が高く、水との反応が激しいこと、ならびにSi(OCHが液体で、水との反応が最も激しく、且つ分子サイズが小さく、蒸気圧が高いことを利用すれば、最も容易に生産性良く、良好なハフニウムシリケート薄膜が得られることを見いだし、本発明を完成するに至った。
【0012】
1分子の吸着面積の指標として、分子半径から計算された投影断面積を表1に示す。
【0013】
【表1】

Figure 0003627106
【0014】
表1によれば、Hf[N(CH1分子の吸着面積は、Hf[N(CやHf(O−t−Cの1/2である。よって、Hf[N(CH使用時の1サイクル当たりのスループットは、他の材料の約2倍となることが分かる。
また、Si(OCH1分子の吸着面積は、Si(OCやSi(O−t−COHの1/2以下である。よって、Si(OCH使用時の1サイクル当たりのスループットは、他の材料の約2倍となることが分かる。
【0015】
上記の各化合物の蒸気圧を表2に示す。
【0016】
【表2】
Figure 0003627106
【0017】
表2によれば、Hf[N(CHとHf(O−t−Cはほぼ同じ温度で高い蒸気圧を持ち、2Torrの圧力を与える温度は、Hf[N(Cよりも約70℃も低い。よって、Hf[N(CHは熱分解しにくい条件で供給しやすい。
また、Si(OCHの蒸気圧も非常に高いことが分かる。
【0018】
Hf[N(CHは酸素供給剤である水との反応性が高い。また酸素供給源である水と反応した場合、その副生成物はジメチルアミンNH(CHであるため、非常に高い蒸気圧を持ち、より安定で系外に排出されやすく、膜中にNやCが残りにくい。
【0019】
Si(OCHも酸化剤である水やオゾンとの反応性が、テトラエトキシシランSi(OCやトリス(ターシャリーブトキシ)シラノールSi(O−t−COHよりも高い。
【0020】
よって、ALD法にてハフニウムシリケート薄膜を形成する場合には、分子サイズが小さく、低温でも十分な蒸気圧を持ち、水との反応性が高い化合物である、Hf[N(CHとSi(OCHの組み合わせが最も適していることが分かる。
【0021】
酸化剤として水を便用した場合の反応式は、以下のとおりである。
Hf[N(CH+HO→Hf(OH)
Hf(OH)+Si(OCH→−HfOSi(OCH
−HfOSi(OCH+HO→−HfOSi(OH)
−HfOSi(OH)+Hf[N(CH→−HfOSiOHf[N(CH
以上の反応を繰り返すことにより、ハフニウムシリケート薄膜が形成される。
【0022】
酸化剤としてオゾンを使用した場合の反応式は、以下のとおりである。
Hf[N(CH+O→HfO
HfO+Si(OCH→−HfO・・・Si(OCH
−HfO・・・Si(OCH+O→−HfOSiO
−HfOSiO+Hf[N(CH→−HfOSiO・・・Hf[N(CH
以上の反応を繰り返すことにより、ハフニウムシリケート薄膜が形成される。
【0023】
本発明は、ALD法によるハフニウムシリケート薄膜の製造方法において、テトラキス(ジメチルアミノ)ハフニウムとテトラメトキシシランと酸化剤を原料として用いることを特徴とするハフニウムシリケート薄膜の製造方法である。
【0024】
本発明は、酸化剤が水であることを特徴とする上記のハフニウムシリケート薄膜の製造方法である。
【0025】
本発明は、酸化剤がオゾンであることを特徴とする上記のハフニウムシリケート薄膜の製造方法である。
【0026】
本発明は、順に、テトラキス(ジメチルアミノ)ハフニウム、酸化剤、テトラメトキシシラン、酸化剤を1サイクルとしてALD室に導入することを特徴とする上記のハフニウムシリケート薄膜の製造方法である。
【0027】
本発明は、テトラキス(ジメチルアミノ)ハフニウムの導入回数ならびにテトラメトキシシランの導入回数を任意に選択することにより、ハフニウムシリケート薄膜中のハフニウムとケイ素の比を所定の値にすることを特徴とする上記のハフニウムシリケート薄膜の製造方法である。
【0028】
【発明の実施の形態】
本発明のHf[N(CHの供給方法としては、次の方法がある。
▲1▼ソース温度を50〜120℃に保ち、発生する蒸気の自圧でベーパーソースマスフローコントローラーにより供給する。
▲2▼融点の28℃以上、好ましくは40℃以上にソース温度を保ち、液体とし、キャリアーガスをバブリングすることにより、Hf[N(CHを気化させる。
▲3▼ソース温度を28℃以上に加熱し液体として、45℃程度に加熱された液体マスフローコントローラーで供給し、気化器で全量気化する。
【0029】
本発明のSi(OCHおよび水の供給方法も、Hf[N(CHと同様な方法が使える。
【0030】
酸素供給源としては、水、オゾンを用いることができる。特に好ましくは水である。
【0031】
ハフニウムシリケート薄膜中のHf/Siを所定の比にするには、HfショットとSiショットの回数を適当に選べばよい。
【0032】
ALDの基板温度は150〜350℃である。150℃よりも低いと反応が完全に進行せず、350℃以上では自己分解反応が起きるので好ましくない。好ましくは、200〜300℃である。ALD室の反応は、0.001〜1Torrである。好ましくは、0.001〜0.1Torrである。
【0033】
ALD後に400〜700℃で熱処理し、膜中に存在するC,H,N,HO,OHなどの不純物をなくし、構造上の欠陥をなくすことが好ましい。
【0034】
【実施例1】
水を酸素供給源としたALD装置を図1に示した。
Hf[N(CHを入れたシリンダー1を76℃に加熱し、シリンダー内を純Hf[N(CH蒸気2.0Torrにし、仕込み弁を通してALD室5へ導いた。Si(OCHを入れたシリンダー2を21℃に加熱し、シリンダー内を純Si(OCH蒸気10Torrにし、仕込み弁を通してALD室5に導いた。水を入れたシリンダー3を12℃に加熱し、シリンダー内を純HO蒸気10Torrにし、仕込み弁を通してALD室5に導いた。上記、いずれの配管、弁はシリンダー温度よりも30℃高く保ち、蒸気の凝縮を防止した。これらのガスを順次導き、250℃のHF処理Si基板7上に吸着反応させた。パージガスとして配管4からArを導入した。ALD室は0.05Torrに排気ポンプ6により保った。
【0035】
そのやり方は、〔Hfショット(0.5秒)→Arパージ(2秒)→HOショット(0.2秒)→Arパージ(2秒)→Siショット(0.5秒)→Arパージ(2秒)→HOショット(0.2秒)→Arパージ(2秒)〕を1サイクルとし、このサイクルを25回繰り返したところ、約5nmのハフニウムシリケート薄膜が形成された。最後に60℃でアニールを行い、水や炭素を含まないアモルファスハフニウムシリケート膜を得た。
【0036】
【実施例2】
オゾンを酸素供給源としたALD装置を図2に示した。
Hf[N(CHを入れたシリンダー1を76℃に加熱し、シリンダー内を純Hf[N(CH蒸気2.0Torrにし、仕込み弁を通してALD室5へ導いた。Si(OCHを入れたシリンダー2を21℃に加熱し、シリンダー内を純Si(OCH蒸気10Torrにし、仕込み弁を通してALD室5に導いた。配管8を通してオゾンを10%含むN10Torrを仕込み弁を通してALD室へ導いた。上記、いずれの配管、弁はシリンダー温度よりも30℃高く保ち、蒸気の凝縮を防止した。これらのガスを順次導き、250℃のHF処理Si基板7上に吸着反応させた。パージガスとして配管4からArを導入した。ALD室は0.05Torrに排気ポンプ6により保った。
【0037】
そのやり方は、〔Hfショット(0.5秒)→Arパージ(2秒)→Oショット(0.2秒)→Arパージ(2秒)→Siショット(0.5秒)→Arパージ(2秒)→Oショット(0.2秒)→Arパージ(2秒)〕を1サイクルとし、このサイクルを25回繰り返したところ、約5nmのハフニウムシリケート薄膜が形成された。最後に600℃でアニールを行い、水や炭素を含まないアモルファスハフニウムシリケート膜を得た。
【0038】
【発明の効果】
本発明によればゲート絶縁膜において、基板界面SiOを形成せず、且つ水や炭素を含まないアモルファスのハフニウムシリケート極薄膜を得ることができる。
【図面の簡単な説明】
【図1】水を酸素供給源としたALD装置の図である。
【図2】オゾンを酸素供給源としたALD装置の図である。
【符号の説明】
1 Hf[N(CHを入れるシリンダー
2 Si(OCHを入れるシリンダー
3 水を入れるシリンダー
4 パージガスArを通す配管
5 ALD室
6 排気ポンプ
7 Si基板
8 O+Nを通す配管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a hafnium silicate film which is a gate insulating film of a semiconductor device.
[0002]
[Prior art]
At present, silicon dioxide is used as a main material as a gate insulating film of a semiconductor device. However, with the miniaturization of the gate length, the gate insulating film is required to be further thinned. As a solution, a material having a higher dielectric constant than silicon dioxide is required, and the limit due to the use of silicon dioxide is approaching.
As an insulating film material replacing silicon dioxide, hafnium silicate, zirconium silicate, hafnium oxide, zirconium oxide, lanthanum oxide, praseodymium oxide, and the like, which have a higher dielectric constant than silicon dioxide, have been studied. Among these, hafnium silicate is most expected as a film that maintains an amorphous state up to a high temperature, has a good film quality, and has few leaks.
[0003]
Examples of the thin film method for the gate insulating film include a sputtering method and an MOCVD method, but they cannot meet the further thinning. As a means for responding to this thinning, the ALD method capable of controlling the film thickness at the atomic and molecular level is promising.
In the ALD method, by supplying each source gas alternately instead of simultaneously, the surface adsorption and surface reaction of each source gas, which is an elementary process of CVD, are controlled at the monomolecular layer level, and an atomic layer or a molecular layer is formed. It is a method of growing every time. Therefore, what is particularly required as a raw material for the ALD method is that the vapor pressure is high, the molecular size is small, and it easily reacts with an oxygen supply source or a silicon supply source. If the molecular size is small, the amount of adsorbed moles of the monomolecular layer increases, which increases the throughput of the apparatus.
[0004]
In the MOCVD method, when a gate insulating film is deposited on a silicon substrate, a relatively high temperature is required. Therefore, the silicon substrate is oxidized by oxygen and ozone which are main oxygen supply sources, an interface layer is formed, and the film is thick. There is a problem of becoming. That is, when ozone or oxygen is used as the oxygen supply agent, since the source gases are supplied simultaneously, ozone comes into contact with the exposed substrate surface, and the surface is oxidized and an interface layer is formed. Therefore, when a gate insulating film is deposited on a silicon substrate by the MOCVD method, it is difficult to use ozone or oxygen as an oxygen supply agent, and a thin film cannot be expected.
However, in the ALD method in which each source gas is supplied alternately and the surface adsorption and surface reaction of each source gas on the substrate are controlled, the oxygen supply agent is supplied after the source gas is adsorbed on the substrate surface. Does not contact the substrate surface and does not form an interface layer. Examples of oxygen sources that are considered promising in the ALD method include water, hydrogen peroxide, ozone, and metal alkoxides.
[0005]
In general, the raw material compounds for ALD for mass production should have desirable properties at the time of supply. The molecular size is small, it easily reacts with water and metal alkoxide as the oxygen supply source, and is a pure product with high vapor pressure. It is stable at the temperature at the time and is liquid at around the room temperature, at least at the source temperature used.
[0006]
Although it is not an ALD method, in the 62nd Japan Society of Applied Physics Lecture Proceedings 12p-C-11 (2001), tetrakis (diethylamino) hafnium Hf [N (C 2 H 3 ) 2 ] 4 and silicon, which are Hf sources, are used. A hafnium silicate thin film is formed by MOCVD using tris (diethylamino) silane Si [N (C 2 H 5 ) 2 ] 3 H as a source and oxygen. However, the vapor pressure of Hf [N (C 2 H 5 ) 2 ] 4 is as low as 90 ° C./0.1 Torr as measured by the inventors. It has also been found that when the temperature is raised, the material is easily altered in the cylinder. Furthermore, it is difficult to say that it is a suitable raw material for the ALD method that has a large molecular size and is required to adsorb a monolayer.
[0007]
Hafnium chloride HfCl 4 is a solid, has a low vapor pressure, and contains chlorine in the film.
[0008]
Tetratertiary butoxyhafnium Hf (Ot-C 4 H 9 ) 4 has a high vapor pressure but a large molecular size. Chem. Vap. In Deposition, 2000, 6,297, an ALD method using tetratertiary butoxyzirconium Zr (Ot-C 4 H 9 ) 4 , which is an analog of Hf (Ot-C 4 H 9 ) 4, and water. A zirconium oxide film is formed at However, it has been clarified that Zr (Ot-C 4 H 9 ) 4 undergoes a self-reaction due to heat and a film is deposited in a chain, and Hf (Ot-C 4 H 9 ) 4 A similar phenomenon is expected to occur.
Therefore, it is difficult to say that the raw material is suitable for the ALD method that requires the surface adsorption and surface reaction of each raw material gas to be controlled at the monomolecular layer level.
[0009]
Chem. Mater. , 2001, 13, 2463, tetradecane (dimethylamino) hafnium Hf [N (CH 3 ) 2 ] 4 , tris (tertiary butoxy) silanol Si (Ot-C 4 H 9 ) 3 OH as a solvent. A hafnium silicate thin film is formed by ALD method. This reaction is an ALD of Hf [N (CH 3 ) 2 ] 4 and Si (Ot-C 4 H 9 ) 3 OH and does not use water. However, si (Ot-C 4 H 9 ) 3 OH has a large molecular size, is relatively low in reactivity with Hf [N (CH 3 ) 2 ] 4 and self-decomposes, so that carbon is not present in the film. It may remain. Furthermore, since a solvent is used, carbon or the like may remain in the film. Moreover, Si (Ot-C 4 H 9 ) 3 OH is a solid with a melting point of 65 ° C. and is somewhat difficult to handle.
[0010]
[Problems to be solved by the invention]
The present invention relates to a method for producing a hafnium silicate thin film by an ALD method. More specifically, it provides a raw material that is particularly required as a raw material for the ALD method, has a high vapor pressure, a small molecular size, and easily reacts with an oxygen supply source or a silicon supply source. And providing a method for producing a hafnium silicate thin film.
[0011]
[Means for Solving the Problems]
The inventors of the present invention have a melting point of Hf [N (CH 3 ) 2 ] 4 of 28 ° C., the smallest molecular size among metal organic compounds, a high vapor pressure, and a strong reaction with water. (OCH 3 ) 4 is a liquid, the reaction with water is the most intense, the molecular size is small, and the vapor pressure is high, so that a good hafnium silicate thin film can be obtained most easily with good productivity. As a result, the present invention has been completed.
[0012]
Table 1 shows the projected cross-sectional area calculated from the molecular radius as an index of the adsorption area of one molecule.
[0013]
[Table 1]
Figure 0003627106
[0014]
According to Table 1, the adsorption area of one molecule of Hf [N (CH 3 ) 2 ] 4 is 1 of Hf [N (C 2 H 5 ) 2 ] 4 or Hf (Ot-C 4 H 9 ) 4 . / 2. Therefore, it can be seen that the throughput per cycle when using Hf [N (CH 3 ) 2 ] 4 is about twice that of other materials.
In addition, the adsorption area of one molecule of Si (OCH 3 ) 4 is ½ or less of Si (OC 2 H 5 ) 4 or Si (Ot—C 4 H 9 ) 3 OH. Therefore, it can be seen that the throughput per cycle when using Si (OCH 3 ) 4 is about twice that of other materials.
[0015]
Table 2 shows the vapor pressure of each compound.
[0016]
[Table 2]
Figure 0003627106
[0017]
According to Table 2, Hf [N (CH 3 ) 2 ] 4 and Hf (Ot-C 4 H 9 ) 4 have a high vapor pressure at almost the same temperature, and the temperature giving a pressure of 2 Torr is Hf [ N (C 2 H 5 ) 2 ] 4 is about 70 ° C. lower. Therefore, Hf [N (CH 3 ) 2 ] 4 is easy to supply under conditions that are difficult to thermally decompose.
It can also be seen that the vapor pressure of Si (OCH 3 ) 4 is very high.
[0018]
Hf [N (CH 3 ) 2 ] 4 is highly reactive with water as an oxygen supply agent. In addition, when it reacts with water, which is an oxygen supply source, the by-product is dimethylamine NH (CH 3 ) 2 , so it has a very high vapor pressure, is more stable and easily discharged out of the system, and enters the membrane. N and C are hard to remain.
[0019]
Si (OCH 3 ) 4 is also an oxidizing agent such as water and ozone. Tetraethoxysilane Si (OC 2 H 5 ) 4 and tris (tertiary butoxy) silanol Si (Ot-C 4 H 9 ) Higher than 3 OH.
[0020]
Therefore, when a hafnium silicate thin film is formed by the ALD method, Hf [N (CH 3 ) 2 ], which is a compound having a small molecular size, a sufficient vapor pressure even at a low temperature, and a high reactivity with water. It can be seen that the combination of 4 and Si (OCH 3 ) 4 is most suitable.
[0021]
The reaction formula when water is used as an oxidizing agent is as follows.
Hf [N (CH 3 ) 2 ] 4 + H 2 O → Hf (OH) 4
Hf (OH) 4 + Si (OCH 3 ) 4 → -HfOSi (OCH 3 ) x
-HfOSi (OCH 3 ) x + H 2 O → -HfOSi (OH) x
-HfOSi (OH) x + Hf [N (CH 3 ) 2 ] 4 → -HfOSiOHf [N (CH 3 ) 2 ] x
By repeating the above reaction, a hafnium silicate thin film is formed.
[0022]
The reaction formula when ozone is used as the oxidant is as follows.
Hf [N (CH 3 ) 2 ] 4 + O 3 → HfO 2
HfO 2 + Si (OCH 3 ) 4 → -HfO 2 ... Si (OCH 3 ) 4
-HfO 2 ... Si (OCH 3 ) 4 + O 3 → −HfOSiO x
−HfOSiO x + Hf [N (CH 3 ) 2 ] 4 → −HfOSiO x ... Hf [N (CH 3 ) 2 ] 4
By repeating the above reaction, a hafnium silicate thin film is formed.
[0023]
The present invention is a method for producing a hafnium silicate thin film characterized by using tetrakis (dimethylamino) hafnium, tetramethoxysilane, and an oxidizing agent as raw materials in a method for producing a hafnium silicate thin film by an ALD method.
[0024]
The present invention is the above method for producing a hafnium silicate thin film, wherein the oxidizing agent is water.
[0025]
The present invention is the above method for producing a hafnium silicate thin film, wherein the oxidizing agent is ozone.
[0026]
The present invention is the above method for producing a hafnium silicate thin film, wherein tetrakis (dimethylamino) hafnium, an oxidizing agent, tetramethoxysilane, and an oxidizing agent are sequentially introduced into the ALD chamber as one cycle.
[0027]
The present invention is characterized in that the ratio of hafnium and silicon in the hafnium silicate thin film is set to a predetermined value by arbitrarily selecting the number of introductions of tetrakis (dimethylamino) hafnium and the number of introductions of tetramethoxysilane. This is a method for producing a hafnium silicate thin film.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
The supply method of Hf [N (CH 3 ) 2 ] 4 of the present invention includes the following method.
(1) Keep the source temperature at 50 to 120 ° C., and supply with the vapor source mass flow controller with the self-pressure of the generated steam.
( 2 ) Hf [N (CH 3 ) 2 ] 4 is vaporized by maintaining the source temperature at a melting point of 28 ° C. or higher, preferably 40 ° C. or higher, and bubbling the carrier gas.
(3) The source temperature is heated to 28 ° C. or higher and supplied as a liquid by a liquid mass flow controller heated to about 45 ° C., and the whole is vaporized by a vaporizer.
[0029]
A method similar to that for Hf [N (CH 3 ) 2 ] 4 can be used as the method for supplying Si (OCH 3 ) 4 and water of the present invention.
[0030]
Water or ozone can be used as the oxygen supply source. Particularly preferred is water.
[0031]
In order to set Hf / Si in the hafnium silicate thin film to a predetermined ratio, the number of Hf shots and Si shots may be appropriately selected.
[0032]
The substrate temperature of ALD is 150-350 ° C. If it is lower than 150 ° C., the reaction does not proceed completely, and if it is 350 ° C. or higher, a self-decomposition reaction occurs, which is not preferable. Preferably, it is 200-300 degreeC. The reaction in the ALD chamber is 0.001 to 1 Torr. Preferably, it is 0.001 to 0.1 Torr.
[0033]
It is preferable to perform heat treatment at 400 to 700 ° C. after ALD to eliminate impurities such as C, H, N, H 2 O, and OH present in the film and to eliminate structural defects.
[0034]
[Example 1]
An ALD apparatus using water as an oxygen supply source is shown in FIG.
The cylinder 1 containing Hf [N (CH 3 ) 2 ] 4 is heated to 76 ° C., the inside of the cylinder is made pure Hf [N (CH 3 ) 2 ] 4 steam 2.0 Torr, and led to the ALD chamber 5 through the charging valve. It was. The cylinder 2 containing Si (OCH 3 ) 4 was heated to 21 ° C., the inside of the cylinder was made pure Si (OCH 3 ) 4 vapor 10 Torr, and led to the ALD chamber 5 through a charging valve. The cylinder 3 containing water was heated to 12 ° C., the inside of the cylinder was made pure H 2 O vapor 10 Torr, and led to the ALD chamber 5 through a charging valve. Any of the above pipes and valves were kept 30 ° C. higher than the cylinder temperature to prevent vapor condensation. These gases were sequentially guided to cause an adsorption reaction on the HF-treated Si substrate 7 at 250 ° C. Ar was introduced from the pipe 4 as a purge gas. The ALD chamber was kept at 0.05 Torr by the exhaust pump 6.
[0035]
The method is [Hf shot (0.5 sec) → Ar purge (2 sec) → H 2 O shot (0.2 sec) → Ar purge (2 sec) → Si shot (0.5 sec) → Ar purge (2 seconds) → H 2 O shot (0.2 seconds) → Ar purge (2 seconds)]. This cycle was repeated 25 times. As a result, a hafnium silicate thin film of about 5 nm was formed. Finally, annealing was performed at 60 ° C. to obtain an amorphous hafnium silicate film containing no water or carbon.
[0036]
[Example 2]
An ALD apparatus using ozone as an oxygen supply source is shown in FIG.
The cylinder 1 containing Hf [N (CH 3 ) 2 ] 4 is heated to 76 ° C., the inside of the cylinder is made pure Hf [N (CH 3 ) 2 ] 4 steam 2.0 Torr, and led to the ALD chamber 5 through the charging valve. It was. The cylinder 2 containing Si (OCH 3 ) 4 was heated to 21 ° C., the inside of the cylinder was made pure Si (OCH 3 ) 4 vapor 10 Torr, and led to the ALD chamber 5 through a charging valve. N 2 10 Torr containing 10% ozone was introduced through the pipe 8 and led to the ALD chamber through the valve. Any of the above pipes and valves were kept 30 ° C. higher than the cylinder temperature to prevent vapor condensation. These gases were sequentially guided to cause an adsorption reaction on the HF-treated Si substrate 7 at 250 ° C. Ar was introduced from the pipe 4 as a purge gas. The ALD chamber was kept at 0.05 Torr by the exhaust pump 6.
[0037]
The method is [Hf shot (0.5 sec) → Ar purge (2 sec) → O 3 shot (0.2 sec) → Ar purge (2 sec) → Si shot (0.5 sec) → Ar purge ( 2 seconds) → O 3 shot (0.2 seconds) → Ar purge (2 seconds)], and this cycle was repeated 25 times. As a result, a hafnium silicate thin film of about 5 nm was formed. Finally, annealing was performed at 600 ° C. to obtain an amorphous hafnium silicate film containing no water or carbon.
[0038]
【The invention's effect】
According to the present invention, it is possible to obtain an amorphous hafnium silicate ultrathin film that does not form the substrate interface SiO 2 and does not contain water or carbon in the gate insulating film.
[Brief description of the drawings]
FIG. 1 is a diagram of an ALD apparatus using water as an oxygen supply source.
FIG. 2 is a diagram of an ALD apparatus using ozone as an oxygen supply source.
[Explanation of symbols]
1 Hf [N (CH 3 ) 2 ] 4 Cylinder 2 Si (OCH 3 ) 4 Cylinder 3 Water Cylinder 4 Purge Gas Ar Pipe 5 ALD Chamber 6 Exhaust Pump 7 Si Substrate 8 O 3 + N 2 Piping through

Claims (5)

原子層吸着堆積法(ALD法)によるハフニウムシリケート薄膜の製造方法において、テトラキス(ジメチルアミノ)ハフニウムとテトラメトキシシランと酸化剤を原料として用いることを特徴とする原子層吸着堆積法によるハフニウムシリケート薄膜の製造方法。In a method for producing a hafnium silicate thin film by an atomic layer adsorption deposition method (ALD method), tetrakis (dimethylamino) hafnium, tetramethoxysilane, and an oxidizing agent are used as raw materials. Production method. 酸化剤が水であることを特徴とする請求項1記載の原子層吸着堆積法によるハフニウムシリケート薄膜の製造方法。2. The method for producing a hafnium silicate thin film by an atomic layer adsorption deposition method according to claim 1, wherein the oxidizing agent is water. 酸化剤がオゾンであることを特徴とする請求項1記載の原子層吸着堆積法によるハフニウムシリケート薄膜の製造方法。The method for producing a hafnium silicate thin film by an atomic layer adsorption deposition method according to claim 1, wherein the oxidizing agent is ozone. 順に、テトラキス(ジメチルアミノ)ハフニウム、酸化剤、テトラメトキシシラン、酸化剤を1サイクルとしてALD室に導入することを特徴とする請求項1〜3に記載の原子層吸着堆積法によるハフニウムシリケート薄膜の製造方法。The tetrakis (dimethylamino) hafnium, the oxidizing agent, the tetramethoxysilane, and the oxidizing agent are sequentially introduced into the ALD chamber as one cycle, and the hafnium silicate thin film by the atomic layer adsorption deposition method according to claim 1, Production method. テトラキス(ジメチルアミノ)ハフニウムの導入回数ならびにテトラメトキシシランの導入回数を任意に選択することにより、ハフニウムシリケート薄膜中のハフニウムとケイ素の比を所定の値にすることを特徴とする請求項4に記載の原子層吸着堆積法によるハフニウムシリケート薄膜の製造方法。5. The ratio of hafnium to silicon in the hafnium silicate thin film is set to a predetermined value by arbitrarily selecting the number of tetrakis (dimethylamino) hafnium introductions and the number of introductions of tetramethoxysilane. Method of hafnium silicate thin film by atomic layer adsorption deposition method.
JP2002191265A 2002-05-27 2002-05-27 Method for producing hafnium silicate thin film by atomic layer adsorption deposition Expired - Fee Related JP3627106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191265A JP3627106B2 (en) 2002-05-27 2002-05-27 Method for producing hafnium silicate thin film by atomic layer adsorption deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191265A JP3627106B2 (en) 2002-05-27 2002-05-27 Method for producing hafnium silicate thin film by atomic layer adsorption deposition

Publications (2)

Publication Number Publication Date
JP2003347297A JP2003347297A (en) 2003-12-05
JP3627106B2 true JP3627106B2 (en) 2005-03-09

Family

ID=29774390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191265A Expired - Fee Related JP3627106B2 (en) 2002-05-27 2002-05-27 Method for producing hafnium silicate thin film by atomic layer adsorption deposition

Country Status (1)

Country Link
JP (1) JP3627106B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112485B2 (en) * 2002-08-28 2006-09-26 Micron Technology, Inc. Systems and methods for forming zirconium and/or hafnium-containing layers
US6958300B2 (en) * 2002-08-28 2005-10-25 Micron Technology, Inc. Systems and methods for forming metal oxides using metal organo-amines and metal organo-oxides
US7041609B2 (en) 2002-08-28 2006-05-09 Micron Technology, Inc. Systems and methods for forming metal oxides using alcohols
WO2004107451A1 (en) * 2003-05-29 2004-12-09 Nec Corporation Semiconductor device fitted with mis type field-effect transistor, process for producing the same and method of forming metal oxide film
JP3956225B2 (en) * 2003-08-26 2007-08-08 株式会社トリケミカル研究所 Film formation method
JP2005203730A (en) * 2003-12-18 2005-07-28 Seiko Epson Corp Insulating film, semiconductor element, electron device, and electronic apparatus
JP2005191482A (en) * 2003-12-26 2005-07-14 Semiconductor Leading Edge Technologies Inc Semiconductor device and its manufacturing method
JP4526995B2 (en) * 2004-04-09 2010-08-18 東京エレクトロン株式会社 Method for forming gate insulating film, computer-readable storage medium, and computer program
JP2005317583A (en) 2004-04-27 2005-11-10 Renesas Technology Corp Semiconductor device and its manufacturing method
US20050252449A1 (en) * 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
KR101304395B1 (en) * 2004-05-12 2013-09-10 어플라이드 머티어리얼스, 인코포레이티드 APPARATUSES AND METHODS FOR ATOMIC LAYER DEPOSITION OF HAFNIUM-CONTAINING HIGH-k DIELECTRIC MATERIALS
US7651729B2 (en) 2004-05-14 2010-01-26 Samsung Electronics Co., Ltd. Method of fabricating metal silicate layer using atomic layer deposition technique
KR100689824B1 (en) * 2004-05-14 2007-03-08 삼성전자주식회사 Method of manufacturing a metal silicate layer using atomic layer deposition technique
KR100581993B1 (en) * 2004-06-09 2006-05-22 삼성전자주식회사 Method of forming material using atomic layer deposition
KR100741983B1 (en) * 2004-07-05 2007-07-23 삼성전자주식회사 Semiconductor device having a gate insulating layer of a high dielectric constant and method of manufacturing the same
KR100640638B1 (en) 2005-03-10 2006-10-31 삼성전자주식회사 Method for forming high dielectric film by atomic layer deposition and method of fabricating semiconductor device having high dielectric film
US8034727B2 (en) 2005-10-14 2011-10-11 Nec Corporation Method and apparatus for manufacturing semiconductor devices
KR100760962B1 (en) 2006-03-14 2007-09-21 학교법인 포항공과대학교 Ultra thin Hf-silicate film growth by atomic layer chemical vapor deposition using a new combination of precursors: metal-alkylamide and metal-alkoxide
US8921821B2 (en) 2013-01-10 2014-12-30 Micron Technology, Inc. Memory cells
US11193206B2 (en) * 2017-03-15 2021-12-07 Versum Materials Us, Llc Formulation for deposition of silicon doped hafnium oxide as ferroelectric materials
US11081337B2 (en) * 2017-03-15 2021-08-03 Versum Materials U.S., LLC Formulation for deposition of silicon doped hafnium oxide as ferroelectric materials
KR102563298B1 (en) * 2021-01-18 2023-08-03 주식회사 유진테크 Method for removing impurities in thin film and substrate processing apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727085B2 (en) * 2000-08-11 2011-07-20 東京エレクトロン株式会社 Substrate processing apparatus and processing method
KR100815009B1 (en) * 2000-09-28 2008-03-18 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Vapor deposition of oxides, silicates, and phosphates
US7005392B2 (en) * 2001-03-30 2006-02-28 Advanced Technology Materials, Inc. Source reagent compositions for CVD formation of gate dielectric thin films using amide precursors and method of using same
JP4034627B2 (en) * 2001-09-28 2008-01-16 テキサス インスツルメンツ インコーポレイテツド Integrated circuit and manufacturing method thereof
JP2003124460A (en) * 2001-10-15 2003-04-25 Atsushi Ogura Gate oxide film, element, and method and material for forming gate oxide film
JP3915054B2 (en) * 2002-03-05 2007-05-16 株式会社トリケミカル研究所 Film forming material, film forming method, and element

Also Published As

Publication number Publication date
JP2003347297A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
JP3627106B2 (en) Method for producing hafnium silicate thin film by atomic layer adsorption deposition
JP7092709B2 (en) High temperature atomic layer deposition of silicon-containing film
JP4704618B2 (en) Method for producing zirconium oxide film
US9966252B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP3602072B2 (en) Method for producing silicon-containing solid thin films by atomic layer deposition using hexachlorodisilane and ammonia
TWI517215B (en) Thin film forming method and film forming apparatus
JP5467007B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
TWI523104B (en) Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
JP2008038254A (en) Radical-assisted batch film deposition
JP2016500762A (en) Method for producing silicon-containing thin film
JP6681398B2 (en) Zirconium-containing film-forming composition for depositing zirconium-containing film
JP2006505954A (en) Nitride formation of high-k dielectrics
JP5982045B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and gas supply system
KR20210055101A (en) High temperature atomic layer deposition of silicon-containing films
JP2004296820A (en) Method of manufacturing semiconductor device and substrate treatment equipment
JP3915054B2 (en) Film forming material, film forming method, and element
JP4032889B2 (en) Insulating film formation method
JP2011018718A (en) Silicon material for vapor phase deposition having dialkylamino group, and method of manufacturing silicon-containing thin film using the material
TW202138379A (en) Organoamino-functionalized cyclic oligosiloxanes for deposition of silicon-containing films
TW201443274A (en) Deposition of films using disiloxane precursors
KR102402779B1 (en) Method for preparing insulating layer including silicon precursor pressurized dosing step
KR20230074306A (en) Method for producing yttrium oxide-containing thin film by atomic layer deposition
WO2024071205A1 (en) Method for forming silicon oxide film
JP4353379B2 (en) Film forming material, film forming method, and element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees