KR20230074306A - Method for producing yttrium oxide-containing thin film by atomic layer deposition - Google Patents

Method for producing yttrium oxide-containing thin film by atomic layer deposition Download PDF

Info

Publication number
KR20230074306A
KR20230074306A KR1020237016767A KR20237016767A KR20230074306A KR 20230074306 A KR20230074306 A KR 20230074306A KR 1020237016767 A KR1020237016767 A KR 1020237016767A KR 20237016767 A KR20237016767 A KR 20237016767A KR 20230074306 A KR20230074306 A KR 20230074306A
Authority
KR
South Korea
Prior art keywords
yttrium
thin film
yttrium oxide
tris
atomic layer
Prior art date
Application number
KR1020237016767A
Other languages
Korean (ko)
Inventor
아키히로 니시다
아츠시 야마시타
Original Assignee
가부시키가이샤 아데카
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 아데카 filed Critical 가부시키가이샤 아데카
Publication of KR20230074306A publication Critical patent/KR20230074306A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0442Anodisation, Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

트리스(제2부틸시클로펜타디에닐)이트륨을 포함하는 원료 가스를 처리 분위기에 도입하여, 기체 상에 트리스(제2부틸시클로펜타디에닐)이트륨을 퇴적시키는 공정과, 수증기를 포함하는 반응성 가스를 처리 분위기에 도입하여, 상기 기체 상에 퇴적시킨 트리스(제2부틸시클로펜타디에닐)이트륨과 반응시킴으로써 이트륨을 산화시키는 공정을 포함하는, 원자층 퇴적법에 의한 산화이트륨 함유 박막의 제조 방법이다.A step of introducing a raw material gas containing tris(b-butylcyclopentadienyl)yttrium into a treatment atmosphere to deposit tris(b-butylcyclopentadienyl)yttrium on the gas, and a reactive gas containing water vapor A method for producing a thin film containing yttrium oxide by an atomic layer deposition method, including a step of oxidizing yttrium by introducing it into a treatment atmosphere and reacting with tris(tertiary butylcyclopentadienyl)yttrium deposited on the substrate.

Description

원자층 퇴적법에 의한 산화이트륨 함유 박막의 제조 방법 {METHOD FOR PRODUCING YTTRIUM OXIDE-CONTAINING THIN FILM BY ATOMIC LAYER DEPOSITION}Manufacturing method of yttrium oxide-containing thin film by atomic layer deposition {METHOD FOR PRODUCING YTTRIUM OXIDE-CONTAINING THIN FILM BY ATOMIC LAYER DEPOSITION}

본 발명은, 원자층 퇴적법에 의한 산화이트륨 함유 박막의 제조 방법에 관한 것이다.The present invention relates to a method for producing a thin film containing yttrium oxide by an atomic layer deposition method.

산화이트륨 박막은 높은 내열성, 내플라즈마성 및 광투과성을 갖고 있어, 내열용 보호막, 내플라즈마용 보호막, 광학 박막 등에 사용할 수 있음이 알려져 있다.It is known that the yttrium oxide thin film has high heat resistance, plasma resistance, and light transmittance, and can be used for a heat-resistant protective film, a plasma-resistant protective film, and an optical thin film.

상기 박막의 제조법으로는, 스퍼터링법, 이온 플레이팅법, 도포 열분해법이나 졸 겔법 등의 MOD 법, CVD 법, 원자층 퇴적법 (이하, ALD 법이라고 기재하기도 한다) 을 들 수 있고, 얻어지는 박막의 품질이 양호하기 때문에 CVD 법이나 ALD 법이 주로 사용된다.Examples of the thin film production method include a sputtering method, an ion plating method, an MOD method such as a coating pyrolysis method and a sol-gel method, a CVD method, and an atomic layer deposition method (hereinafter sometimes referred to as an ALD method). Since the quality is good, the CVD method or the ALD method is mainly used.

특허문헌 1 에는, 트리스(제2부틸시클로펜타디에닐)이트륨을 원료로 하고, 질소 가스 및 산소 가스를 사용한 CVD 법에 의한 산화이트륨 박막의 제조 방법이 개시되어 있다.Patent Document 1 discloses a method for producing a yttrium oxide thin film by a CVD method using tris(tertiary butylcyclopentadienyl)yttrium as a raw material and using nitrogen gas and oxygen gas.

또한, 특허문헌 2 에는, 트리스(제2부틸시클로펜타디에닐)이트륨을 CVD 법이나 ALD 법에서 사용할 수 있음이 기재되어 있다. 또한, 동 문헌에서는, 트리스(제2부틸시클로펜타디에닐)이트륨을 CVD 법에서 사용하는 경우에, 필요에 따라 사용되는 반응성 가스로서 산소, 오존, 이산화질소, 일산화질소, 수증기, 과산화수소, 수소, 모노알킬아민, 디알킬아민, 트리알킬아민, 알킬렌디아민 등의 유기 아민 화합물, 하이드라진, 암모니아 등을 들 수 있다. 이 문헌에 개시되어 있는 방법과 같이, 트리스(제2부틸시클로펜타디에닐)이트륨을 사용하여 산화이트륨 함유 박막을 CVD 법에 의해 제조하는 경우, 250 ℃ ∼ 800 ℃ 의 반응 온도가 필요하다. 특히, 실시예에 기재되어 있는 바와 같은 양질의 산화이트륨 함유 박막을 CVD 법에 의해 제조하는 경우에는, 450 ℃ 전후의 반응 온도가 필요하였다.Further, Patent Literature 2 describes that tris(tertiary butylcyclopentadienyl)yttrium can be used in a CVD method or an ALD method. Also, in the same document, when tris(tertiary butylcyclopentadienyl)yttrium is used in the CVD method, oxygen, ozone, nitrogen dioxide, nitrogen monoxide, water vapor, hydrogen peroxide, hydrogen, mono and organic amine compounds such as alkylamines, dialkylamines, trialkylamines, and alkylenediamines, hydrazine, and ammonia. As in the method disclosed in this document, when a thin film containing yttrium oxide is produced by a CVD method using tris(tertiary butylcyclopentadienyl)yttrium, a reaction temperature of 250°C to 800°C is required. In particular, in the case of producing a high-quality yttrium oxide-containing thin film by the CVD method as described in Examples, a reaction temperature of around 450°C was required.

일본 공개특허공보 2008-274374호Japanese Unexamined Patent Publication No. 2008-274374 일본 공개특허공보 2005-068074호Japanese Unexamined Patent Publication No. 2005-068074

종래에 알려진 방법에서 산화이트륨 함유 박막을 CVD 법에 의해 제조하는 경우에는, 이트륨 원자 공급원이 되는 원료를 기화시키기 위해서 큰 에너지가 필요하다. 또한, 이트륨 원자 공급원이 되는 원료와 반응성 가스의 반응성이 낮아, 450 ℃ 전후의 반응 온도가 필요해지므로, 낮은 반응 온도에서 양질의 산화이트륨 함유 박막을 제조하기가 곤란하였다.In the case of manufacturing a yttrium oxide-containing thin film by a CVD method in a conventionally known method, a large amount of energy is required to vaporize a raw material serving as a source of yttrium atoms. In addition, since the reactivity of the raw material serving as a source of yttrium atoms and the reactive gas is low, a reaction temperature of around 450° C. is required, making it difficult to manufacture a high-quality yttrium oxide-containing thin film at a low reaction temperature.

본 발명자들은, 검토를 거듭한 결과, 특정한 공정을 갖는 원자층 퇴적법에 의한, 산화이트륨 함유 박막의 제조 방법이 상기 과제를 해결할 수 있음을 알아내어, 본 발명에 도달하였다.As a result of repeated studies, the present inventors have found that a method for producing a yttrium oxide-containing thin film by an atomic layer deposition method having a specific process can solve the above problems, and reached the present invention.

본 발명은, (A) 트리스(제2부틸시클로펜타디에닐)이트륨을 포함하는 원료 가스를 처리 분위기에 도입하여, 기체 상에 트리스(제2부틸시클로펜타디에닐)이트륨을 퇴적시키는 공정 (이하, (A) 공정으로 약칭하는 경우가 있다) 과, (B) 수증기를 포함하는 반응성 가스를 처리 분위기에 도입하여, 상기 기체 상에 퇴적시킨 트리스(제2부틸시클로펜타디에닐)이트륨과 반응시킴으로써 이트륨을 산화시키는 공정 (이하, (B) 공정으로 약칭하는 경우가 있다) 을 포함하는, 원자층 퇴적법에 의한 산화이트륨 함유 박막의 제조 방법을 제공하는 것이다.The present invention provides (A) a step of introducing a source gas containing tris(tertiary butylcyclopentadienyl)yttrium into a treatment atmosphere to deposit tris(tertiary butylcyclopentadienyl)yttrium on the gas (hereinafter , (sometimes abbreviated as step (A)) and (B) introducing a reactive gas containing water vapor into the treatment atmosphere and reacting with tris(tertiary butylcyclopentadienyl)yttrium deposited on the gas. To provide a method for producing a thin film containing yttrium oxide by an atomic layer deposition method, including a step of oxidizing yttrium (hereinafter sometimes abbreviated as step (B)).

본 발명에 따르면, 낮은 반응 온도에서 잔류 탄소가 적어 품질이 양호한 평활한 산화이트륨 함유 박막을 생산성 좋게 제조할 수 있다.According to the present invention, a smooth yttrium oxide-containing thin film of good quality with low residual carbon can be manufactured with high productivity at a low reaction temperature.

도 1 은, 본 발명에 관련된 산화이트륨 함유 박막의 제조 방법의 일례를 나타내는 플로우 차트이다.
도 2 는, 본 발명에 관련된 산화이트륨 함유 박막의 제조 방법에 사용되는 ALD 법용 장치의 일례를 나타내는 개요도이다.
도 3 은, 본 발명에 관련된 산화이트륨 함유 박막의 제조 방법에 사용되는 ALD 법용 장치의 다른 예를 나타내는 개요도이다.
도 4 는, 본 발명에 관련된 산화이트륨 함유 박막의 제조 방법에 사용되는 ALD 법용 장치의 다른 예를 나타내는 개요도이다.
도 5 는, 본 발명에 관련된 산화이트륨 함유 박막의 제조 방법에 사용되는 ALD 법용 장치의 다른 예를 나타내는 개요도이다.
1 is a flowchart showing an example of a method for producing a yttrium oxide-containing thin film according to the present invention.
Fig. 2 is a schematic view showing an example of an ALD method apparatus used in the method for producing a yttrium oxide-containing thin film according to the present invention.
Fig. 3 is a schematic diagram showing another example of an ALD method apparatus used in the method for producing a yttrium oxide-containing thin film according to the present invention.
Fig. 4 is a schematic diagram showing another example of an ALD method apparatus used in the method for producing a yttrium oxide-containing thin film according to the present invention.
Fig. 5 is a schematic view showing another example of an ALD method apparatus used in the method for producing a yttrium oxide-containing thin film according to the present invention.

본 발명의 원자층 퇴적법에 의한 산화이트륨 함유 박막의 제조 방법은, 주지된 일반적인 원자층 퇴적법과 동일한 수순을 사용할 수 있지만, 후술하는 (A) 공정과 (B) 공정을 조합하는 것을 필수로 하는 것이 본 발명의 특징이다.The method for producing a yttrium oxide-containing thin film by the atomic layer deposition method of the present invention can use the same procedure as the well-known general atomic layer deposition method, but it is essential to combine the steps (A) and (B) described later That is a feature of the present invention.

본 발명의 제조 방법에 있어서의 (A) 공정은, 트리스(제2부틸시클로펜타디에닐)이트륨을 포함하는 원료 가스를 처리 분위기에 도입하여, 기체 상에 트리스(제2부틸시클로펜타디에닐)이트륨을 퇴적시키는 공정이다. 여기서, 「퇴적」이란, 기체 상에 트리스(제2부틸시클로펜타디에닐)이트륨이 흡착되어 있는 것을 포함하는 개념을 나타낸다. (A) 공정에 있어서, 트리스(제2부틸시클로펜타디에닐)이트륨을 포함하는 원료 가스를 사용하고, 이것을 (B) 공정과 조합함으로써, 낮은 반응 온도에서 양질의 산화이트륨 함유 박막을 제조할 수 있다는 효과가 있다. 이 공정에 있어서의 트리스(제2부틸시클로펜타디에닐)이트륨을 포함하는 원료 가스는, 트리스(제2부틸시클로펜타디에닐)이트륨을 90 체적% 이상 포함하는 것이 바람직하고, 99 체적% 이상인 것이 더욱 바람직하다.Step (A) in the production method of the present invention introduces a raw material gas containing tris(tertiary butylcyclopentadienyl)yttrium into a treatment atmosphere, and in the gas phase, tris(tertiary butylcyclopentadienyl) This is the process of depositing yttrium. Here, "deposit" refers to a concept including adsorption of tris(tertiary butylcyclopentadienyl)yttrium on a substrate. In step (A), by using a source gas containing tris(tertiary butylcyclopentadienyl)yttrium and combining this with step (B), a high-quality yttrium oxide-containing thin film can be produced at a low reaction temperature. There is an effect that there is. The raw material gas containing tris(tertiary butylcyclopentadienyl)yttrium in this step preferably contains 90 vol% or more of tris(tertiary butylcyclopentadienyl)yttrium, and preferably 99 vol% or more. more preferable

(A) 공정에 있어서의 트리스(제2부틸시클로펜타디에닐)이트륨을 기화시키는 방법으로는, 특별히 한정되는 것이 아니라, 주지된 일반적인 원자층 퇴적법에 사용되는 유기 금속 화합물의 기화 방법으로 실시할 수 있다. 예를 들어, 도 2 에 나타내는 ALD 법용 장치의 원료 용기 내에서 가열이나 감압시킴으로써 기화시킬 수 있다. 가열할 때의 온도는 20 ℃ ∼ 200 ℃ 의 범위가 바람직하다. 또한, (A) 공정에 있어서, 기화시킨 트리스(제2부틸시클로펜타디에닐)이트륨을 기체 상에 퇴적시킬 때의 기체 온도는 20 ℃ ∼ 300 ℃ 의 범위가 바람직하고, 150 ℃ ∼ 250 ℃ 가 보다 바람직하다.The method of vaporizing tris(tertiary butylcyclopentadienyl)yttrium in step (A) is not particularly limited, and can be carried out by vaporizing an organometallic compound used in a well-known general atomic layer deposition method. can For example, it can be vaporized by heating or reducing pressure within the raw material container of the ALD method apparatus shown in FIG. 2 . As for the temperature at the time of heating, the range of 20 degreeC - 200 degreeC is preferable. Further, in step (A), the gas temperature at the time of depositing the vaporized tris(tertiary butylcyclopentadienyl)yttrium on the substrate is preferably in the range of 20°C to 300°C, and 150°C to 250°C. more preferable

본 발명에 있어서의 상기 기체의 재질로는, 예를 들어 실리콘 ; 인듐비소, 인듐갈륨비소, 산화규소, 질화규소, 탄화규소, 산화알루미늄, 질화알루미늄, 산화탄탈, 질화탄탈, 산화티탄, 질화티탄, 탄화티탄, 산화루테늄, 산화지르코늄, 산화하프늄, 산화란탄, 질화갈륨 등의 세라믹스 ; 유리 ; 백금, 루테늄, 알루미늄, 구리, 니켈, 코발트, 텅스텐, 몰리브덴 등의 금속을 들 수 있다. 기체의 형상으로는, 판 형상, 구 (球) 형상, 섬유 형상, 인편 (鱗片) 형상을 들 수 있다. 기체 표면은, 평면이어도 되고, 트렌치 구조 등의 삼차원 구조로 되어 있어도 된다.As the material of the base in the present invention, for example, silicon; Indium arsenic, indium gallium arsenic, silicon oxide, silicon nitride, silicon carbide, aluminum oxide, aluminum nitride, tantalum oxide, tantalum nitride, titanium oxide, titanium nitride, titanium carbide, ruthenium oxide, zirconium oxide, hafnium oxide, lanthanum oxide, gallium nitride ceramics such as; glass ; Metals, such as platinum, ruthenium, aluminum, copper, nickel, cobalt, tungsten, and molybdenum, are mentioned. Examples of the shape of the substrate include a plate shape, a spherical shape, a fiber shape, and a scale shape. The substrate surface may be flat or may have a three-dimensional structure such as a trench structure.

본 발명의 제조 방법에 있어서의 (B) 공정은, 수증기를 포함하는 반응성 가스를 처리 분위기에 도입하여, 상기 기체 상에 퇴적시킨 트리스(제2부틸시클로펜타디에닐)이트륨과 반응시킴으로써 이트륨을 산화시키는 공정이다. (B) 공정에 있어서, 수증기를 포함하는 반응성 가스를 사용함으로써, 기체나 주변 부재에 대한 데미지를 줄일 수 있다는 효과가 있다.Step (B) in the production method of the present invention introduces a reactive gas containing water vapor into the treatment atmosphere, and reacts with tris(tertiary butylcyclopentadienyl)yttrium deposited on the gas to oxidize yttrium. It is a process of making In step (B), by using a reactive gas containing water vapor, there is an effect that damage to the body or surrounding members can be reduced.

이 공정에 있어서의 수증기를 포함하는 반응성 가스는, 수증기로 이루어지는 가스여도 되고, 아르곤, 질소, 산소, 수소 등의 가스와의 혼합 가스여도 된다. 혼합 가스 경우의 수증기의 농도는, 0.001 체적% ∼ 50 체적% 의 범위 내가 바람직하고, 보다 바람직하게는 0.01 체적% ∼ 10 체적%, 더욱 바람직하게는 0.01 체적% ∼ 5 체적% 이다.The reactive gas containing water vapor in this step may be a gas composed of water vapor or a mixed gas with gases such as argon, nitrogen, oxygen, and hydrogen. The concentration of water vapor in the case of a mixed gas is preferably within the range of 0.001 vol% to 50 vol%, more preferably 0.01 vol% to 10 vol%, still more preferably 0.01 vol% to 5 vol%.

(B) 공정에 있어서의 수증기를 포함하는 반응성 가스를 처리 분위기에 도입하는 방법은, 특별히 한정되는 것이 아니라, 주지된 일반적인 원자층 퇴적법에 사용되는 반응성 가스의 도입 방법과 동일하게 도입할 수 있지만, 미리 기화시킨 반응성 가스를 처리 분위기에 도입하는 것이 바람직하다.The method of introducing the reactive gas containing water vapor into the treatment atmosphere in the step (B) is not particularly limited, and can be introduced in the same manner as the method of introducing the reactive gas used in well-known general atomic layer deposition methods. , it is preferable to introduce a previously vaporized reactive gas into the processing atmosphere.

본 발명에 있어서의 산화이트륨 함유 박막이란, 산화이트륨을 5 질량% 이상 함유하는 박막이면 된다. 산화이트륨 외에 박막 중에 함유되는 화합물로는, 예를 들어 이트리아 안정화 지르코니아, 오르토바나딘산이트륨, 이산화황화이트륨, 이트륨·바륨·구리 산화물, 알루민산이트륨 등을 들 수 있다. 이들 중에서도 본 발명의 제조 방법은, 산화이트륨으로 이루어지는 박막을 제조하기 위한 방법으로서 바람직하다.The thin film containing yttrium oxide in the present invention may be a thin film containing 5% by mass or more of yttrium oxide. Examples of compounds contained in the thin film other than yttrium oxide include yttria stabilized zirconia, yttrium orthovanadate, yttrium dioxide sulfate, yttrium barium copper oxide, and yttrium aluminate. Among these, the production method of the present invention is preferable as a method for producing a thin film made of yttrium oxide.

예를 들어, 본 발명의 제조 방법에 의해 실리콘 기체 상에 산화이트륨 박막을 제조하는 방법에 대해서, 도 1 의 플로우 차트를 사용하며 설명한다. 여기서는, 도 2 에 나타내는 ALD 법용 장치를 사용하는 것으로 한다.For example, a method for producing a yttrium oxide thin film on a silicon substrate by the production method of the present invention will be described using the flow chart in FIG. 1 . Here, it is assumed that the apparatus for the ALD method shown in FIG. 2 is used.

먼저, 실리콘 기체를 성막 챔버 내에 설치한다. 이 실리콘 기체의 설치 방법은 특별히 한정되는 것이 아니라, 주지된 일반적인 방법에 의해 기체를 성막 챔버에 설치하면 된다. 또한, 트리스(제2부틸시클로펜타디에닐)이트륨을 원료 용기 내에서 기화시키고, 이것을 성막 챔버에 도입하여, 20 ℃ ∼ 300 ℃, 바람직하게는 150 ℃ ∼ 300 ℃, 보다 바람직하게는 200 ℃ ∼ 300 ℃, 특히 바람직하게는 200 ℃ ∼ 250 ℃ 로 가온시킨 실리콘 기체 상에 퇴적 (흡착) 시킨다 ((A) 공정).First, a silicon gas is installed in a film formation chamber. A method for installing the silicon substrate is not particularly limited, and the substrate may be installed in the film formation chamber by a well-known general method. In addition, tris(tertiary butylcyclopentadienyl)yttrium is vaporized in a raw material container, and this is introduced into a film formation chamber at 20°C to 300°C, preferably 150°C to 300°C, more preferably 200°C to 200°C. It is deposited (adsorbed) on a silicon substrate heated to 300°C, particularly preferably from 200°C to 250°C (Step (A)).

다음으로, 실리콘 기체 상에 퇴적되지 않은 트리스(제2부틸시클로펜타디에닐)이트륨을 성막 챔버로부터 배기시킨다 (배기 공정 1). 실리콘 기체 상에 퇴적되지 않은 트리스(제2부틸시클로펜타디에닐)이트륨이 성막 챔버로부터 완전히 배기되는 것이 이상적이지만, 반드시 완전히 배기될 필요는 없다. 배기 방법으로는, 헬륨, 아르곤 등의 불활성 가스에 의해 계 내를 퍼지하는 방법, 계 내를 감압시킴으로써 배기시키는 방법, 이것들을 조합시킨 방법 등을 들 수 있다. 감압시킬 경우의 감압도는, 0.01 Pa ∼ 300 Pa 가 바람직하고, 0.1 Pa ∼ 100 Pa 가 보다 바람직하다.Next, tris(secondary butylcyclopentadienyl)yttrium not deposited on the silicon substrate is exhausted from the film formation chamber (exhaust step 1). Ideally, the tris(bbutylcyclopentadienyl)yttrium not deposited on the silicon substrate is completely evacuated from the deposition chamber, but need not be completely evacuated. Examples of the evacuation method include a method of purging the inside of the system with an inert gas such as helium or argon, a method of evacuating the system by reducing the pressure in the system, or a method in which these are combined. 0.01 Pa - 300 Pa are preferable, and, as for the pressure reduction degree at the time of making it pressure-reduced, 0.1 Pa - 100 Pa are more preferable.

다음으로, 성막 챔버에 반응성 가스로서 수증기를 포함하는 가스를 도입하여, 실리콘 기체 상에 퇴적시킨 트리스(제2부틸시클로펜타디에닐)이트륨과 반응시킴으로써 이트륨을 산화시킨다 ((B) 공정). 이 때, 물을 미리 기화시켜 두고, 수증기의 상태로 도입하는 것이 바람직하다. 본 공정에 있어서 수증기와 트리스(제2부틸시클로펜타디에닐)이트륨을 반응시키는 경우의 기체 온도는, 20 ℃ ∼ 300 ℃ 의 범위가 바람직하고, 바람직하게는 150 ℃ ∼ 300 ℃, 보다 바람직하게는 200 ℃ ∼ 300 ℃, 특히 바람직하게는 200 ℃ ∼ 250 ℃ 이다. (A) 공정의 기체 온도와 (B) 공정의 기체 온도의 차이는, 절대값으로 0 ℃ ∼ 20 ℃ 의 범위 내인 것이 바람직하다. 이 범위 내로 조정함으로써, 산화이트륨 함유 박막의 휨이 잘 발생하지 않는다는 효과가 확인되기 때문이다.Next, a gas containing water vapor is introduced into the film formation chamber as a reactive gas to react with tris(b-butylcyclopentadienyl)yttrium deposited on the silicon substrate to oxidize yttrium (Step (B)). At this time, it is preferable to vaporize water in advance and introduce it in a state of steam. The gas temperature in the case of reacting water vapor with tris(tertiary butylcyclopentadienyl)yttrium in this step is preferably in the range of 20°C to 300°C, preferably 150°C to 300°C, more preferably 200°C to 300°C, particularly preferably 200°C to 250°C. The difference between the gas temperature in the step (A) and the gas temperature in the step (B) is preferably in the range of 0°C to 20°C as an absolute value. It is because the effect that warpage of the yttria-containing thin film does not occur easily is confirmed by adjusting within this range.

다음으로, 미반응의 수증기 및 부생된 가스를 성막 챔버로부터 배기시킨다 (배기 공정 2). 미반응의 수증기 및 부생된 가스가 반응실로부터 완전히 배기되는 것이 이상적이지만, 반드시 완전히 배기될 필요는 없다. 배기 방법으로는, 헬륨, 아르곤 등의 불활성 가스에 의해 계 내를 퍼지하는 방법, 계 내를 감압시킴으로써 배기시키는 방법, 이것들을 조합시킨 방법 등을 들 수 있다. 감압시킬 경우의 감압도는, 0.01 Pa ∼ 300 Pa 가 바람직하고, 0.1 Pa ∼ 100 Pa 가 보다 바람직하다.Next, unreacted water vapor and by-produced gas are exhausted from the film formation chamber (exhaust process 2). Ideally, unreacted water vapor and by-produced gases are completely exhausted from the reaction chamber, but need not be completely exhausted. Examples of the evacuation method include a method of purging the inside of the system with an inert gas such as helium or argon, a method of evacuating the system by reducing the pressure in the system, or a method in which these are combined. 0.01 Pa - 300 Pa are preferable, and, as for the pressure reduction degree in the case of reducing pressure, 0.1 Pa - 100 Pa are more preferable.

상기 (A) 공정, 배기 공정 1, (B) 공정 및 배기 공정 2 로 이루어지는 일련 조작에 의한 박막 퇴적을 1 사이클로 하고, 이 성막 사이클을 필요한 막두께를 갖는 산화이트륨 함유 박막이 얻어질 때까지 복수 회 반복해도 된다.Thin film deposition by a series of operations consisting of the above (A) process, evacuation process 1, (B) process and evacuation process 2 is regarded as one cycle, and a plurality of film formation cycles are performed until a yttrium oxide-containing thin film having a required film thickness is obtained. may be repeated several times.

또한, 본 발명의 제조 방법에는, 플라즈마, 광, 전압 등의 에너지를 인가해도 된다. 이들 에너지를 인가하는 시기는, 특별하게는 한정되지 않고, 예를 들어 (A) 공정에 있어서의 트리스(제2부틸시클로펜타디에닐)이트륨 가스 도입시, (B) 공정에 있어서의 가온시, 배기 공정에 있어서의 계 내의 배기시여도 되고, 상기 각 공정의 사이여도 된다.Further, energy such as plasma, light, or voltage may be applied to the manufacturing method of the present invention. The timing for applying these energies is not particularly limited. For example, at the time of introduction of tris(tertiary butylcyclopentadienyl)yttrium gas in step (A), at the time of heating in step (B), It may be the time of evacuation in the system in the evacuation process, or it may be between the said each process.

본 발명의 제조 방법에 있어서는, 박막 퇴적 후에, 보다 양호한 막질을 얻기 위해서 불활성 가스 분위기하 또는 환원성 가스 분위기하에서 어닐 처리를 실시해도 되고, 단차 (段差) 메움이 필요한 경우에는, 리플로우 공정을 설정해도 된다. 이 경우의 온도는, 400 ℃ ∼ 1200 ℃ 이며, 500 ℃ ∼ 800 ℃ 가 바람직하다.In the manufacturing method of the present invention, after thin film deposition, an annealing treatment may be performed in an inert gas atmosphere or a reducing gas atmosphere in order to obtain a better film quality, or a reflow step may be provided if step filling is required. do. The temperature in this case is 400°C to 1200°C, preferably 500°C to 800°C.

본 발명에 의해 산화이트륨 함유 박막을 제조하는 데에 사용하는 장치는, 주지된 ALD 법용 장치를 사용할 수 있다. 구체적인 장치의 예로는 도 2 와 같은 원자층 퇴적법용 원료를 버블링 공급할 수 있는 장치나, 도 3 과 같이 기화실을 갖는 장치를 들 수 있다. 또한, 도 4 및 도 5 와 같이 반응성 가스에 대하여 플라즈마 처리를 실시할 수 있는 장치를 들 수 있다. 도 2 ∼ 도 5 와 같은 매엽식 장치에 한정되지 않고, 배치로를 사용한 다수 매 동시 처리 가능한 장치를 사용할 수도 있다.As the apparatus used for producing the yttrium oxide-containing thin film according to the present invention, a well-known ALD method apparatus can be used. Specific examples of the device include a device capable of bubblingly supplying raw materials for atomic layer deposition as shown in FIG. 2 or a device having a vaporization chamber as shown in FIG. 3 . In addition, as shown in FIGS. 4 and 5, an apparatus capable of performing a plasma treatment on a reactive gas is exemplified. It is not limited to the single wafer type apparatus as shown in Figs. 2 to 5, and an apparatus capable of simultaneously processing a plurality of sheets using a batch furnace can also be used.

실시예Example

이하, 실시예 및 비교예로 본 발명을 더욱 상세하게 설명한다. 그러나, 본 발명은 이하의 실시예 등에 의해 전혀 제한을 받는 것은 아니다.Hereinafter, the present invention will be described in more detail with Examples and Comparative Examples. However, the present invention is not at all limited by the following examples and the like.

[실시예 1] 산화이트륨 박막의 제조[Example 1] Preparation of yttrium oxide thin film

트리스(제2부틸시클로펜타디에닐)이트륨을 원자층 퇴적법용 원료로 하고, 도 2 에 나타내는 장치를 사용하여 이하 조건의 ALD 법에 의해 실리콘 웨이퍼 상에 산화이트륨 박막을 제조하는 것을 20 회 반복함으로써, 20 매의 박막을 제조하였다.By using tris(tertiary butylcyclopentadienyl)yttrium as a raw material for the atomic layer deposition method and producing a yttrium oxide thin film on a silicon wafer 20 times by an ALD method under the following conditions using the apparatus shown in FIG. , 20 thin films were prepared.

제조된 박막에 대해서, 각각 X 선 광전자 분광법에 의해 박막 조성을 확인한 바, 얻어진 박막은 모두 산화이트륨이며, 탄소 함유량은 검출 하한인 0.1 atom% 보다 적었다. 또한, X 선 반사율법에 의한 막두께 측정을 실시하여, 그 평균값을 산출한 바, 막두께는 평균 7.0 nm 이며, 1 사이클당 얻어지는 막두께는 평균 0.14 nm 였다. FE-SEM (주식회사 히타치 하이테크놀지즈사 제조, 전계 방출형 주사 전자 현미경) 을 사용한 단면 관찰의 결과, 박막의 표면은 평활하였다.For the thin films produced, the composition of each thin film was confirmed by X-ray photoelectron spectroscopy, and all of the obtained thin films were yttrium oxide, and the carbon content was less than the lower detection limit of 0.1 atom%. In addition, when the film thickness was measured by the X-ray reflectance method and the average value was calculated, the film thickness was 7.0 nm on average, and the film thickness obtained per cycle was 0.14 nm on average. As a result of cross-sectional observation using an FE-SEM (a field emission scanning electron microscope manufactured by Hitachi High-Technologies Corporation), the surface of the thin film was smooth.

(조건)(condition)

반응 온도 (실리콘 웨이퍼 온도) : 200 ℃Reaction temperature (silicon wafer temperature): 200 ℃

반응성 가스 :Reactive Gas:

아르곤 가스 : 수증기 = 99.9 : 0.1 ∼ 95.0 : 5.0 (체적비) Argon gas: water vapor = 99.9: 0.1 to 95.0: 5.0 (volume ratio)

하기 (1) ∼ (4) 로 이루어지는 일련 공정을 1 사이클로 하고, 50 사이클 반복하였다.A series of steps consisting of the following (1) to (4) was set as one cycle and repeated 50 cycles.

(1) 원료 용기 온도 : 150 ℃, 원료 용기 내 압력 : 100 Pa 의 조건에서 기화시킨 원자층 퇴적법용 원료를 성막 챔버에 도입하여, 계 압력 : 100 Pa 로 30 초간 퇴적시킨다.(1) The raw material for the atomic layer deposition method vaporized under conditions of a raw material container temperature: 150° C. and a pressure inside the raw material container: 100 Pa is introduced into a film formation chamber and deposited at a system pressure of 100 Pa for 30 seconds.

(2) 15 초간의 아르곤 퍼지에 의해 퇴적되지 않은 원료를 제거한다.(2) Undeposited material is removed by an argon purge for 15 seconds.

(3) 반응성 가스를 성막 챔버에 도입하여, 계 압력 : 100 Pa 로 0.2 초간 반응시킨다.(3) A reactive gas is introduced into the film formation chamber and reacted at a system pressure of 100 Pa for 0.2 second.

(4) 60 초간의 아르곤 퍼지에 의해 미반응의 반응성 가스 및 부생 가스를 제거한다.(4) Unreacted reactive gas and by-product gas are removed by argon purge for 60 seconds.

[실시예 2] 산화이트륨 박막의 제조 [Example 2] Preparation of yttrium oxide thin film

반응 온도 (실리콘 웨이퍼 온도) 를 250 ℃ 로 변경한 것 이외에는, 실시예 1 과 동일한 방법으로 20 매의 평활한 박막을 제조하였다. 각각의 X 선 광전자 분광법에 의한 박막 조성을 확인한 바, 얻어진 박막은 모두 산화이트륨이며, 탄소 함유량은 검출 하한인 0.1 atom% 보다 적었다. 또한, X 선 반사율법에 의한 막두께 측정을 실시하여, 그 평균값을 산출한 바, 막두께는 평균 6.5 nm 이며, 1 사이클당 얻어지는 막두께는 평균 0.13 nm 였다. FE-SEM 을 사용한 단면 관찰의 결과, 박막의 표면은 평활하였다.Twenty smooth thin films were produced in the same manner as in Example 1, except that the reaction temperature (silicon wafer temperature) was changed to 250°C. When the composition of each thin film was confirmed by X-ray photoelectron spectroscopy, all of the obtained thin films were yttrium oxide, and the carbon content was less than the detection lower limit of 0.1 atom%. In addition, when the film thickness was measured by the X-ray reflectance method and the average value was calculated, the film thickness was 6.5 nm on average, and the film thickness obtained per cycle was 0.13 nm on average. As a result of cross-sectional observation using FE-SEM, the surface of the thin film was smooth.

[비교예 1] 산화이트륨 박막의 제조[Comparative Example 1] Preparation of yttrium oxide thin film

원자층 퇴적법용 원료를 트리스(시클로펜타디에닐)이트륨으로 변경한 것 이외에는, 실시예 1 과 동일한 방법으로 20 매의 박막의 제조를 시도하였다. 그 결과가, 1 ∼ 8 매째는 실리콘 웨이퍼 상에 박막이 형성되기는 했지만, 박막 표면의 요철이 커서, 평탄한 박막을 형성할 수 없었다. 또한, 9 ∼ 20 매째는 실리콘 웨이퍼 상에 박막은 형성되지 않았다.Twenty thin films were fabricated in the same manner as in Example 1, except that the raw material for atomic layer deposition was changed to tris(cyclopentadienyl)yttrium. As a result, although a thin film was formed on the silicon wafer in the first to eighth sheets, the irregularity of the surface of the thin film was large, and a flat thin film could not be formed. In the 9th to 20th sheets, no thin film was formed on the silicon wafer.

[비교예 2] 산화이트륨 박막의 제조[Comparative Example 2] Preparation of yttrium oxide thin film

원자층 퇴적법용 원료를 트리스(2,2,6,6-테트라메틸-3,5-헵탄디오네이트)이트륨으로 변경한 것 이외에는, 실시예 1 과 동일한 방법으로 20 매의 박막의 제조를 시도하였다. 그 결과, 1 ∼ 8 매째는 실리콘 웨이퍼 상에 박막이 형성되기는 했지만, 박막 표면의 요철이 커서, 평탄한 박막을 형성할 수 없었다. 또한, 9 ∼ 20 매째는 실리콘 웨이퍼 상에 박막은 형성되지 않았다.Twenty thin films were manufactured in the same manner as in Example 1, except that the raw material for atomic layer deposition was changed to tris(2,2,6,6-tetramethyl-3,5-heptanedionate)yttrium. . As a result, although thin films were formed on the silicon wafers in the first to eighth sheets, the irregularities on the surface of the thin films were large, and a flat thin film could not be formed. In the 9th to 20th sheets, no thin film was formed on the silicon wafer.

이상의 결과로부터 실시예 1 및 2 에서는, 생산성 좋게 잔류 탄소가 적은 품질이 양호한 평활한 산화이트륨 박막이 얻어졌지만, 비교예 1 및 2 에서는, 박막 표면의 요철이 큰 박막이 얻어졌다. 또한, 비교예 1 및 2 의 산화이트륨 박막의 제조 방법은, 생산성이 매우 나쁨을 알 수 있었다.From the above results, in Examples 1 and 2, smooth yttrium oxide thin films with high productivity and low residual carbon were obtained, but in Comparative Examples 1 and 2, thin films with large surface irregularities were obtained. It was also found that the methods for producing the yttrium oxide thin films of Comparative Examples 1 and 2 had very poor productivity.

Claims (1)

본원 명세서에 기재된 모든 발명.All inventions described herein.
KR1020237016767A 2017-03-29 2018-02-13 Method for producing yttrium oxide-containing thin film by atomic layer deposition KR20230074306A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017064631A JP6912913B2 (en) 2017-03-29 2017-03-29 Method for producing yttrium oxide-containing thin film by atomic layer deposition
JPJP-P-2017-064631 2017-03-29
KR1020197029250A KR20190128062A (en) 2017-03-29 2018-02-13 Method for producing yttrium-containing thin film by atomic layer deposition
PCT/JP2018/004849 WO2018179924A1 (en) 2017-03-29 2018-02-13 Method for producing yttrium oxide-containing thin film by atomic layer deposition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197029250A Division KR20190128062A (en) 2017-03-29 2018-02-13 Method for producing yttrium-containing thin film by atomic layer deposition

Publications (1)

Publication Number Publication Date
KR20230074306A true KR20230074306A (en) 2023-05-26

Family

ID=63675058

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237016767A KR20230074306A (en) 2017-03-29 2018-02-13 Method for producing yttrium oxide-containing thin film by atomic layer deposition
KR1020197029250A KR20190128062A (en) 2017-03-29 2018-02-13 Method for producing yttrium-containing thin film by atomic layer deposition

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020197029250A KR20190128062A (en) 2017-03-29 2018-02-13 Method for producing yttrium-containing thin film by atomic layer deposition

Country Status (7)

Country Link
US (1) US11335896B2 (en)
EP (1) EP3604613A4 (en)
JP (1) JP6912913B2 (en)
KR (2) KR20230074306A (en)
CN (1) CN110475904A (en)
TW (1) TWI735750B (en)
WO (1) WO2018179924A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065646A1 (en) 2019-10-04 2021-04-08

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068074A (en) 2003-08-25 2005-03-17 Asahi Denka Kogyo Kk Rare-earth metal complex, raw material for forming thin film, and method for producing thin film
JP2008274374A (en) 2007-05-02 2008-11-13 Seiko Epson Corp Film deposition system and film deposition method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882206A (en) 1988-06-22 1989-11-21 Georgia Tech Research Corporation Chemical vapor deposition of group IIIB metals
US6271131B1 (en) * 1998-08-26 2001-08-07 Micron Technology, Inc. Methods for forming rhodium-containing layers such as platinum-rhodium barrier layers
JP5138927B2 (en) * 2006-12-25 2013-02-06 共同印刷株式会社 Flexible TFT substrate, manufacturing method thereof and flexible display
WO2009131902A2 (en) * 2008-04-23 2009-10-29 Intermolecular, Inc. Yttrium and titanium high-k dielectric films
JP2011243620A (en) 2010-05-14 2011-12-01 Tokyo Electron Ltd Film formation method and film formation apparatus
TWI610932B (en) * 2012-12-07 2018-01-11 東曹股份有限公司 Ruthenium complex and method for producing the same, cationic tris(nitrile) complex and method for producing the same, and method for producing ruthenium-containing film
JP6577695B2 (en) 2013-12-18 2019-09-18 大陽日酸株式会社 Method for forming silicon nitride film
JP6043851B1 (en) 2015-09-11 2016-12-14 田中貴金属工業株式会社 Chemical vapor deposition material comprising organic ruthenium compound and chemical vapor deposition method using the chemical vapor deposition material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068074A (en) 2003-08-25 2005-03-17 Asahi Denka Kogyo Kk Rare-earth metal complex, raw material for forming thin film, and method for producing thin film
JP2008274374A (en) 2007-05-02 2008-11-13 Seiko Epson Corp Film deposition system and film deposition method

Also Published As

Publication number Publication date
CN110475904A (en) 2019-11-19
EP3604613A1 (en) 2020-02-05
US20200083520A1 (en) 2020-03-12
JP6912913B2 (en) 2021-08-04
TWI735750B (en) 2021-08-11
KR20190128062A (en) 2019-11-14
US11335896B2 (en) 2022-05-17
EP3604613A4 (en) 2020-12-02
WO2018179924A1 (en) 2018-10-04
JP2018168398A (en) 2018-11-01
TW201840891A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
JP4512098B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
KR100716654B1 (en) Method for manufacturing tetragonal zirconium oxide and method for manufacturing capacitor with the same
TWI523104B (en) Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
US20130078454A1 (en) Metal-Aluminum Alloy Films From Metal Amidinate Precursors And Aluminum Precursors
CN112899648A (en) High temperature atomic layer deposition of silicon-containing films
US20080038486A1 (en) Radical Assisted Batch Film Deposition
JPH11238698A (en) Formation of metallic layer using atomic layer evaporation process
US20200263297A1 (en) Deposition of oxides and nitrides
JP6681398B2 (en) Zirconium-containing film-forming composition for depositing zirconium-containing film
JP2006505954A (en) Nitride formation of high-k dielectrics
KR20230074306A (en) Method for producing yttrium oxide-containing thin film by atomic layer deposition
CN114107939B (en) Metal film deposition method
TWI826568B (en) A process for producing a thin film of metallic ruthenium by an atomic layer deposition method
TW201435132A (en) Catalytic atomic layer deposition of films comprising SiOC
JP6797068B2 (en) Method for manufacturing titanium carbide-containing thin film by atomic layer deposition method
WO2021065646A1 (en) Method for producing yttrium oxide-containing film
TWI557256B (en) Metal-aluminum alloy films from metal pcai precursors and aluminum precursors
CN117821940A (en) Thin film deposition method and apparatus
KR20200135547A (en) Low temperature molybdenum film deposition using boron nucleation layer

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal