JP3625237B2 - Concavity and convexity measurement method and component storage method using the same - Google Patents

Concavity and convexity measurement method and component storage method using the same Download PDF

Info

Publication number
JP3625237B2
JP3625237B2 JP03488996A JP3488996A JP3625237B2 JP 3625237 B2 JP3625237 B2 JP 3625237B2 JP 03488996 A JP03488996 A JP 03488996A JP 3488996 A JP3488996 A JP 3488996A JP 3625237 B2 JP3625237 B2 JP 3625237B2
Authority
JP
Japan
Prior art keywords
distribution
axis
sum
uneven
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03488996A
Other languages
Japanese (ja)
Other versions
JPH09231360A (en
Inventor
叔称 日野
俊則 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP03488996A priority Critical patent/JP3625237B2/en
Publication of JPH09231360A publication Critical patent/JPH09231360A/en
Application granted granted Critical
Publication of JP3625237B2 publication Critical patent/JP3625237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、凹凸部が形成された対象物を撮像し、その画像データを処理して該凹凸部の代表位置を計測する凹凸位置計測方法及びこれを用いた部品収納方法に関する。
【0002】
【従来の技術】
図5(A)に示すゴムケース10は、一体成形品であり、その表面11に部品収納用の凹部20が格子状に形成されている。図5(B)は、収納凹部20の拡大図である。収納凹部20は、深さが一定の底面21と、側面とからなる。側面22〜28は、部品の挿入を容易にするために斜面となっており、他の側面は、浅い収納凹部20から部品が脱落しないようにするために直立面となっている。部品が収納凹部20内で回転しないようにするために、収納凹部20のクリアランスが小さいので、ロボットを用いて部品を収納凹部20に収納させるためには、収納凹部20の位置を正確に測定する必要がある。
【0003】
【発明が解決しようとする課題】
部品は、例えばハードディスク用の磁気抵抗(MR)ヘッドであり、薄く、収納凹部20の深さは例えば1mmと浅いので、収納凹部20とその周囲の輝度の差が小さい。このため、ゴムケース10を撮像し、その画像データを2値化して収納凹部20の代表位置を計測しようとすると、2値化のしきい値の設定が容易でなく、また、しきい値を設定しても収納凹部20の2値画像が不正確となって収納凹部20の位置の計測精度が低くなり、ロボットを用いて部品を収納凹部20に収納させることが不可能となる。
【0004】
本発明の目的は、このような問題点に鑑み、輝度差の小さい凹凸部の代表位置を正確に測定することが可能な凹凸位置計測方法及びこれを用いた部品収納方法を提供するとにある。
【0005】
【課題を解決するための手段及びその作用効果】
本発明では、凹凸部が複数、X軸方向及びこれに直角なY軸方向に格子状に配列されて形成された対象物を撮像装置で撮像し、その画像データを処理して凹凸部の代表位置を計測する凹凸位置計測方法において、
該複数の凹凸部のうち四隅の凹凸部の各々につき、
凸部の主要部を含み隣り合う辺がX軸及びY軸に平行な矩形領域内の輝度データB(X,Y)の、Yについての総和BXのX軸に沿った分布及びXについての総和BYのY軸に沿った分布を求め、
該総和BXの分布の所定の極小値に対応した段差部X座標及び該総和BYの分布の所定の極小値に対応した段差部Y座標に基づいて該凹凸部の代表位置を求め、
求めた該四隅の凹凸部の代表位置と、該複数の凹凸部の配列のX軸方向の個数及びY軸方向の個数とに基づいて、該四隅の凹凸部以外の各凹凸部の代表位置も求める。
【0006】
本発明によれば、凹凸の段差が小さくて段差部とその周辺との輝度差が小さくても、総和BX及びBYを求めることによりこの輝度差が増幅されるので、総和BXの分布の所定の極小値に対応した段差部X座標及び総和BYの分布の所定の極小値に対応した段差部Y座標に基づいて代表位置を正確に求めることができるという効果を奏する。
【0007】
本発明の第1態様では、上記総和BXの分布の所定の極小値に対応した段差部X座標は、該総和BXの分布の極小値のうち小さい方から2つに対応したX座標X1及びX2であり、上記総和BYの分布の所定の極小値に対応した段差部Y座標は、該総和BYの分布の極小値のうち小さい方から2つに対応したY座標Y1及びY2であり、Xm=(X1+X2)/2及びYm=(Y1+Y2)/2を算出し、座標(Xm,Ym)を上記代表位置とする。
【0008】
この第1態様によれば、段差部座標の平均値を代表位置として求めるので、平均化される各段差部座標の計測誤差が互いに打ち消し合って、求めた代表位置がより正確になるという効果を奏する。
本発明の第2態様では、凹部が複数、X軸方向及びこれに直角なY軸方向に格子状に配列されて形成された収納ケースを撮像装置で撮像し、その画像データを処理して凹部の代表位置を計測し、
ロボットで部品を把持し、該代表位置に基づいて該部品を対応する凹部に収納する部品収納方法であって、
該画像データの処理において、該複数の凹部のうち四隅の凹部の各々につき、
該凹部の主要部を含み隣り合う辺がX軸及びY軸に平行な矩形領域内の輝度データB(X,Y)の、Yについての総和BXのX軸に沿った分布及びXについての総和BYのY軸に沿った分布を求め、
該総和BXの分布の極小値のうち小さい方から2つに対応した段差部X座標X1及びX2を求め、該総和BYの分布の極小値のうち小さい方から2つに対応した段差部Y座標Y1及びY2を求め、
Xm=(X1+X2)/2及びYm=(Y1+Y2)/2を算出し、座標(Xm,Ym)を該凹部の代表位置として求め、
求めた該四隅の凹部の代表位置と、該複数の凹部の配列のX軸方向の個数及びY軸方向の個数とに基づいて、該四隅の凹部以外の各凹部の代表位置も求める。
【0009】
この第2態様によれば、求めた代表位置が上記のように正確になるので、ロボットによる部品収納の自動化が可能になるという効果を奏する。
【0010】
【発明の実施の形態】
以下、図面に基づいて本発明の一実施形態を説明する。
図1は、部品収納装置の全体構成を示す。
水平に配置されたゴムケース10の表面11には、図5(A)に示す如く収納凹部20が格子状に形成されており、この収納凹部20に、搬送装置で順次送られてくる部品がロボット30により収納される。この収納開始前に、撮像装置31によりゴムケース10が撮像され、その画像データが画像処理装置32で処理されて収納凹部20の代表位置が計測され、計測結果がロボット制御装置33に供給される。ロボット制御装置33は、これに基づいてロボット30を制御し、部品をゴムケース10の収納凹部20に収納させる。
【0011】
次に、画像処理装置32での処理を図2〜4に基づいて説明する。以下、括弧内の数値は図2中のステップ識別番号である。
(40)撮像装置31で得られた1フレームの画像データを入力し、フレームメモリに格納する。
(41)格納された画像データから、図3に示す如く、収納凹部20の主要部を含む矩形領域OABC内の輝度データB(X,Y)を、RAMのワークエリアに切り出す。OAをX軸とし、OCをY軸とする。
【0012】
ゴムケース10は、少なくともその2辺がストッパーで位置決めされており、また、標準的なゴムケース10のサイズ、表面11上の1つ、例えば左下隅の収納凹部20の位置、収納凹部20のピッチ及び配列数が、画像処理装置32に予め入力されており、その入力値に基づいて領域OABCが定められる。領域OABCのX軸方向画素数及びY軸方向画素数をそれぞれn及びmとする。
【0013】
(42)輝度データB(X,Y)のX軸上への投影分布及びY軸上への投影分布を求める。すなわち、

Figure 0003625237
をX=1〜nについて算出し、
Figure 0003625237
をY=1〜mについて算出する。図4(A)及び(B)はそれぞれBX及びBYの実際の分布を示す。
【0014】
(43)BXの極小値の小さいほうから2つに対応したXの値X1及びX2を求める。X1及びX2はそれぞれ、図3の底面21と側面23、24との境界位置及び底面21と側面27、28との境界位置であることが分かった。これは、段差部ではその周辺よりも輝度が小さく、かつ、上記総和により段差部とその周辺との輝度差が増幅されるからである。
【0015】
(44)BYの極小値の小さいほうから2つに対応したYの値Y1及びY2を求める。Y1及びY2は、図3の底面21と側面25、26との境界位置及び底面21と側面22との境界位置であることが分かった。
(45)X1とX2の平均値Xm及びY1とY2の平均値Ymを算出し、収納凹部20の代表位置Mの座標を(Xm,Ym)とする。
【0016】
上記ステップ41〜45の処理を、図5(A)に示すゴムケース10上の四隅の収納凹部201〜204について繰り返し行い、収納凹部201〜204の各代表位置と、収納凹部20のX軸方向の個数及びY軸方向の個数とから、全ての収納凹部20の代表位置を算出し、これをロボット制御装置33に供給する。
本実施形態では、収納凹部20が浅くて段差部とその周辺との輝度差が小さくても、上記総和によりこの輝度差が増幅されるので、BXの極小値の小さいほうから2つに対応したX1とX2の平均値Xm及びBYの極小値の小さいほうから2つに対応したY1とY2の平均値Ymを求め、収納凹部20の代表位置M(Xm,Ym)が正確になる。
【0017】
なお、本発明には外にも種々の変形例が含まれる。
例えば、全ての収納凹部20について上記ステップ41〜45の処理を繰り返す構成であってもよい。
また、収納凹部20の位置の標準値をロボット制御装置33に予め格納しておき、標準値からのずれを画像処理装置32で計測し、これをロボット制御装置33に供給するように構成してもよい。
【0018】
さらに、上記実施形態では対象物に凹部が形成されている場合を説明したが、本発明は、一般に凹凸部が形成されている場合に適用可能である。この場合、凹凸部の、X軸及びY軸に沿った段差の数以下の極小値に対応した座標又はその平均値を凹凸部の代表位置とする。
【図面の簡単な説明】
【図1】部品収納装置の全体構成を示す概略図である。
【図2】図1の画像処理装置の処理手順を示すフローチャートである。
【図3】図2の画像処理の説明図である。
【図4】(A)は図3中の領域OABC内の輝度データB(X,Y)の、Yについての総和BXの分布図、(B)は輝度データB(X,Y)のXについての総和BYの分布図である。
【図5】部品収納用ゴムケースの正面図、(B)は(A)中の1つの収納凹部の拡大図である。
【符号の説明】
10 ゴムケース
11 表面
20、201〜204 収納凹部
21 底面
22〜28 側面
30 ロボット
31 撮像装置
32 画像処理装置
33 ロボット制御装置
M 代表位置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a concavo-convex position measuring method for capturing an image of an object on which concavo-convex portions are formed, processing the image data, and measuring a representative position of the concavo-convex portions, and a component storage method using the same.
[0002]
[Prior art]
The rubber case 10 shown in FIG. 5A is an integrally molded product, and concave portions 20 for storing components are formed on the surface 11 in a lattice shape. FIG. 5B is an enlarged view of the storage recess 20. The storage recess 20 includes a bottom surface 21 having a constant depth and side surfaces. The side surfaces 22 to 28 are inclined surfaces for facilitating the insertion of the components, and the other side surfaces are upright surfaces to prevent the components from falling off the shallow storage recess 20. Since the clearance of the storage recess 20 is small so that the component does not rotate in the storage recess 20, the position of the storage recess 20 is accurately measured in order to store the component in the storage recess 20 using a robot. There is a need.
[0003]
[Problems to be solved by the invention]
The component is, for example, a magnetoresistive (MR) head for a hard disk, is thin, and the depth of the storage recess 20 is as shallow as 1 mm, for example, so that the difference in luminance between the storage recess 20 and its surroundings is small. For this reason, if the rubber case 10 is imaged, and the image data is binarized to attempt to measure the representative position of the storage recess 20, it is not easy to set the binarization threshold value. Even if it is set, the binary image of the storage recess 20 becomes inaccurate and the measurement accuracy of the position of the storage recess 20 is lowered, and it becomes impossible to store the component in the storage recess 20 using a robot.
[0004]
In view of such problems, an object of the present invention is to provide an uneven position measuring method capable of accurately measuring a representative position of an uneven portion having a small luminance difference and a component storage method using the same.
[0005]
[Means for solving the problems and their effects]
In the present invention, plurality of uneven portions, an X-axis direction and object formed thereto are arranged in a lattice perpendicular Y-axis direction, imaged by the imaging device, the uneven portion by processing the image data In the uneven position measurement method that measures the representative position of
For each of the four concavo-convex portions of the plurality of concavo-convex portions,
Brightness data B (X, Y) sides in a rectangular region parallel to the X-axis and Y-axis adjacent comprise a major portion of the concave convex part of, Y of the distribution and X summation along the X axis BX of Find the distribution along the Y-axis of the sum BY,
Calculated Me a representative position of the concavo-convex portion on the basis of the step portion Y coordinates corresponding to a predetermined minimum value of the distribution of the corresponding stepped portion X coordinate and said total sum BY to a predetermined minimum value of the distribution of said total sum BX,
Based on the obtained representative positions of the uneven portions at the four corners and the number in the X-axis direction and the number in the Y-axis direction of the arrangement of the plurality of uneven portions, the representative positions of the uneven portions other than the uneven portions at the four corners are also Ask.
[0006]
According to the present invention, even if the uneven step is small and the luminance difference between the step portion and its periphery is small, the luminance difference is amplified by obtaining the sums BX and BY. The step position X coordinate corresponding to the minimum value and the step position Y coordinate corresponding to the predetermined minimum value of the distribution of the sum BY can be obtained accurately.
[0007]
In the first aspect of the present invention, the stepped portion X coordinates corresponding to the predetermined minimum value of the distribution of the sum BX are the X coordinates X1 and X2 corresponding to the smallest two of the minimum values of the distribution of the sum BX. The step Y coordinate corresponding to the predetermined minimum value of the distribution of the sum BY is Y coordinates Y1 and Y2 corresponding to the smallest two of the minimum values of the distribution of the sum BY, and Xm = (X1 + X2) / 2 and Ym = (Y1 + Y2) / 2 are calculated, and the coordinates (Xm, Ym) are set as the representative positions.
[0008]
According to the first aspect, since the average value of the stepped portion coordinates is obtained as the representative position, the measurement errors of the averaged stepped portion coordinates cancel each other, and the obtained representative position becomes more accurate. Play.
In the second aspect of the present invention, a storage case formed by arranging a plurality of recesses in a grid pattern in the X-axis direction and the Y-axis direction perpendicular to the X-axis direction is imaged by an imaging device, and the image data is processed to each Measure the representative position of the recess,
A component storage method for gripping a component with a robot and storing the component in a corresponding recess based on the representative position,
In the processing of the image data, for each of the four corners of the plurality of recesses,
Distribution along the X-axis of the sum BX with respect to Y of the luminance data B (X, Y) in the rectangular region including the main part of the recess and having adjacent sides parallel to the X- axis and the Y-axis, and the sum with respect to X Find the distribution of BY along the Y axis,
Step X coordinates X1 and X2 corresponding to the smallest two of the minimum values of the distribution of the sum BX are obtained, and the step Y coordinates corresponding to the smallest two of the minimum values of the distribution of the total BY Find Y1 and Y2,
Xm = (X1 + X2) / 2 and Ym = (Y1 + Y2) / 2 is calculated, determined by the coordinates (Xm, Ym) and representative position of the recess,
Based on the obtained representative positions of the concave portions at the four corners and the number of the plurality of concave portions arranged in the X-axis direction and the number in the Y-axis direction, the representative positions of the concave portions other than the concave portions at the four corners are also obtained.
[0009]
According to the second aspect, since the obtained representative position is accurate as described above, there is an effect that it is possible to automate component storage by the robot.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows the overall configuration of the component storage device.
As shown in FIG. 5 (A), storage recesses 20 are formed in a lattice shape on the surface 11 of the rubber case 10 arranged horizontally, and the parts that are sequentially fed by the transport device to the storage recesses 20. It is stored by the robot 30. Before the storage is started, the rubber case 10 is imaged by the imaging device 31, the image data is processed by the image processing device 32, the representative position of the storage recess 20 is measured, and the measurement result is supplied to the robot control device 33. . Based on this, the robot control device 33 controls the robot 30 to store the components in the storage recess 20 of the rubber case 10.
[0011]
Next, processing in the image processing apparatus 32 will be described with reference to FIGS. Hereinafter, the numerical values in parentheses are step identification numbers in FIG.
(40) One frame of image data obtained by the imaging device 31 is input and stored in the frame memory.
(41) From the stored image data, as shown in FIG. 3, the luminance data B (X, Y) in the rectangular area OABC including the main part of the storage recess 20 is cut out to the work area of the RAM. OA is the X axis and OC is the Y axis.
[0012]
The rubber case 10 has at least two sides positioned by stoppers, and has a standard rubber case 10 size, one on the surface 11, for example, the position of the storage recess 20 in the lower left corner, and the pitch of the storage recess 20 And the number of arrays are input to the image processing device 32 in advance, and the area OABC is determined based on the input value. Let the number of pixels in the X-axis direction and the number of pixels in the Y-axis direction of the region OABC be n and m, respectively.
[0013]
(42) The projection distribution on the X-axis and the projection distribution on the Y-axis of the luminance data B (X, Y) are obtained. That is,
Figure 0003625237
Is calculated for X = 1 to n,
Figure 0003625237
Is calculated for Y = 1 to m. 4A and 4B show the actual distribution of BX and BY, respectively.
[0014]
(43) X values X1 and X2 corresponding to two of the smallest BX minimum values are obtained. It has been found that X1 and X2 are the boundary position between the bottom surface 21 and the side surfaces 23 and 24 and the boundary position between the bottom surface 21 and the side surfaces 27 and 28 in FIG. This is because the stepped portion has lower luminance than the periphery thereof, and the difference between the stepped portion and the periphery thereof is amplified by the above sum.
[0015]
(44) Find Y values Y1 and Y2 corresponding to two of the smallest BY minimum values. Y1 and Y2 were found to be the boundary position between the bottom surface 21 and the side surfaces 25 and 26 and the boundary position between the bottom surface 21 and the side surface 22 in FIG.
(45) The average value Xm of X1 and X2 and the average value Ym of Y1 and Y2 are calculated, and the coordinates of the representative position M of the storage recess 20 are (Xm, Ym).
[0016]
The processes of steps 41 to 45 are repeated for the storage recesses 201 to 204 at the four corners on the rubber case 10 shown in FIG. 5A, and the representative positions of the storage recesses 201 to 204 and the X-axis direction of the storage recess 20 The representative positions of all of the storage recesses 20 are calculated from the number of and the number in the Y-axis direction and supplied to the robot controller 33.
In the present embodiment, even if the storage recess 20 is shallow and the luminance difference between the stepped portion and the periphery thereof is small, this luminance difference is amplified by the above summation, so the two corresponding to the smaller one of the minimum values of BX are supported. The average value Ym of Y1 and Y2 corresponding to the two of the average values Xm of X1 and X2 and the minimum value of BY is determined, and the representative position M (Xm, Ym) of the storage recess 20 becomes accurate.
[0017]
Note that the present invention includes various other modifications.
For example, a configuration in which the processes in steps 41 to 45 are repeated for all the storage recesses 20 may be employed.
Further, a standard value of the position of the storage recess 20 is stored in advance in the robot control device 33, a deviation from the standard value is measured by the image processing device 32, and this is supplied to the robot control device 33. Also good.
[0018]
Furthermore, although the said embodiment demonstrated the case where the recessed part was formed in the target object, this invention is applicable when the uneven | corrugated | grooved part is generally formed. In this case, the coordinates corresponding to the minimum value equal to or less than the number of steps along the X axis and the Y axis of the uneven portion or the average value thereof are set as the representative positions of the uneven portion.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an overall configuration of a component storage device.
FIG. 2 is a flowchart showing a processing procedure of the image processing apparatus of FIG. 1;
FIG. 3 is an explanatory diagram of the image processing of FIG. 2;
4A is a distribution diagram of the sum BX of Y of luminance data B (X, Y) in the area OABC in FIG. 3, and FIG. 4B is X of luminance data B (X, Y). It is a distribution map of sum total BY.
FIG. 5 is a front view of a rubber case for storing components, and (B) is an enlarged view of one storage recess in (A).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Rubber case 11 Front surface 20, 201-204 Storage recessed part 21 Bottom surface 22-28 Side surface 30 Robot 31 Imaging device 32 Image processing device 33 Robot control device M Representative position

Claims (3)

凹凸部が複数、X軸方向及びこれに直角なY軸方向に格子状に配列されて形成された対象物を撮像装置で撮像し、その画像データを処理して凹凸部の代表位置を計測する凹凸位置計測方法において、
該複数の凹凸部のうち四隅の凹凸部の各々につき、
凸部の主要部を含み隣り合う辺がX軸及びY軸に平行な矩形領域内の輝度データB(X,Y)の、Yについての総和BXのX軸に沿った分布及びXについての総和BYのY軸に沿った分布を求め、
該総和BXの分布の所定の極小値に対応した段差部X座標及び該総和BYの分布の所定の極小値に対応した段差部Y座標に基づいて該凹凸部の代表位置を求め、
求めた該四隅の凹凸部の代表位置と、該複数の凹凸部の配列のX軸方向の個数及びY軸方向の個数とに基づいて、該四隅の凹凸部以外の各凹凸部の代表位置も求める
ことを特徴とする凹凸位置計測方法。
Uneven portion is more, the X-axis direction and object formed thereto are arranged in a lattice perpendicular Y-axis direction, imaged by the imaging device, a representative position of each uneven portion by processing the image data In the uneven position measurement method to measure,
For each of the four concavo-convex portions of the plurality of concavo-convex portions,
Brightness data B (X, Y) sides in a rectangular region parallel to the X-axis and Y-axis adjacent comprise a major portion of the concave convex part of, Y of the distribution and X summation along the X axis BX of Find the distribution along the Y-axis of the sum BY,
Calculated Me a representative position of the concavo-convex portion on the basis of the step portion Y coordinates corresponding to a predetermined minimum value of the distribution of the corresponding stepped portion X coordinate and said total sum BY to a predetermined minimum value of the distribution of said total sum BX,
Based on the obtained representative positions of the uneven portions at the four corners and the number in the X-axis direction and the number in the Y-axis direction of the arrangement of the plurality of uneven portions, the representative positions of the uneven portions other than the uneven portions at the four corners are also uneven position measurement wherein the <br/> sought.
前記総和BXの分布の所定の極小値に対応した段差部X座標は、該総和BXの分布の極小値のうち小さい方から2つに対応したX座標X1及びX2であり、前記総和BYの分布の所定の極小値に対応した段差部Y座標は、該総和BYの分布の極小値のうち小さい方から2つに対応したY座標Y1及びY2であり、Xm=(X1+X2)/2及びYm=(Y1+Y2)/2を算出し、座標(Xm,Ym)を前記代表位置とする、
ことを特徴とする請求項1記載の凹凸位置計測方法。
The step portion X coordinate corresponding to the predetermined minimum value of the distribution of the sum BX is the X coordinates X1 and X2 corresponding to the smallest two of the minimum values of the distribution of the sum BX, and the distribution of the sum BY Are Y coordinates Y1 and Y2 corresponding to the smallest two of the minimum values of the distribution of the total sum BY, and Xm = (X1 + X2) / 2 and Ym = (Y1 + Y2) / 2 is calculated, and coordinates (Xm, Ym) are set as the representative positions.
The uneven position measuring method according to claim 1 .
凹部が複数、X軸方向及びこれに直角なY軸方向に格子状に配列されて形成された収納ケースを撮像装置で撮像し、その画像データを処理して凹部の代表位置を計測し、
ロボットで部品を把持し、該代表位置に基づいて該部品を対応する凹部に収納する部品収納方法であって、
該画像データの処理において、該複数の凹部のうち四隅の凹部の各々につき、
該凹部の主要部を含み隣り合う辺がX軸及びY軸に平行な矩形領域内の輝度データB(X,Y)の、Yについての総和BXのX軸に沿った分布及びXについての総和BYのY軸に沿った分布を求め、
該総和BXの分布の極小値のうち小さい方から2つに対応した段差部X座標X1及びX2を求め、該総和BYの分布の極小値のうち小さい方から2つに対応した段差部Y座標Y1及びY2を求め、
Xm=(X1+X2)/2及びYm=(Y1+Y2)/2を算出し、座標(Xm,Ym)を該凹部の代表位置として求め、
求めた該四隅の凹部の代表位置と、該複数の凹部の配列のX軸方向の個数及びY軸方向の個数とに基づいて、該四隅の凹部以外の各凹部の代表位置も求める
ことを特徴とする部品収納方法。
A storage case formed by a plurality of recesses arranged in a grid in the X-axis direction and the Y-axis direction perpendicular to the X-axis direction is imaged with an imaging device, the image data is processed to measure the representative position of each recess,
A component storage method for gripping a component with a robot and storing the component in a corresponding recess based on the representative position,
In the processing of the image data, for each of the four corners of the plurality of recesses,
Distribution along the X-axis of the sum BX with respect to Y of the luminance data B (X, Y) in the rectangular region including the main part of the recess and having adjacent sides parallel to the X- axis and the Y-axis, and the sum with respect to X Find the distribution of BY along the Y axis,
Step X coordinates X1 and X2 corresponding to the smallest two of the minimum values of the distribution of the sum BX are obtained, and the step Y coordinates corresponding to the smallest two of the minimum values of the distribution of the total BY Find Y1 and Y2,
Xm = (X1 + X2) / 2 and Ym = (Y1 + Y2) / 2 is calculated, determined by the coordinates (Xm, Ym) and representative position of the recess,
Based on the obtained representative positions of the concave portions at the four corners and the number of the plurality of concave portions arranged in the X-axis direction and the number of the Y-axis directions, the representative positions of the concave portions other than the concave portions at the four corners are also obtained <br / > Parts storage method characterized by that.
JP03488996A 1996-02-22 1996-02-22 Concavity and convexity measurement method and component storage method using the same Expired - Fee Related JP3625237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03488996A JP3625237B2 (en) 1996-02-22 1996-02-22 Concavity and convexity measurement method and component storage method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03488996A JP3625237B2 (en) 1996-02-22 1996-02-22 Concavity and convexity measurement method and component storage method using the same

Publications (2)

Publication Number Publication Date
JPH09231360A JPH09231360A (en) 1997-09-05
JP3625237B2 true JP3625237B2 (en) 2005-03-02

Family

ID=12426732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03488996A Expired - Fee Related JP3625237B2 (en) 1996-02-22 1996-02-22 Concavity and convexity measurement method and component storage method using the same

Country Status (1)

Country Link
JP (1) JP3625237B2 (en)

Also Published As

Publication number Publication date
JPH09231360A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
CN105787923B (en) Vision system and analysis method for plane surface segmentation
US7630539B2 (en) Image processing apparatus
US9224198B2 (en) Analysis of the digital image of the surface of a tyre and processing of non-measurement points
JPH08189898A (en) Defect inspecting device
JP5049246B2 (en) Object shape evaluation device
US20190392607A1 (en) Image processing apparatus, system, image processing method, article manufacturing method, and non-transitory computer-readable storage medium
US20230267593A1 (en) Workpiece measurement method, workpiece measurement system, and program
CN114241061A (en) Calibration method, calibration system and calibration target for line structured light imaging and measurement system using calibration target
KR102023087B1 (en) Method for camera calibration
US7151855B2 (en) Pattern measurement method, manufacturing method of semiconductor device, pattern measurement apparatus, and program
JP3620884B2 (en) Image processing device
JP2672509B2 (en) Method and apparatus for automatically calibrating camera model
KR101653861B1 (en) Drawing data generating method, drawing method, drawing data generating apparatus and drawing apparatus
JP5136108B2 (en) 3D shape measuring method and 3D shape measuring apparatus
JP3625237B2 (en) Concavity and convexity measurement method and component storage method using the same
JP2002109518A (en) Three-dimensional shape restoring method and system therefor
JP6512852B2 (en) Information processing apparatus, information processing method
CN112581473B (en) Method for realizing surface defect detection gray level image positioning algorithm
US11915908B2 (en) Method for measuring a sample and microscope implementing the method
CN116342858B (en) Object detection method, device, electronic equipment and storage medium
JP3817098B2 (en) Binarization processing device
TWI843363B (en) Shelf positioning method of a transporting device and transporting device capable of positioning a shelf
CN117830336B (en) Polygonal contour detection method and device based on line scanning camera imaging
RU2295109C2 (en) Method for calibration of digital video camera for adaptive reeling process
JP2000207557A (en) Method for measuring quantity of positional deviation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees